
Draft Standard for Information Technology—
Portable Operating System Interface (POSIX)

Prepared by the Austin Group

(http://www.opengroup.org/austin/)

Copyright  2001 The Institute of Electrical and Electronics Engineers, Inc.
3 Park Avenue, New York, NY 10016-5997, USA.

Copyright  2001 The Open Group

Αpex Plaza, Forbury Road, Reading, Berkshire RG11AX, UK.

All rights reserved.

Except as permitted below, no part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without the prior permission of the copyright owners. This is an unapproved draft, subject to change. Per-
mission is hereby granted for Austin Group participants to reproduce this document for purposes of IEEE,
the Open Group, and JTC1 standardization activities. Other entities seeking permission to reproduce this
document for standardization purposes or other activities must contact the copyright owners for an appro-
priate license. Use of information contained within this unapproved draft is at your own risk.

Portions of this document are derived with permission from copyrighted material owned by Hewlett-Pack-
ard Company, International Business Machines Corporation, Novell Inc., The Open Software Foundation,
and Sun Microsystems, Inc.

Chapter 1

Introduction1

2 1.1 Scope
3 IEEE Std 1003.1-200x defines a standard operating system interface and environment, including
4 a command interpreter (or ‘‘shell’’), and common utility programs to support applications
5 portability at the source code level. It is intended to be used by both applications developers
6 and system implementors.

7 IEEE Std 1003.1-200x comprises four major components (each in an associated volume):

8 1. General terms, concepts, and interfaces common to all volumes of IEEE Std 1003.1-200x,
9 including utility conventions and C language header definitions, are included in the Base
10 Definitions volume of IEEE Std 1003.1-200x.

11 2. Definitions for system service functions and subroutines, language-specific system
12 services for the C programming language, function issues, including portability, error
13 handling, and error recovery, are included in the System Interfaces volume of
14 IEEE Std 1003.1-200x.

15 3. Definitions for a standard source code-level interface to command interpretation services
16 (a ‘‘shell’’) and common utility programs for application programs are included in the
17 Shell and Utilities volume of IEEE Std 1003.1-200x.

18 4. Extended rationale that did not fit well into the rest of the document structure, containing
19 historical information concerning the contents of IEEE Std 1003.1-200x and why features
20 were included or discarded by the standard developers, is included in the Rationale
21 (Informative) volume of IEEE Std 1003.1-200x.

22 The following areas are outside of the scope of IEEE Std 1003.1-200x:

23 • Graphics interfaces

24 • Database management system interfaces

25 • Record I/O considerations

26 • Object or binary code portability

27 • System configuration and resource availability

28 IEEE Std 1003.1-200x describes the external characteristics and facilities that are of importance to
29 applications developers, rather than the internal construction techniques employed to achieve
30 these capabilities. Special emphasis is placed on those functions and facilities that are needed in
31 a wide variety of commercial applications.

32 The facilities provided in IEEE Std 1003.1-200x are drawn from the following base documents:

33 • IEEE Std 1003.1-1996 (POSIX-1) (incorporating IEEE Stds. 1003.1-1990, 1003.1b-1993,
34 1003.1c-1995, and 1003.1i-1995)

35 • The following amendments to the POSIX.1-1990 standard:

36 — IEEE P1003.1a draft standard (Additional System Services)

37 — IEEE Std 1003.1d-1999 (Additional Realtime Extensions)

Base Definitions, Issue 6 1

Scope Introduction

38 — IEEE Std 1003.1g-2000 (Protocol-Independent Interfaces (PII))

39 — IEEE Std 1003.1j-2000 (Advanced Realtime Extensions)

40 — IEEE Std 1003.1q-2000 (Tracing)

41 • IEEE Std 1003.2-1992 (POSIX-2) (includes IEEE Std 1003.2a-1992)

42 • The following amendments to the ISO POSIX-2: 1993 standard:

43 — IEEE P1003.2b draft standard (Additional Utilities)

44 — IEEE Std 1003.2d-1994 (Batch Environment)

45 • Open Group Technical Standard, February 1997, System Interface Definitions, Issue 5 (XBD5)
46 (ISBN: 1-85912-186-1, C605)

47 • Open Group Technical Standard, February 1997, Commands and Utilities, Issue 5 (XCU5)
48 (ISBN: 1-85912-191-8, C604)

49 • Open Group Technical Standard, February 1997, System Interfaces and Headers, Issue 5
50 (XSH5) (in 2 Volumes) (ISBN: 1-85912-181-0, C606)

51 Note: XBD5, XCU5, and XSH5 are collectively referred to as the Base Specifications.

52 • Open Group Technical Standard, January 2000, Networking Services, Issue 5.2 (XNS5.2)
53 (ISBN: 1-85912-241-8, C808)

54 • ISO/IEC 9899: 1999, Programming Languages — C.

55 IEEE Std 1003.1-200x uses the Base Specifications as its organizational basis and adds the
56 following additional functionality to them drawn from the base documents above:

57 • Normative text from the ISO POSIX-1: 1996 standard and the ISO POSIX-2: 1993 standard not
58 included in the Base Specifications

59 • The amendments to the POSIX.1-1990 standard and the ISO POSIX-2: 1993 standard listed
60 above, except for parts of IEEE Std 1003.1g-2000

61 • Portability Considerations

62 • Additional rationale and notes

63 The following features, marked legacy or obsolescent in the base documents, are not carried
64 forward into IEEE Std 1003.1-200x. Other features from the base documents marked legacy or
65 obsolescent are carried forward unless otherwise noted.

66 From XSH5, the following legacy interfaces, headers, and external variables are not carried
67 forward:

68 advance(), brk(), chroot(), compile(), cuserid(), gamma(), getdtablesize(), getpagesize (), getpass(),
69 getw(), putw(), re_comp(), re_exec(), regcmp(), sbrk(), sigstack (), step(), wait3(), <re_comp.h>,
70 <regexp.h>, <varargs.h>, loc1 , _ _loc1 , loc2 , locs

71 From XCU5, the following legacy utilities are not carried forward:

72 calendar, cancel, cc, col, cpio, cu, dircmp, dis, egrep, fgrep, line, lint, lpstat, mail, pack, pcat, pg, spell,
73 sum, tar, unpack, uulog, uuname, uupick, uuto

74 In addition, legacy features within non-legacy reference pages (for example, headers) are not
75 carried forward.

76 From the ISO POSIX-1: 1996 standard, the following obsolescent features are not carried
77 forward:

2 Technical Standard (2001) (Draft April 13, 2001)

Introduction Scope

78 Page 112, CLK_TCK
79 Page 197 tcgetattr() rate returned option

80 From the ISO POSIX-2: 1993 standard, obsolescent features within the following pages are not
81 carried forward:

82 Page 75, zero-length prefix within PATH
83 Page 156, 159 set
84 Page 178, awk, use of no argument and no parentheses with length
85 Page 259, ed
86 Page 272, env
87 Page 282, find −perm[−]onum
88 Page 295-296, egrep
89 Page 299-300, head
90 Page 305-306, join
91 Page 309-310, kill
92 Page 431-433, 435-436, sort
93 Page 444-445, tail
94 Page 453, 455-456, touch
95 Page 464-465, tty
96 Page 472, uniq
97 Page 515-516, ex
98 Page 542-543, expand
99 Page 563-565, more
100 Page 574-576, newgrp
101 Page 578, nice
102 Page 594-596, renice
103 Page 597-598, split
104 Page 600-601, strings
105 Page 624-625, vi
106 Page 693, lex

107 The c89 utility (which specified a compiler for the C Language specified by the
108 ISO/IEC 9899: 1990 standard) has been replaced by a c99 utility (which specifies a compiler for
109 the C Language specified by the ISO/IEC 9899: 1999 standard).

110 From XSH5, text marked OH (Optional Header) has been reviewed on a case-by-case basis and |
111 removed where appropriate. The XCU5 text marked OF (Output Format Incompletely Specified) |
112 and UN (Possibly Unsupportable Feature) has been reviewed on a case-by-case basis and |
113 removed where appropriate |

114 For the networking interfaces, the base document is the XNS, Issue 5.2 specification. The
115 following parts of the XNS, Issue 5.2 specification are out of scope and not included in
116 IEEE Std 1003.1-200x:

117 • Part 3 (XTI)

118 • Part 4 (Appendixes)

119 Since there is much duplication between the XNS, Issue 5.2 specification and
120 IEEE Std 1003.1g-2000, material only from the following sections of IEEE Std 1003.1g-2000 has
121 been included:

122 • General terms related to sockets (2.2.2)

123 • Socket concepts (5.1 through 5.3, inclusive)

Base Definitions, Issue 6 3

Scope Introduction

124 • The pselect() function (6.2.2.1 and 6.2.3)

125 • The <sys/select.h> header (6.2)

126 Emphasis is placed on standardizing existing practice for existing users, with changes and
127 additions limited to correcting deficiencies in the following areas:

128 • Issues raised by IEEE or ISO/IEC Interpretations against IEEE Std 1003.1 and IEEE Std 1003.2

129 • Issues raised in corrigenda for the Base Specifications and working group resolutions from The
130 Open Group

131 • Corrigenda and resolutions passed by The Open Group for the XNS, Issue 5.2 specification

132 • Changes to make the text self-consistent with the additional material merged

133 • A reorganization of the options in order to facilitate profiling, both for smaller profiles such
134 as IEEE Std 1003.13, and larger profiles such as the Single UNIX Specification

135 • Alignment with the ISO/IEC 9899: 1999 standard

136 1.2 Conformance
137 Conformance requirements for IEEE Std 1003.1-200x are defined in Chapter 2 (on page 15).

138 1.3 Normative References
139 The following standards contain provisions which, through references in IEEE Std 1003.1-200x,
140 constitute provisions of IEEE Std 1003.1-200x. At the time of publication, the editions indicated
141 were valid. All standards are subject to revision, and parties to agreements based on
142 IEEE Std 1003.1-200x are encouraged to investigate the possibility of applying the most recent
143 editions of the standards listed below. Members of IEC and ISO maintain registers of currently
144 valid International Standards.

145 ANS X3.9-1978
146 (Reaffirmed 1989) American National Standard for Information Systems: Standard
147 X3.9-1978, Programming Language FORTRAN.1

148 ISO/IEC 646: 1991
149 ISO/IEC 646: 1991, Information Processing — ISO 7-bit Coded Character Set for Information
150 Interchange.2

151 The reference version of the standard contains 95 graphic characters, which are identical to
152 the graphic characters defined in the ASCII coded character set.

153 ISO 4217: 1995
154 ISO 4217: 1995, Codes for the Representation of Currencies and Funds. |

155 __________________

1.156 ANSI documents can be obtained from the Sales Department, American National Standards Institute, 1430 Broadway, New
157 York, NY 10018, U.S.A.

2.158 ISO/IEC documents can be obtained from the ISO office: 1 Rue de Varembé, Case Postale 56, CH-1211, Genève 20,
159 Switzerland/Suisse

4 Technical Standard (2001) (Draft April 13, 2001)

Introduction Normative References

160 ISO 8601: 2000 |
161 ISO 8601: 2000, Data Elements and Interchange Formats — Information Interchange — |
162 Representation of Dates and Times.

163 ISO C (1999)
164 ISO/IEC 9899: 1999, Programming Languages — C, including Technical Corrigendum No. 1. |

165 ISO/IEC 10646-1: 2000
166 ISO/IEC 10646-1: 2000, Information Technology — Universal Multiple-Octet Coded
167 Character Set (UCS) — Part 1: Architecture and Basic Multilingual Plane.

168 1.4 Terminology
169 For the purposes of IEEE Std 1003.1-200x, the following terminology definitions apply:

170 can
171 Describes a permissible optional feature or behavior available to the user or application. The
172 feature or behavior is mandatory for an implementation that conforms to
173 IEEE Std 1003.1-200x. An application can rely on the existence of the feature or behavior.

174 implementation-defined
175 Describes a value or behavior that is not defined by IEEE Std 1003.1-200x but is selected by
176 an implementor. The value or behavior may vary among implementations that conform to
177 IEEE Std 1003.1-200x. An application should not rely on the existence of the value or
178 behavior. An application that relies on such a value or behavior cannot be assured to be
179 portable across conforming implementations.

180 The implementor shall document such a value or behavior so that it can be used correctly
181 by an application.

182 legacy
183 Describes a feature or behavior that is being retained for compatibility with older
184 applications, but which has limitations which make it inappropriate for developing portable
185 applications. New applications should use alternative means of obtaining equivalent
186 functionality.

187 may
188 Describes a feature or behavior that is optional for an implementation that conforms to
189 IEEE Std 1003.1-200x. An application should not rely on the existence of the feature or
190 behavior. An application that relies on such a feature or behavior cannot be assured to be
191 portable across conforming implementations.

192 To avoid ambiguity, the opposite of may is expressed as need not, instead of may not.

193 shall
194 For an implementation that conforms to IEEE Std 1003.1-200x, describes a feature or
195 behavior that is mandatory. An application can rely on the existence of the feature or
196 behavior.

197 For an application or user, describes a behavior that is mandatory.

198 should
199 For an implementation that conforms to IEEE Std 1003.1-200x, describes a feature or
200 behavior that is recommended but not mandatory. An application should not rely on the
201 existence of the feature or behavior. An application that relies on such a feature or behavior
202 cannot be assured to be portable across conforming implementations.

Base Definitions, Issue 6 5

Terminology Introduction

203 For an application, describes a feature or behavior that is recommended programming
204 practice for optimum portability.

205 undefined
206 Describes the nature of a value or behavior not defined by IEEE Std 1003.1-200x which
207 results from use of an invalid program construct or invalid data input.

208 The value or behavior may vary among implementations that conform to
209 IEEE Std 1003.1-200x. An application should not rely on the existence or validity of the
210 value or behavior. An application that relies on any particular value or behavior cannot be
211 assured to be portable across conforming implementations.

212 unspecified
213 Describes the nature of a value or behavior not specified by IEEE Std 1003.1-200x which
214 results from use of a valid program construct or valid data input.

215 The value or behavior may vary among implementations that conform to
216 IEEE Std 1003.1-200x. An application should not rely on the existence or validity of the
217 value or behavior. An application that relies on any particular value or behavior cannot be
218 assured to be portable across conforming implementations.

219 1.5 Portability
220 Some of the utilities in the Shell and Utilities volume of IEEE Std 1003.1-200x and functions in
221 the System Interfaces volume of IEEE Std 1003.1-200x describe functionality that might not be
222 fully portable to systems meeting the requirements for POSIX conformance (see the Base
223 Definitions volume of IEEE Std 1003.1-200x, Chapter 2, Conformance).

224 Where optional, enhanced, or reduced functionality is specified, the text is shaded and a code in
225 the margin identifies the nature of the option, extension, or warning (see Section 1.5.1). For
226 maximum portability, an application should avoid such functionality.

227 Unless the primary task of a utility is to produce textual material on its standard output,
228 application developers should not rely on the format or content of any such material that may be
229 produced. Where the primary task is to provide such material, but the output format is
230 incompletely specified, the description is marked with the OF margin code and shading.
231 Application developers are warned not to expect that the output of such an interface on one
232 system is any guide to its behavior on another system.

233 1.5.1 Codes

234 The codes and their meanings are as follows. See also Section 1.5.2 (on page 14).

235 ADV Advisory Information
236 The functionality described is optional. The functionality described is also an extension to the
237 ISO C standard.

238 Where applicable, functions are marked with the ADV margin legend in the SYNOPSIS section.
239 Where additional semantics apply to a function, the material is identified by use of the ADV
240 margin legend.

241 AIO Asynchronous Input and Output
242 The functionality described is optional. The functionality described is also an extension to the
243 ISO C standard.

244 Where applicable, functions are marked with the AIO margin legend in the SYNOPSIS section.
245 Where additional semantics apply to a function, the material is identified by use of the AIO

6 Technical Standard (2001) (Draft April 13, 2001)

Introduction Portability

246 margin legend.

247 BAR Barriers
248 The functionality described is optional. The functionality described is also an extension to the
249 ISO C standard.

250 Where applicable, functions are marked with the BAR margin legend in the SYNOPSIS section.
251 Where additional semantics apply to a function, the material is identified by use of the BAR
252 margin legend.

253 BE Batch Environment Services and Utilities
254 The functionality described is optional.

255 Where applicable, utilities are marked with the BE margin legend in the SYNOPSIS section.
256 Where additional semantics apply to a utility, the material is identified by use of the BE margin
257 legend.

258 CD C-Language Development Utilities
259 The functionality described is optional.

260 Where applicable, utilities are marked with the CD margin legend in the SYNOPSIS section.
261 Where additional semantics apply to a utility, the material is identified by use of the CD margin
262 legend.

263 CPT Process CPU-Time Clocks
264 The functionality described is optional. The functionality described is also an extension to the
265 ISO C standard.

266 Where applicable, functions are marked with the CPT margin legend in the SYNOPSIS section.
267 Where additional semantics apply to a function, the material is identified by use of the CPT
268 margin legend.

269 CS Clock Selection
270 The functionality described is optional. The functionality described is also an extension to the
271 ISO C standard.

272 Where applicable, functions are marked with the CS margin legend in the SYNOPSIS section.
273 Where additional semantics apply to a function, the material is identified by use of the CS
274 margin legend.

275 CX Extension to the ISO C standard
276 The functionality described is an extension to the ISO C standard. Application writers may make
277 use of an extension as it is supported on all IEEE Std 1003.1-200x-conforming systems.

278 With each function or header from the ISO C standard, a statement to the effect that ‘‘any
279 conflict is unintentional’’ is included. That is intended to refer to a direct conflict.
280 IEEE Std 1003.1-200x acts in part as a profile of the ISO C standard, and it may choose to further
281 constrain behaviors allowed to vary by the ISO C standard. Such limitations are not considered
282 conflicts.

283 FD FORTRAN Development Utilities
284 The functionality described is optional.

285 Where applicable, utilities are marked with the FD margin legend in the SYNOPSIS section.
286 Where additional semantics apply to a utility, the material is identified by use of the FD margin
287 legend.

288 FR FORTRAN Runtime Utilities
289 The functionality described is optional.

Base Definitions, Issue 6 7

Portability Introduction

290 Where applicable, utilities are marked with the FR margin legend in the SYNOPSIS section.
291 Where additional semantics apply to a utility, the material is identified by use of the FR margin
292 legend.

293 FSC File Synchronization
294 The functionality described is optional. The functionality described is also an extension to the
295 ISO C standard.

296 Where applicable, functions are marked with the FSC margin legend in the SYNOPSIS section.
297 Where additional semantics apply to a function, the material is identified by use of the FSC
298 margin legend.

299 IP6 IPV6
300 The functionality described is optional. The functionality described is also an extension to the
301 ISO C standard.

302 Where applicable, functions are marked with the IP6 margin legend in the SYNOPSIS section.
303 Where additional semantics apply to a function, the material is identified by use of the IP6
304 margin legend. |

305 MC1 Advisory Information and either Memory Mapped Files or Shared Memory Objects
306 The functionality described is optional. The functionality described is also an extension to the
307 ISO C standard.

308 This is a shorthand notation for combinations of multiple option codes.

309 Where applicable, functions are marked with the MC1 margin legend in the SYNOPSIS section.
310 Where additional semantics apply to a function, the material is identified by use of the MC1
311 margin legend.

312 Refer to Section 1.5.2 (on page 14).

313 MC2 Memory Mapped Files, Shared Memory Objects, or Memory Protection
314 The functionality described is optional. The functionality described is also an extension to the
315 ISO C standard.

316 This is a shorthand notation for combinations of multiple option codes.

317 Where applicable, functions are marked with the MC2 margin legend in the SYNOPSIS section.
318 Where additional semantics apply to a function, the material is identified by use of the MC2
319 margin legend.

320 Refer to Section 1.5.2 (on page 14).

321 MF Memory Mapped Files
322 The functionality described is optional. The functionality described is also an extension to the
323 ISO C standard.

324 Where applicable, functions are marked with the MF margin legend in the SYNOPSIS section.
325 Where additional semantics apply to a function, the material is identified by use of the MF
326 margin legend.

327 ML Process Memory Locking
328 The functionality described is optional. The functionality described is also an extension to the
329 ISO C standard.

330 Where applicable, functions are marked with the ML margin legend in the SYNOPSIS section.
331 Where additional semantics apply to a function, the material is identified by use of the ML
332 margin legend.

8 Technical Standard (2001) (Draft April 13, 2001)

Introduction Portability

333 MLR Range Memory Locking
334 The functionality described is optional. The functionality described is also an extension to the
335 ISO C standard.

336 Where applicable, functions are marked with the MLR margin legend in the SYNOPSIS section.
337 Where additional semantics apply to a function, the material is identified by use of the MLR
338 margin legend.

339 MON Monotonic Clock
340 The functionality described is optional. The functionality described is also an extension to the
341 ISO C standard.

342 Where applicable, functions are marked with the MON margin legend in the SYNOPSIS section.
343 Where additional semantics apply to a function, the material is identified by use of the MON
344 margin legend.

345 MPR Memory Protection
346 The functionality described is optional. The functionality described is also an extension to the
347 ISO C standard.

348 Where applicable, functions are marked with the MPR margin legend in the SYNOPSIS section.
349 Where additional semantics apply to a function, the material is identified by use of the MPR
350 margin legend.

351 MSG Message Passing
352 The functionality described is optional. The functionality described is also an extension to the
353 ISO C standard.

354 Where applicable, functions are marked with the MSG margin legend in the SYNOPSIS section.
355 Where additional semantics apply to a function, the material is identified by use of the MSG
356 margin legend.

357 MX IEC 60559 Floating-Point Option
358 The functionality described is optional. The functionality described is also an extension to the
359 ISO C standard.

360 Where applicable, functions are marked with the MX margin legend in the SYNOPSIS section.
361 Where additional semantics apply to a function, the material is identified by use of the MX
362 margin legend.

363 OB Obsolescent
364 The functionality described may be withdrawn in a future version of this volume of
365 IEEE Std 1003.1-200x. Strictly Conforming POSIX Applications and Strictly Conforming XSI
366 Applications shall not use obsolescent features.

367 OF Output Format Incompletely Specified
368 The functionality described is an XSI extension. The format of the output produced by the utility
369 is not fully specified. It is therefore not possible to post-process this output in a consistent
370 fashion. Typical problems include unknown length of strings and unspecified field delimiters.

371 OH Optional Header
372 In the SYNOPSIS section of some interfaces in the System Interfaces volume of
373 IEEE Std 1003.1-200x an included header is marked as in the following example:

374 OH #include <sys/types.h>
375 #include <grp.h>
376 struct group *getgrnam(const char *name);

Base Definitions, Issue 6 9

Portability Introduction

377 This indicates that the marked header is not required on XSI-conformant systems.

378 PIO Prioritized Input and Output
379 The functionality described is optional. The functionality described is also an extension to the
380 ISO C standard.

381 Where applicable, functions are marked with the PIO margin legend in the SYNOPSIS section.
382 Where additional semantics apply to a function, the material is identified by use of the PIO
383 margin legend.

384 PS Process Scheduling
385 The functionality described is optional. The functionality described is also an extension to the
386 ISO C standard.

387 Where applicable, functions are marked with the PS margin legend in the SYNOPSIS section.
388 Where additional semantics apply to a function, the material is identified by use of the PS
389 margin legend.

390 RS Raw Sockets
391 The functionality described is optional. The functionality described is also an extension to the
392 ISO C standard.

393 Where applicable, functions are marked with the RS margin legend in the SYNOPSIS section.
394 Where additional semantics apply to a function, the material is identified by use of the RS
395 margin legend.

396 RTS Realtime Signals Extension
397 The functionality described is optional. The functionality described is also an extension to the
398 ISO C standard.

399 Where applicable, functions are marked with the RTS margin legend in the SYNOPSIS section.
400 Where additional semantics apply to a function, the material is identified by use of the RTS
401 margin legend.

402 SD Software Development Utilities
403 The functionality described is optional.

404 Where applicable, utilities are marked with the SD margin legend in the SYNOPSIS section.
405 Where additional semantics apply to a utility, the material is identified by use of the SD margin
406 legend.

407 SEM Semaphores
408 The functionality described is optional. The functionality described is also an extension to the
409 ISO C standard.

410 Where applicable, functions are marked with the SEM margin legend in the SYNOPSIS section.
411 Where additional semantics apply to a function, the material is identified by use of the SEM
412 margin legend.

413 SHM Shared Memory Objects
414 The functionality described is optional. The functionality described is also an extension to the
415 ISO C standard.

416 Where applicable, functions are marked with the SHM margin legend in the SYNOPSIS section.
417 Where additional semantics apply to a function, the material is identified by use of the SHM
418 margin legend.

419 SIO Synchronized Input and Output
420 The functionality described is optional. The functionality described is also an extension to the
421 ISO C standard.

10 Technical Standard (2001) (Draft April 13, 2001)

Introduction Portability

422 Where applicable, functions are marked with the SIO margin legend in the SYNOPSIS section.
423 Where additional semantics apply to a function, the material is identified by use of the SIO
424 margin legend.

425 SPI Spin Locks
426 The functionality described is optional. The functionality described is also an extension to the
427 ISO C standard.

428 Where applicable, functions are marked with the SPI margin legend in the SYNOPSIS section.
429 Where additional semantics apply to a function, the material is identified by use of the SPI
430 margin legend.

431 SPN Spawn
432 The functionality described is optional. The functionality described is also an extension to the
433 ISO C standard.

434 Where applicable, functions are marked with the SPN margin legend in the SYNOPSIS section.
435 Where additional semantics apply to a function, the material is identified by use of the SPN
436 margin legend.

437 SS Process Sporadic Server
438 The functionality described is optional. The functionality described is also an extension to the
439 ISO C standard.

440 Where applicable, functions are marked with the SS margin legend in the SYNOPSIS section.
441 Where additional semantics apply to a function, the material is identified by use of the SS
442 margin legend.

443 TCT Thread CPU-Time Clocks
444 The functionality described is optional. The functionality described is also an extension to the
445 ISO C standard.

446 Where applicable, functions are marked with the TCT margin legend in the SYNOPSIS section.
447 Where additional semantics apply to a function, the material is identified by use of the TCT
448 margin legend.

449 TEF Trace Event Filter
450 The functionality described is optional. The functionality described is also an extension to the
451 ISO C standard.

452 Where applicable, functions are marked with the TEF margin legend in the SYNOPSIS section.
453 Where additional semantics apply to a function, the material is identified by use of the TEF
454 margin legend.

455 THR Threads
456 The functionality described is optional. The functionality described is also an extension to the
457 ISO C standard.

458 Where applicable, functions are marked with the THR margin legend in the SYNOPSIS section.
459 Where additional semantics apply to a function, the material is identified by use of the THR
460 margin legend.

461 TMO Timeouts
462 The functionality described is optional. The functionality described is also an extension to the
463 ISO C standard.

464 Where applicable, functions are marked with the TMO margin legend in the SYNOPSIS section.
465 Where additional semantics apply to a function, the material is identified by use of the TMO
466 margin legend.

Base Definitions, Issue 6 11

Portability Introduction

467 TMR Timers
468 The functionality described is optional. The functionality described is also an extension to the
469 ISO C standard.

470 Where applicable, functions are marked with the TMR margin legend in the SYNOPSIS section.
471 Where additional semantics apply to a function, the material is identified by use of the TMR
472 margin legend.

473 TPI Thread Priority Inheritance
474 The functionality described is optional. The functionality described is also an extension to the
475 ISO C standard.

476 Where applicable, functions are marked with the TPI margin legend in the SYNOPSIS section.
477 Where additional semantics apply to a function, the material is identified by use of the TPI
478 margin legend.

479 TPP Thread Priority Protection
480 The functionality described is optional. The functionality described is also an extension to the
481 ISO C standard.

482 Where applicable, functions are marked with the TPP margin legend in the SYNOPSIS section.
483 Where additional semantics apply to a function, the material is identified by use of the TPP
484 margin legend.

485 TPS Thread Execution Scheduling
486 The functionality described is optional. The functionality described is also an extension to the
487 ISO C standard.

488 Where applicable, functions are marked with the TPS margin legend for the SYNOPSIS section.
489 Where additional semantics apply to a function, the material is identified by use of the TPS
490 margin legend.

491 TRC Trace
492 The functionality described is optional. The functionality described is also an extension to the
493 ISO C standard.

494 Where applicable, functions are marked with the TRC margin legend in the SYNOPSIS section.
495 Where additional semantics apply to a function, the material is identified by use of the TRC
496 margin legend.

497 TRI Trace Inherit
498 The functionality described is optional. The functionality described is also an extension to the
499 ISO C standard.

500 Where applicable, functions are marked with the TRI margin legend in the SYNOPSIS section.
501 Where additional semantics apply to a function, the material is identified by use of the TRI
502 margin legend.

503 TRL Trace Log
504 The functionality described is optional. The functionality described is also an extension to the
505 ISO C standard.

506 Where applicable, functions are marked with the TRL margin legend in the SYNOPSIS section.
507 Where additional semantics apply to a function, the material is identified by use of the TRL
508 margin legend.

509 TSA Thread Stack Address Attribute
510 The functionality described is optional. The functionality described is also an extension to the
511 ISO C standard.

12 Technical Standard (2001) (Draft April 13, 2001)

Introduction Portability

512 Where applicable, functions are marked with the TSA margin legend for the SYNOPSIS section.
513 Where additional semantics apply to a function, the material is identified by use of the TSA
514 margin legend.

515 TSF Thread-Safe Functions
516 The functionality described is optional. The functionality described is also an extension to the
517 ISO C standard.

518 Where applicable, functions are marked with the TSF margin legend in the SYNOPSIS section.
519 Where additional semantics apply to a function, the material is identified by use of the TSF
520 margin legend.

521 TSH Thread Process-Shared Synchronization
522 The functionality described is optional. The functionality described is also an extension to the
523 ISO C standard.

524 Where applicable, functions are marked with the TSH margin legend in the SYNOPSIS section.
525 Where additional semantics apply to a function, the material is identified by use of the TSH
526 margin legend.

527 TSP Thread Sporadic Server
528 The functionality described is optional. The functionality described is also an extension to the
529 ISO C standard.

530 Where applicable, functions are marked with the TSP margin legend in the SYNOPSIS section.
531 Where additional semantics apply to a function, the material is identified by use of the TSP
532 margin legend.

533 TSS Thread Stack Address Size
534 The functionality described is optional. The functionality described is also an extension to the
535 ISO C standard.

536 Where applicable, functions are marked with the TSS margin legend in the SYNOPSIS section.
537 Where additional semantics apply to a function, the material is identified by use of the TSS
538 margin legend.

539 TYM Typed Memory Objects
540 The functionality described is optional. The functionality described is also an extension to the
541 ISO C standard.

542 Where applicable, functions are marked with the TYM margin legend in the SYNOPSIS section.
543 Where additional semantics apply to a function, the material is identified by use of the TYM
544 margin legend. |

545 UP User Portability Utilities
546 The functionality described is optional.

547 Where applicable, utilities are marked with the UP margin legend in the SYNOPSIS section.
548 Where additional semantics apply to a utility, the material is identified by use of the UP margin
549 legend.

550 XSI Extension
551 The functionality described is an XSI extension. Functionality marked XSI is also an extension to
552 the ISO C standard. Application writers may confidently make use of an extension on all
553 systems supporting the X/Open System Interfaces Extension.

554 If an entire SYNOPSIS section is shaded and marked XSI, all the functionality described in that
555 reference page is an extension. See Section 2.1.4 (on page 19).

Base Definitions, Issue 6 13

Portability Introduction

556 XSR XSI STREAMS
557 The functionality described is optional. The functionality described is also an extension to the
558 ISO C standard.

559 Where applicable, functions are marked with the XSR margin legend in the SYNOPSIS section.
560 Where additional semantics apply to a function, the material is identified by use of the XSR
561 margin legend.

562 1.5.2 Margin Code Notation

563 Some of the functionality described in IEEE Std 1003.1-200x depends on support of more than
564 one option, or independently may depend on several options. The following notation for margin
565 codes is used to denote the following cases.

566 A Feature Dependent on One or Two Options

567 In this case, margin codes have a <space> separator; for example:

568 MF This feature requires support for only the Memory Mapped Files option.

569 MF SHM This feature requires support for both the Memory Mapped Files and the Shared Memory
570 Objects options; that is, an application which uses this feature is portable only between
571 implementations that provide both options.

572 A Feature Dependent on Either of the Options Denoted

573 In this case, margin codes have a ’|’ separator to denote the logical OR; for example:

574 MF|SHM This feature is dependent on support for either the Memory Mapped Files option or the Shared
575 Memory Objects option; that is, an application which uses this feature is portable between
576 implementations that provide any (or all) of the options.

577 A Feature Dependent on More than Two Options

578 The following shorthand notations are used:

579 MC1 The MC1 margin code is shorthand for ADV (MF|SHM). Features which are shaded with this
580 margin code require support of the Advisory Information option and either the Memory
581 Mapped Files or Shared Memory Objects option.

582 MC2 The MC2 margin code is shorthand for MF|SHM|MPR. Features which are shaded with this
583 margin code require support of either the Memory Mapped Files, Shared Memory Objects, or
584 Memory Protection options.

585 Large Sections Dependent on an Option

586 Where large sections of text are dependent on support for an option, a lead-in text block is
587 provided and shaded accordingly; for example:

588 TRC This section describes extensions to support tracing of user applications. This functionality is
589 dependent on support of the Trace option (and the rest of this section is not further shaded for
590 this option).

|

14 Technical Standard (2001) (Draft April 13, 2001)

591

Chapter 2

Conformance

592 2.1 Implementation Conformance

593 2.1.1 Requirements

594 A conforming implementation shall meet all of the following criteria:

595 1. The system shall support all utilities, functions, and facilities defined within
596 IEEE Std 1003.1-200x that are required for POSIX conformance (see Section 2.1.3 (on page
597 16)). These interfaces shall support the functional behavior described herein.

598 2. The system may support one or more options as described under Section 2.1.5 (on page
599 20). When an implementation claims that an option is supported, all of its constituent
600 parts shall be provided.

601 3. The system may support the X/Open System Interface Extension (XSI) as described under
602 Section 2.1.4 (on page 19).

603 4. The system may provide additional utilities, functions, or facilities not required by
604 IEEE Std 1003.1-200x. Non-standard extensions of the utilities, functions, or facilities
605 specified in IEEE Std 1003.1-200x should be identified as such in the system
606 documentation. Non-standard extensions, when used, may change the behavior of utilities,
607 functions, or facilities defined by IEEE Std 1003.1-200x. The conformance document shall
608 define an environment in which an application can be run with the behavior specified by
609 IEEE Std 1003.1-200x. In no case shall such an environment require modification of a
610 Strictly Conforming POSIX Application (see Section 2.2.1 (on page 29)).

611 2.1.2 Documentation

612 A conformance document with the following information shall be available for an
613 implementation claiming conformance to IEEE Std 1003.1-200x. The conformance document
614 shall have the same structure as IEEE Std 1003.1-200x, with the information presented in the
615 appropriate sections and subsections. Sections and subsections that consist solely of subordinate
616 section titles, with no other information, are not required. The conformance document shall not
617 contain information about extended facilities or capabilities outside the scope of
618 IEEE Std 1003.1-200x.

619 The conformance document shall contain a statement that indicates the full name, number, and
620 date of the standard that applies. The conformance document may also list international
621 software standards that are available for use by a Conforming POSIX Application. Applicable
622 characteristics where documentation is required by one of these standards, or by standards of
623 government bodies, may also be included.

624 The conformance document shall describe the limit values found in the headers <limits.h> (on
625 page 245) and <unistd.h> (on page 398), stating values, the conditions under which those values
626 may change, and the limits of such variations, if any.

627 The conformance document shall describe the behavior of the implementation for all
628 implementation-defined features defined in IEEE Std 1003.1-200x. This requirement shall be met
629 by listing these features and providing either a specific reference to the system documentation or
630 providing full syntax and semantics of these features. When the value or behavior in the

Base Definitions, Issue 6 15

Implementation Conformance Conformance

631 implementation is designed to be variable or customized on each instantiation of the system, the
632 implementation provider shall document the nature and permissible ranges of this variation.

633 The conformance document may specify the behavior of the implementation for those features
634 where IEEE Std 1003.1-200x states that implementations may vary or where features are
635 identified as undefined or unspecified.

636 The conformance document shall not contain documentation other than that specified in the
637 preceding paragraphs except where such documentation is specifically allowed or required by
638 other provisions of IEEE Std 1003.1-200x.

639 The phrases ‘‘shall document’’ or ‘‘shall be documented’’ in IEEE Std 1003.1-200x mean that
640 documentation of the feature shall appear in the conformance document, as described
641 previously, unless there is an explicit reference in the conformance document to show where the
642 information can be found in the system documentation.

643 The system documentation should also contain the information found in the conformance
644 document.

645 2.1.3 POSIX Conformance

646 A conforming implementation shall meet the following criteria for POSIX conformance.

647 2.1.3.1 POSIX System Interfaces

648 • The system shall support all the mandatory functions and headers defined in |
649 IEEE Std 1003.1-200x, and shall set the symbolic constant _POSIX_VERSION to the value |
650 200xxxL. |

651 • Although all implementations conforming to IEEE Std 1003.1-200x support all the features |
652 described below, there may be system-dependent or file system-dependent configuration
653 procedures that can remove or modify any or all of these features. Such configurations
654 should not be made if strict compliance is required.

655 The following symbolic constants shall either be undefined or defined with a value other
656 than −1. If a constant is undefined, an application should use the sysconf(), pathconf (), or
657 fpathconf () functions, or the getconf utility, to determine which features are present on the
658 system at that time or for the particular pathname in question.

659 — _POSIX_CHOWN_RESTRICTED

660 The use of chown() is restricted to a process with appropriate privileges, and to changing
661 the group ID of a file only to the effective group ID of the process or to one of its
662 supplementary group IDs.

663 — _POSIX_NO_TRUNC

664 Pathname components longer than {NAME_MAX} generate an error.

665 • The following symbolic constants shall be defined as follows: |

666 • _POSIX_JOB_CONTROL shall have a value greater than zero. |

667 • _POSIX_SAVED_IDS shall have a value greater than zero. |

668 • _POSIX_VDISABLE shall have a value other than −1. |
669 Note: The symbols above represent historical options that are no longer allowed as options, but
670 are retained here for backwards-compatibility of applications.

16 Technical Standard (2001) (Draft April 13, 2001)

Conformance Implementation Conformance

671 • The system may support one or more options (see Section 2.1.6 (on page 26)) denoted by the
672 following symbolic constants:

673 — _POSIX_ADVISORY_INFO

674 — _POSIX_ASYNCHRONOUS_IO

675 — _POSIX_BARRIERS

676 — _POSIX_CLOCK_SELECTION

677 — _POSIX_CPUTIME

678 — _POSIX_FSYNC

679 — _POSIX_IPV6

680 — _POSIX_MAPPED_FILES

681 — _POSIX_MEMLOCK

682 — _POSIX_MEMLOCK_RANGE

683 — _POSIX_MEMORY_PROTECTION

684 — _POSIX_MESSAGE_PASSING

685 — _POSIX_MONOTONIC_CLOCK

686 — _POSIX_PRIORITIZED_IO

687 — _POSIX_PRIORITY_SCHEDULING

688 — _POSIX_RAW_SOCKETS

689 — _POSIX_REALTIME_SIGNALS

690 — _POSIX_SEMAPHORES

691 — _POSIX_SHARED_MEMORY_OBJECTS

692 — _POSIX_SPAWN

693 — _POSIX_SPIN_LOCKS

694 — _POSIX_SPORADIC_SERVER

695 — _POSIX_SYNCHRONIZED_IO

696 — _POSIX_THREAD_ATTR_STACKADDR

697 — _POSIX_THREAD_CPUTIME

698 — _POSIX_THREAD_ATTR_STACKSIZE

699 — _POSIX_THREAD_PRIO_INHERIT

700 — _POSIX_THREAD_PRIO_PROTECT

701 — _POSIX_THREAD_PRIORITY_SCHEDULING

702 — _POSIX_THREAD_PROCESS_SHARED

703 — _POSIX_THREAD_SAFE_FUNCTIONS

704 — _POSIX_THREAD_SPORADIC_SERVER

705 — _POSIX_THREADS

Base Definitions, Issue 6 17

Implementation Conformance Conformance

706 — _POSIX_TIMEOUTS

707 — _POSIX_TIMERS

708 — _POSIX_TRACE

709 — _POSIX_TRACE_EVENT_FILTER

710 — _POSIX_TRACE_INHERIT

711 — _POSIX_TRACE_LOG

712 — _POSIX_TYPED_MEMORY_OBJECTS

713 If any of the symbolic constants _POSIX_TRACE_EVENT_FILTER, _POSIX_TRACE_LOG, or
714 _POSIX_TRACE_INHERIT is defined to have a value other than −1, then the symbolic
715 constant _POSIX_TRACE shall also be defined to have a value other than −1.

716 XSI • The system may support the XSI extensions (see Section 2.1.5.2 (on page 21)) denoted by the
717 following symbolic constants:

718 — _XOPEN_CRYPT

719 — _XOPEN_LEGACY

720 — _XOPEN_REALTIME

721 — _XOPEN_REALTIME_THREADS

722 — _XOPEN_UNIX

723 2.1.3.2 POSIX Shell and Utilities

724 • The system shall provide all the mandatory utilities in the Shell and Utilities volume of
725 IEEE Std 1003.1-200x with all the functional behavior described therein.

726 • The system shall support the Large File capabilities described in the Shell and Utilities
727 volume of IEEE Std 1003.1-200x.

728 • The system may support one or more options (see Section 2.1.6 (on page 26)) denoted by the
729 following symbolic constants. (The literal names below apply to the getconf utility.)

730 — POSIX2_C_DEV

731 — POSIX2_CHAR_TERM

732 — POSIX2_FORT_DEV

733 — POSIX2_FORT_RUN

734 — POSIX2_LOCALEDEF

735 — POSIX2_PBS

736 — POSIX2_PBS_ACCOUNTING

737 — POSIX2_PBS_LOCATE

738 — POSIX2_PBS_MESSAGE

739 — POSIX2_PBS_TRACK

740 — POSIX2_SW_DEV

741 — POSIX2_UPE

18 Technical Standard (2001) (Draft April 13, 2001)

Conformance Implementation Conformance

742 • The system may support the XSI extensions (see Section 2.1.4).

743 Additional language bindings and development utility options may be provided in other related
744 standards or in a future version of IEEE Std 1003.1-200x. In the former case, additional symbolic
745 constants of the same general form as shown in this subsection should be defined by the related
746 standard document and made available to the application without requiring
747 IEEE Std 1003.1-200x to be updated.

748 2.1.4 XSI Conformance

749 XSI This section describes the criteria for implementations conforming to the X/Open System
750 Interface extension. This functionality is dependent on the support of the XSI extension (and the
751 rest of this section is not further shaded).

752 IEEE Std 1003.1-200x describes utilities, functions, and facilities offered to application programs
753 by the X/Open System Interface (XSI). An XSI-conforming implementation shall meet the
754 criteria for POSIX conformance and the following requirements.

755 2.1.4.1 XSI System Interfaces

756 • The system shall support all the functions and headers defined in IEEE Std 1003.1-200x as
757 part of the XSI extension denoted by the symbolic constant _XOPEN_UNIX and any
758 extensions marked with the XSI extension marking (see Section 1.5.1 (on page 6)).

759 • The system shall support the mmap(), munmap(), and msync() functions.

760 • The system shall support the following options defined within IEEE Std 1003.1-200x (see
761 Section 2.1.6 (on page 26)):

762 — _POSIX_FSYNC

763 — _POSIX_MAPPED_FILES

764 — _POSIX_MEMORY_PROTECTION

765 — _POSIX_THREAD_ATTR_STACKADDR

766 — _POSIX_THREAD_ATTR_STACKSIZE

767 — _POSIX_THREAD_PROCESS_SHARED

768 — _POSIX_THREAD_SAFE_FUNCTIONS

769 — _POSIX_THREADS

770 • The system may support the following XSI Option Groups (see Section 2.1.5.2 (on page 21)) |
771 defined within IEEE Std 1003.1-200x:

772 — Encryption

773 — Realtime

774 — Advanced Realtime

775 — Realtime Threads

776 — Advanced Realtime Threads

777 — Tracing

778 — XSI STREAMS

779 — Legacy

Base Definitions, Issue 6 19

Implementation Conformance Conformance

780 2.1.4.2 XSI Shell and Utilities Conformance

781 • The system shall support all the utilities defined in the Shell and Utilities volume of
782 IEEE Std 1003.1-200x as part of the XSI extension denoted by the XSI marking in the
783 SYNOPSIS section, and any extensions marked with the XSI extension marking (see Section
784 1.5.1 (on page 6)) within the text.

785 • The system shall support the User Portability Utilities option.

786 • The system shall support creation of locales (see Chapter 7 (on page 119)).

787 • The C-language Development utility c99 shall be supported.

788 • The XSI Development Utilities option may be supported. It consists of the following software
789 development utilities:

790 admin
791 cflow
792 ctags
793 cxref

delta
get
m4
prs

rmdel
sact
sccs
unget

val
what

794 • Within the utilities that are provided, functionality marked by the code OF (see Section 1.5.1 |
795 (on page 6)) need not be provided.

796 2.1.5 Option Groups

797 An Option Group is a group of related functions or options defined within the System Interfaces
798 volume of IEEE Std 1003.1-200x.

799 If an implementation supports an Option Group, then the system shall support the functional
800 behavior described herein.

801 If an implementation does not support an Option Group, then the system need not support the
802 functional behavior described herein. |

803 2.1.5.1 Subprofiling Considerations |

804 Profiling standards supporting functional requirements less than that required in |
805 IEEE Std 1003.1-200x may subset both mandatory and optional functionality required for POSIX |
806 Conformance (see Section 2.1.3 (on page 16)) or XSI Conformance (see Section 2.1.4 (on page |
807 19)). Such profiles shall organize the subsets into Subprofiling Option Groups. |

808 The Rationale (Informative) volume of IEEE Std 1003.1-200x, Appendix E, Subprofiling |
809 Considerations (Informative) describes a representative set of such Subprofiling Option Groups |
810 for use by profiles applicable to specialized realtime systems. IEEE Std 1003.1-200x does not |
811 require that the presence of Subprofiling Option Groups be testable at compile-time (as symbols |
812 defined in any header) or at runtime (via sysconf() or getconf). |

813 A Subprofiling Option Group may provide basic system functionality that other Subprofiling |
814 Option Groups and other options depend upon.3 If a profile of IEEE Std 1003.1-200x does not |

815 __________________

3.816 As an example, the File System profiling option group provides underlying support for pathname resolution and file creation
817 which are needed by any interface in IEEE Std 1003.1-200x that parses a path argument. If a profile requires support for the
818 Device Input and Output profiling option group but does not require support for the File System profiling option group, the
819 profile must specify how pathname resolution is to behave in that profile, how the O_CREAT flag to open() is to be handled (and
820 the use of the character ’a’ in the mode argument of fopen() when a filename argument names a file that does not exist), and
821 specify lots of other details.

20 Technical Standard (2001) (Draft April 13, 2001)

Conformance Implementation Conformance

822 require an implementation to provide a Subprofiling Option Group that provides features |
823 utilized by a required Subprofiling Option Group (or option),4 the profile shall specify5 all of the |
824 following: |

825 • Restricted or altered behavior of interfaces defined in IEEE Std 1003.1-200x that may differ on |
826 an implementation of the profile

827 • Additional behaviors that may produce undefined or unspecified results

828 • Additional implementation-defined behavior that implementations shall be required to
829 document in the profile’s conformance document

830 if any of the above is a result of the profile not requiring an interface required by |
831 IEEE Std 1003.1-200x. |

832 The following additional rules shall apply to all standard profiles of IEEE Std 1003.1-200x: |

833 • Any application that conforms to that profile shall also conform to IEEE Std 1003.1-200x (that |
834 is, a profile cannot require restricted, altered, or extended behaviors). |

835 • Any implementation that conforms to IEEE Std 1003.1-200x (including all options required |
836 by the profile) shall also conform to that profile |

837 2.1.5.2 XSI Option Groups

838 XSI This section describes Option Groups to support the definition of XSI conformance within the
839 System Interfaces volume of IEEE Std 1003.1-200x. This functionality is dependent on the
840 support of the XSI extension (and the rest of this section is not further shaded).

841 The following Option Groups are defined.

842 Encryption

843 The Encryption Option Group is denoted by the symbolic constant _XOPEN_CRYPT. It includes
844 the following functions:

845 crypt(), encrypt(), setkey()

846 These functions are marked CRYPT.

847 Due to export restrictions on the decoding algorithm in some countries, implementations may be
848 restricted in making these functions available. All the functions in the Encryption Option Group
849 may therefore return [ENOSYS] or, alternatively, encrypt() shall return [ENOSYS] for the
850 decryption operation.

851 An implementation that claims conformance to this Option Group shall set _XOPEN_CRYPT to |
852 a value other than −1. |

853 __________________

4.854 As an example, IEEE Std 1003.1-200x requires that implementations claiming to support the Range Memory Locking option also
855 support the Process Memory Locking option. A profile could require that the Range Memory Locking option had to be supplied
856 without requiring that the Process Memory Locking option be supplied as long as the profile specifies everything an application
857 writer or system implementor would have to know to build an application or implementation conforming to the profile.

5.858 Note that the profile could just specify that any use of the features not specified by the profile would produce undefined or
859 unspecified results.

Base Definitions, Issue 6 21

Implementation Conformance Conformance

860 Realtime

861 The Realtime Option Group is denoted by the symbolic constant _XOPEN_REALTIME.

862 This Option Group includes a set of realtime functions drawn from options within
863 IEEE Std 1003.1-200x (see Section 2.1.6 (on page 26)).

864 Where entire functions are included in the Option Group, the NAME section is marked with
865 REALTIME. Where additional semantics have been added to existing pages, the new material is
866 identified by use of the appropriate margin legend for the underlying option defined within
867 IEEE Std 1003.1-200x.

868 An implementation that claims conformance to this Option Group shall set |
869 _XOPEN_REALTIME to a value other than −1. |

870 This Option Group consists of the set of the following options from within IEEE Std 1003.1-200x
871 (see Section 2.1.6 (on page 26)):

872 _POSIX_ASYNCHRONOUS_IO
873 _POSIX_FSYNC
874 _POSIX_MAPPED_FILES
875 _POSIX_MEMLOCK
876 _POSIX_MEMLOCK_RANGE
877 _POSIX_MEMORY_PROTECTION
878 _POSIX_MESSAGE_PASSING
879 _POSIX_PRIORITIZED_IO
880 _POSIX_PRIORITY_SCHEDULING
881 _POSIX_REALTIME_SIGNALS
882 _POSIX_SEMAPHORES
883 _POSIX_SHARED_MEMORY_OBJECTS
884 _POSIX_SYNCHRONIZED_IO
885 _POSIX_TIMERS

886 If the symbolic constant _XOPEN_REALTIME is defined to have a value other than −1, then the
887 following symbolic constants shall be defined by the implementation to have the value 200xxxL: |

888 _POSIX_ASYNCHRONOUS_IO
889 _POSIX_MEMLOCK
890 _POSIX_MEMLOCK_RANGE
891 _POSIX_MESSAGE_PASSING
892 _POSIX_PRIORITY_SCHEDULING
893 _POSIX_REALTIME_SIGNALS
894 _POSIX_SEMAPHORES
895 _POSIX_SHARED_MEMORY_OBJECTS
896 _POSIX_SYNCHRONIZED_IO
897 _POSIX_TIMERS

898 The functionality associated with _POSIX_MAPPED_FILES, _POSIX_MEMORY_PROTECTION,
899 and _POSIX_FSYNC is always supported on XSI-conformant systems.

900 Support of _POSIX_PRIORITIZED_IO on XSI-conformant systems is optional. If this
901 functionality is supported, then _POSIX_PRIORITIZED_IO shall be set to a value other than −1.
902 Otherwise, it shall be undefined.

903 If _POSIX_PRIORITIZED_IO is supported, then asynchronous I/O operations performed by
904 aio_read (), aio_write (), and lio_listio () shall be submitted at a priority equal to the scheduling
905 priority of the process minus aiocbp->aio_reqprio. The implementation shall also document for
906 which files I/O prioritization is supported.

22 Technical Standard (2001) (Draft April 13, 2001)

Conformance Implementation Conformance

907 Advanced Realtime

908 An implementation that claims conformance to this Option Group shall also support the
909 Realtime Option Group.

910 Where entire functions are included in the Option Group, the NAME section is marked with
911 ADVANCED REALTIME. Where additional semantics have been added to existing pages, the
912 new material is identified by use of the appropriate margin legend for the underlying option
913 defined within IEEE Std 1003.1-200x.

914 This Option Group consists of the set of the following options from within IEEE Std 1003.1-200x
915 (see Section 2.1.6 (on page 26)):

916 _POSIX_ADVISORY_INFO
917 _POSIX_CLOCK_SELECTION
918 _POSIX_CPUTIME
919 _POSIX_MONOTONIC_CLOCK
920 _POSIX_SPAWN
921 _POSIX_SPORADIC_SERVER
922 _POSIX_TIMEOUTS
923 _POSIX_TYPED_MEMORY_OBJECTS

924 If the implementation supports the Advanced Realtime Option Group, then the following
925 symbolic constants shall be defined by the implementation to have the value 200xxxL: |

926 _POSIX_ADVISORY_INFO
927 _POSIX_CLOCK_SELECTION
928 _POSIX_CPUTIME
929 _POSIX_MONOTONIC_CLOCK
930 _POSIX_SPAWN
931 _POSIX_SPORADIC_SERVER
932 _POSIX_TIMEOUTS
933 _POSIX_TYPED_MEMORY_OBJECTS

934 If the symbolic constant _POSIX_SPORADIC_SERVER is defined, then the symbolic constant
935 _POSIX_PRIORITY_SCHEDULING shall also be defined by the implementation to have the |
936 value 200xxxL. |

937 If the symbolic constant _POSIX_CPUTIME is defined, then the symbolic constant
938 _POSIX_TIMERS shall also be defined by the implementation to have the value 200xxxL. |

939 If the symbolic constant _POSIX_MONOTONIC_CLOCK is defined, then the symbolic constant
940 _POSIX_TIMERS shall also be defined by the implementation to have the value 200xxxL. |

941 If the symbolic constant _POSIX_CLOCK_SELECTION is defined, then the symbolic constant
942 _POSIX_TIMERS shall also be defined by the implementation to have the value 200xxxL. |

943 Realtime Threads

944 The Realtime Threads Option Group is denoted by the symbolic constant
945 _XOPEN_REALTIME_THREADS.

946 This Option Group consists of the set of the following options from within IEEE Std 1003.1-200x
947 (see Section 2.1.6 (on page 26)):

948 _POSIX_THREAD_PRIO_INHERIT
949 _POSIX_THREAD_PRIO_PROTECT
950 _POSIX_THREAD_PRIORITY_SCHEDULING

Base Definitions, Issue 6 23

Implementation Conformance Conformance

951 Where applicable, whole pages are marked REALTIME THREADS, together with the
952 appropriate option margin legend for the SYNOPSIS section (see Section 1.5.1 (on page 6)).

953 An implementation that claims conformance to this Option Group shall set
954 _XOPEN_REALTIME_THREADS to a value other than −1.

955 If the symbol _XOPEN_REALTIME_THREADS is defined to have a value other than −1, then the
956 following options shall also be defined by the implementation to have the value 200xxxL: |

957 _POSIX_THREAD_PRIO_INHERIT
958 _POSIX_THREAD_PRIO_PROTECT
959 _POSIX_THREAD_PRIORITY_SCHEDULING

960 Advanced Realtime Threads

961 An implementation that claims conformance to this Option Group shall also support the
962 Realtime Threads Option Group.

963 Where entire functions are included in the Option Group, the NAME section is marked with
964 ADVANCED REALTIME THREADS. Where additional semantics have been added to existing
965 pages, the new material is identified by use of the appropriate margin legend for the underlying
966 option defined within IEEE Std 1003.1-200x.

967 This Option Group consists of the set of the following options from within IEEE Std 1003.1-200x
968 (see Section 2.1.6 (on page 26)):

969 _POSIX_BARRIERS
970 _POSIX_SPIN_LOCKS
971 _POSIX_THREAD_CPUTIME
972 _POSIX_THREAD_SPORADIC_SERVER

973 If the symbolic constant _POSIX_THREAD_SPORADIC_SERVER is defined to have the value |
974 200xxxL, then the symbolic constant _POSIX_THREAD_PRIORITY_SCHEDULING shall also be |
975 defined by the implementation to have the value 200xxxL. |

976 If the symbolic constant _POSIX_THREAD_CPUTIME is defined to have the value 200xxxL, |
977 then the symbolic constant _POSIX_TIMERS shall also be defined by the implementation to have |
978 the value 200xxxL. |

979 If the symbolic constant _POSIX_BARRIERS is defined to have the value 200xxxL, then the |
980 symbolic constants _POSIX_THREADS and _POSIX_THREAD_SAFE_FUNCTIONS shall also |
981 be defined by the implementation to have the value 200xxxL. |

982 If the symbolic constant _POSIX_SPIN_LOCKS is defined to have the value 200xxxL, then the |
983 symbolic constants _POSIX_THREADS and _POSIX_THREAD_SAFE_FUNCTIONS shall also |
984 be defined by the implementation to have the value 200xxxL. |

985 If the implementation supports the Advanced Realtime Threads Option Group, then the
986 following symbolic constants shall be defined by the implementation to have the value 200xxxL: |

987 _POSIX_BARRIERS
988 _POSIX_SPIN_LOCKS
989 _POSIX_THREAD_CPUTIME
990 _POSIX_THREAD_SPORADIC_SERVER

24 Technical Standard (2001) (Draft April 13, 2001)

Conformance Implementation Conformance

991 Tracing

992 This Option Group includes a set of tracing functions drawn from options within
993 IEEE Std 1003.1-200x (see Section 2.1.6 (on page 26)).

994 Where entire functions are included in the Option Group, the NAME section is marked with
995 TRACING. Where additional semantics have been added to existing pages, the new material is
996 identified by use of the appropriate margin legend for the underlying option defined within
997 IEEE Std 1003.1-200x.

998 This Option Group consists of the set of the following options from within IEEE Std 1003.1-200x
999 (see Section 2.1.6 (on page 26)):

1000 _POSIX_TRACE
1001 _POSIX_TRACE_EVENT_FILTER
1002 _POSIX_TRACE_LOG
1003 _POSIX_TRACE_INHERIT

1004 If the implementation supports the Tracing Option Group, then the following symbolic
1005 constants shall be defined by the implementation to have the value 200xxxL: |

1006 _POSIX_TRACE
1007 _POSIX_TRACE_EVENT_FILTER
1008 _POSIX_TRACE_LOG
1009 _POSIX_TRACE_INHERIT

1010 XSI STREAMS

1011 The XSI STREAMS Option Group is denoted by the symbolic constant _XOPEN_STREAMS.

1012 This Option Group includes functionality related to STREAMS, a uniform mechanism for
1013 implementing networking services and other character-based I/O as described in the System
1014 Interfaces volume of IEEE Std 1003.1-200x, Section 2.6, STREAMS.

1015 It includes the following functions:

1016 fattach (), fdetach (), getmsg(), getpmsg(), ioctl (), isastream(), putmsg(), putpmsg() |

1017 and the <stropts.h> header.

1018 Where applicable, whole pages are marked STREAMS, together with the appropriate option
1019 margin legend for the SYNOPSIS section (see Section 1.5.1 (on page 6)). Where additional
1020 semantics have been added to existing pages, the new material is identified by use of the
1021 appropriate margin legend for the underlying option defined within IEEE Std 1003.1-200x. |

1022 An implementation that claims conformance to this Open Group shall set _XOPEN_STREAMS |
1023 to a value other than −1. |

1024 Legacy

1025 The Legacy Option Group is denoted by the symbolic constant _XOPEN_LEGACY.

1026 The Legacy Option Group includes the functions and headers which were mandatory in
1027 previous versions of IEEE Std 1003.1-200x but are optional in this version.

1028 These functions and headers are retained in IEEE Std 1003.1-200x because of their widespread
1029 use. Application writers should not rely on the existence of these functions or headers in new
1030 applications, but should follow the migration path detailed in the APPLICATION USAGE
1031 sections of the relevant pages.

Base Definitions, Issue 6 25

Implementation Conformance Conformance

1032 Various factors may have contributed to the decision to mark a function or header LEGACY. In
1033 all cases, the specific reasons for the withdrawal of a function or header are documented on the
1034 relevant pages.

1035 Once a function or header is marked LEGACY, no modifications are made to the specifications
1036 of such functions or headers other than to the APPLICATION USAGE sections of the relevant
1037 pages.

1038 The functions and headers which form this Option Group are as follows:

1039 bcmp(), bcopy(), bzero(), ecvt(), fcvt(), ftime(), gcvt(), getwd(), index(), mktemp(), rindex(),
1040 utimes(), wcswcs()

1041 An implementation that claims conformance to this Option Group shall set _XOPEN_LEGACY |
1042 to a value other than −1. |

1043 2.1.6 Options

1044 The symbolic constants defined in <unistd.h>, Constants for Options and Option Groups (on |
1045 page 398) reflect implementation options for IEEE Std 1003.1-200x. These symbols can be used |
1046 by the application to determine which optional facilities are present on the implementation. The |
1047 sysconf() function defined in the System Interfaces volume of IEEE Std 1003.1-200x or the getconf
1048 utility defined in the Shell and Utilities volume of IEEE Std 1003.1-200x can be used to retrieve
1049 the value of each symbol on each specific implementation to determine whether the option is |
1050 supported. |

1051 Where an option is not supported, the associated utilities, functions, or facilities need not be
1052 present.

1053 Margin codes are defined for each option (see Section 1.5.1 (on page 6)).

1054 2.1.6.1 System Interfaces

1055 Refer to <unistd.h>, Constants for Options and Option Groups (on page 398) for the list of |
1056 options. |

1057 2.1.6.2 Shell and Utilities

1058 Each of these symbols shall be considered valid names by the implementation. Refer to |
1059 <unistd.h>, Constants for Options and Option Groups (on page 398). |

1060 The literal names shown below apply only to the getconf utility.

1061 CD POSIX2_C_DEV
1062 The system supports the C-Language Development Utilities option.

1063 The utilities in the C-Language Development Utilities option are used for the development
1064 of C-language applications, including compilation or translation of C source code and
1065 complex program generators for simple lexical tasks and processing of context-free
1066 grammars.

1067 The utilities listed below may be provided by a conforming system; however, any system
1068 claiming conformance to the C-Language Development Utilities option shall provide all of
1069 the utilities listed.

1070 c99
1071 lex
1072 yacc

26 Technical Standard (2001) (Draft April 13, 2001)

Conformance Implementation Conformance

1073 POSIX2_CHAR_TERM
1074 The system supports the Terminal Characteristics option. This value need not be present on
1075 a system not supporting the User Portability Utilities option.

1076 Where applicable, the dependency is noted within the description of the utility.

1077 This option applies only to systems supporting the User Portability Utilities option. If
1078 supported, then the system supports at least one terminal type capable of all operations
1079 described in IEEE Std 1003.1-200x; see Section 10.2 (on page 181).

1080 FD POSIX2_FORT_DEV
1081 The system supports the FORTRAN Development Utilities option.

1082 The fort77 FORTRAN compiler is the only utility in the FORTRAN Development Utilities
1083 option. This is used for the development of FORTRAN language applications, including
1084 compilation or translation of FORTRAN source code.

1085 The fort77 utility may be provided by a conforming system; however, any system claiming
1086 conformance to the FORTRAN Development Utilities option shall provide the fort77 utility.

1087 FR POSIX2_FORT_RUN
1088 The system supports the FORTRAN Runtime Utilities option.

1089 The asa utility is the only utility in the FORTRAN Runtime Utilities option.

1090 The asa utility may be provided by a conforming system; however, any system claiming
1091 conformance to the FORTRAN Runtime Utilities option shall provide the asa utility.

1092 POSIX2_LOCALEDEF
1093 The system supports the Locale Creation Utilities option.

1094 If supported, the system supports the creation of locales as described in the localedef utility.

1095 The localedef utility may be provided by a conforming system; however, any system
1096 claiming conformance to the Locale Creation Utilities option shall provide the localedef
1097 utility.

1098 BE POSIX2_PBS
1099 The system supports the Batch Environment Services and Utilities option (see the Shell and
1100 Utilities volume of IEEE Std 1003.1-200x, Chapter 3, Batch Environment Services).

1101 Note: The Batch Environment Services and Utilities option is a combination of mandatory and
1102 optional batch services and utilities. The POSIX_PBS symbolic constant implies the
1103 system supports all the mandatory batch services and utilities.

1104 POSIX2_PBS_ACCOUNTING
1105 The system supports the Batch Accounting option.

1106 POSIX2_PBS_CHECKPOINT
1107 The system supports the Batch Checkpoint/Restart option.

1108 POSIX2_PBS_LOCATE
1109 The system supports the Locate Batch Job Request option.

1110 POSIX2_PBS_MESSAGE
1111 The system supports the Batch Job Message Request option.

1112 POSIX2_PBS_TRACK
1113 The system supports the Track Batch Job Request option.

1114 SD POSIX2_SW_DEV
1115 The system supports the Software Development Utilities option.

Base Definitions, Issue 6 27

Implementation Conformance Conformance

1116 The utilities in the Software Development Utilities option are used for the development of
1117 applications, including compilation or translation of source code, the creation and
1118 maintenance of library archives, and the maintenance of groups of inter-dependent
1119 programs.

1120 The utilities listed below may be provided by the conforming system; however, any system
1121 claiming conformance to the Software Development Utilities option shall provide all of the
1122 utilities listed here.

1123 ar
1124 make
1125 nm
1126 strip

1127 UP POSIX2_UPE
1128 The system supports the User Portability Utilities option.

1129 The utilities in the User Portability Utilities option shall be implemented on all systems that
1130 claim conformance to this option. Certain utilities are noted as having features that cannot
1131 be implemented on all terminal types; if the POSIX2_CHAR_TERM option is supported, the
1132 system shall support all such features on at least one terminal type; see Section 10.2 (on
1133 page 181).

1134 Some of the utilities are required only on systems that also support the Software
1135 Development Utilities option, or the character-at-a-time terminal option (see Section 10.2
1136 (on page 181)); such utilities have this noted in their DESCRIPTION sections. All of the
1137 other utilities listed are required only on systems that claim conformance to the User
1138 Portability Utilities option.

1139 alias
1140 at
1141 batch
1142 bg
1143 crontab
1144 split
1145 ctags
1146 df
1147 du
1148 ex

expand
fc
fg
file
jobs
man
mesg
more
newgrp
nice

nm
patch
ps
renice
split
strings
tabs
talk
time
tput

unalias
unexpand
uudecode
uuencode
vi
who
write

1149 2.2 Application Conformance
1150 All applications claiming conformance to IEEE Std 1003.1-200x shall use only language-
1151 dependent services for the C programming language described in Section 2.3 (on page 31), shall
1152 use only the utilities and facilities defined in the Shell and Utilities volume of
1153 IEEE Std 1003.1-200x, and shall fall within one of the following categories.

28 Technical Standard (2001) (Draft April 13, 2001)

Conformance Application Conformance

1154 2.2.1 Strictly Conforming POSIX Application

1155 A Strictly Conforming POSIX Application is an application that requires only the facilities
1156 described in IEEE Std 1003.1-200x. Such an application:

1157 1. Shall accept any implementation behavior that results from actions it takes in areas
1158 described in IEEE Std 1003.1-200x as implementation-defined or unspecified , or where
1159 IEEE Std 1003.1-200x indicates that implementations may vary

1160 2. Shall not perform any actions that are described as producing undefined results

1161 3. For symbolic constants, shall accept any value in the range permitted by
1162 IEEE Std 1003.1-200x, but shall not rely on any value in the range being greater than the
1163 minimums listed or being less than the maximums listed in IEEE Std 1003.1-200x

1164 4. Shall not use facilities designated as obsolescent

1165 5. Is required to tolerate and permitted to adapt to the presence or absence of optional
1166 facilities whose availability is indicated by Section 2.1.3 (on page 16)

1167 6. For the C programming language, shall not produce any output dependent on any
1168 behavior described in the ISO/IEC 9899: 1999 standard as unspecified , undefined , or
1169 implementation-defined , unless the System Interfaces volume of IEEE Std 1003.1-200x
1170 specifies the behavior

1171 7. For the C programming language, shall not exceed any minimum implementation limit
1172 defined in the ISO/IEC 9899: 1999 standard, unless the System Interfaces volume of
1173 IEEE Std 1003.1-200x specifies a higher minimum implementation limit

1174 8. For the C programming language, shall define _POSIX_C_SOURCE to be 200xxxL before |
1175 any header is included |

1176 Within IEEE Std 1003.1-200x, any restrictions placed upon a Conforming POSIX Application
1177 shall restrict a Strictly Conforming POSIX Application.

1178 2.2.2 Conforming POSIX Application

1179 2.2.2.1 ISO/IEC Conforming POSIX Application

1180 An ISO/IEC Conforming POSIX Application is an application that uses only the facilities
1181 described in IEEE Std 1003.1-200x and approved Conforming Language bindings for any ISO or
1182 IEC standard. Such an application shall include a statement of conformance that documents all
1183 options and limit dependencies, and all other ISO or IEC standards used.

1184 2.2.2.2 <National Body> Conforming POSIX Application

1185 A <National Body> Conforming POSIX Application differs from an ISO/IEC Conforming
1186 POSIX Application in that it also may use specific standards of a single ISO/IEC member body
1187 referred to here as <National Body>. Such an application shall include a statement of
1188 conformance that documents all options and limit dependencies, and all other <National Body>
1189 standards used.

Base Definitions, Issue 6 29

Application Conformance Conformance

1190 2.2.3 Conforming POSIX Application Using Extensions

1191 A Conforming POSIX Application Using Extensions is an application that differs from a
1192 Conforming POSIX Application only in that it uses non-standard facilities that are consistent
1193 with IEEE Std 1003.1-200x. Such an application shall fully document its requirements for these
1194 extended facilities, in addition to the documentation required of a Conforming POSIX
1195 Application. A Conforming POSIX Application Using Extensions shall be either an ISO/IEC
1196 Conforming POSIX Application Using Extensions or a <National Body> Conforming POSIX
1197 Application Using Extensions (see Section 2.2.2.1 (on page 29) and Section 2.2.2.2 (on page 29)).

1198 2.2.4 Strictly Conforming XSI Application

1199 A Strictly Conforming XSI Application is an application that requires only the facilities described
1200 in IEEE Std 1003.1-200x. Such an application:

1201 1. Shall accept any implementation behavior that results from actions it takes in areas
1202 described in IEEE Std 1003.1-200x as implementation-defined or unspecified , or where
1203 IEEE Std 1003.1-200x indicates that implementations may vary

1204 2. Shall not perform any actions that are described as producing undefined results

1205 3. For symbolic constants, shall accept any value in the range permitted by
1206 IEEE Std 1003.1-200x, but shall not rely on any value in the range being greater than the |
1207 minimums listed or being less than the maximums listed in IEEE Std 1003.1-200x |

1208 4. Shall not use facilities designated as obsolescent

1209 5. Is required to tolerate and permitted to adapt to the presence or absence of optional
1210 facilities whose availability is indicated by Section 2.1.4 (on page 19)

1211 6. For the C programming language, shall not produce any output dependent on any
1212 behavior described in the ISO C standard as unspecified , undefined , or implementation-
1213 defined , unless the System Interfaces volume of IEEE Std 1003.1-200x specifies the behavior

1214 7. For the C programming language, shall not exceed any minimum implementation limit
1215 defined in the ISO C standard, unless the System Interfaces volume of
1216 IEEE Std 1003.1-200x specifies a higher minimum implementation limit

1217 8. For the C programming language, shall define _XOPEN_SOURCE to be 600 before any
1218 header is included

1219 Within IEEE Std 1003.1-200x, any restrictions placed upon a Conforming POSIX Application
1220 shall restrict a Strictly Conforming XSI Application.

1221 2.2.5 Conforming XSI Application Using Extensions

1222 A Conforming XSI Application Using Extensions is an application that differs from a Strictly
1223 Conforming XSI Application only in that it uses non-standard facilities that are consistent with
1224 IEEE Std 1003.1-200x. Such an application shall fully document its requirements for these
1225 extended facilities, in addition to the documentation required of a Strictly Conforming XSI
1226 Application.

30 Technical Standard (2001) (Draft April 13, 2001)

Conformance Language-Dependent Services for the C Programming Language

1227 2.3 Language-Dependent Services for the C Programming Language
1228 Implementors seeking to claim conformance using the ISO C standard shall claim POSIX
1229 conformance as described in Section 2.1.3 (on page 16).

1230 2.4 Other Language-Related Specifications
1231 IEEE Std 1003.1-200x is currently specified in terms of the shell command language and ISO C.
1232 Bindings to other programming languages are being developed.

1233 If conformance to IEEE Std 1003.1-200x is claimed for implementation of any programming
1234 language, the implementation of that language shall support the use of external symbols distinct
1235 to at least 31 bytes in length in the source program text. (That is, identifiers that differ at or
1236 before the thirty-first byte shall be distinct.) If a national or international standard governing a
1237 language defines a maximum length that is less than this value, the language-defined maximum
1238 shall be supported. External symbols that differ only by case shall be distinct when the character
1239 set in use distinguishes uppercase and lowercase characters and the language permits (or
1240 requires) uppercase and lowercase characters to be distinct in external symbols.

Base Definitions, Issue 6 31

Conformance

1241 |

32 Technical Standard (2001) (Draft April 13, 2001)

1242

Chapter 3

Definitions

1243 For the purposes of IEEE Std 1003.1-200x, the terms and definitions given in Chapter 3 apply.

1244 Note: No shading to denote extensions or options occurs in this chapter. Where the terms and
1245 definitions given in this chapter are used elsewhere in text related to extensions and options,
1246 they are shaded as appropriate.

1247 3.1 Abortive Release
1248 An abrupt termination of a network connection that may result in the loss of data.

1249 3.2 Absolute Pathname
1250 A pathname beginning with a single or more than two slashes; see also Section 3.266 (on page
1251 69).

1252 Note: Pathname Resolution is defined in detail in Section 4.11 (on page 98).

1253 3.3 Access Mode
1254 A particular form of access permitted to a file. |

1255 3.4 Additional File Access Control Mechanism |

1256 An implementation-defined mechanism that is layered upon the access control mechanisms |
1257 defined here, but which do not grant permissions beyond those defined herein, although they
1258 may further restrict them.

1259 Note: File Access Permissions are defined in detail in Section 4.4 (on page 95).

1260 3.5 Address Space
1261 The memory locations that can be referenced by a process or the threads of a process.

1262 3.6 Advisory Information
1263 An interface that advises the implementation on (portable) application behavior so that it can
1264 optimize the system. |

1265 3.7 Affirmative Response |

1266 An input string that matches one of the responses acceptable to the LC_MESSAGES category |
1267 keyword yesexpr, matching an extended regular expression in the current locale.

Base Definitions, Issue 6 33

Affirmative Response Definitions

1268 Note: The LC_MESSAGES category is defined in detail in Section 7.3.6 (on page 148).

1269 3.8 Alert |

1270 To cause the user’s terminal to give some audible or visual indication that an error or some other |
1271 event has occurred. When the standard output is directed to a terminal device, the method for
1272 alerting the terminal user is unspecified. When the standard output is not directed to a terminal
1273 device, the alert is accomplished by writing the <alert> to standard output (unless the utility
1274 description indicates that the use of standard output produces undefined results in this case). |

1275 3.9 Alert Character (<alert>) |

1276 A character that in the output stream should cause a terminal to alert its user via a visual or |
1277 audible notification. It is the character designated by ’\a’ in the C language. It is unspecified |
1278 whether this character is the exact sequence transmitted to an output device by the system to
1279 accomplish the alert function. |

1280 3.10 Alias Name |

1281 In the shell command language, a word consisting solely of underscores, digits, and alphabetics |
1282 from the portable character set and any of the following characters: ’!’ , ’%’ , ’,’ , ’@’ .

1283 Implementations may allow other characters within alias names as an extension.

1284 Note: The portable character set is defined in detail in Section 6.1 (on page 111). |

1285 3.11 Alignment |

1286 A requirement that objects of a particular type be located on storage boundaries with addresses |
1287 that are particular multiples of a byte address.

1288 Note: See also the ISO C standard, Section B3.

1289 3.12 Alternate File Access Control Mechanism |

1290 An implementation-defined mechanism that is independent of the access control mechanisms |
1291 defined herein, and which if enabled on a file may either restrict or extend the permissions of a
1292 given user. IEEE Std 1003.1-200x defines when such mechanisms can be enabled and when they
1293 are disabled.

1294 Note: File Access Permissions are defined in detail in Section 4.4 (on page 95).

1295 3.13 Alternate Signal Stack
1296 Memory associated with a thread, established upon request by the implementation for a thread,
1297 separate from the thread signal stack, in which signal handlers responding to signals sent to that
1298 thread may be executed. |

34 Technical Standard (2001) (Draft April 13, 2001)

Definitions Ancillary Data

1299 3.14 Ancillary Data |

1300 Protocol-specific, local system-specific, or optional information. The information can be both |
1301 local or end-to-end significant, header information, part of a data portion, protocol-specific, and
1302 implementation or system-specific. |

1303 3.15 Angle Brackets |

1304 The characters ’<’ (left-angle-bracket) and ’>’ (right-angle-bracket). When used in the phrase |
1305 ‘‘enclosed in angle brackets’’, the symbol ’<’ immediately precedes the object to be enclosed,
1306 and ’>’ immediately follows it. When describing these characters in the portable character set,
1307 the names <less-than-sign> and <greater-than-sign> are used.

1308 3.16 Application
1309 A computer program that performs some desired function.

1310 3.17 Application Address
1311 Endpoint address of a specific application.

1312 3.18 Application Program Interface (API)
1313 The definition of syntax and semantics for providing computer system services. |

1314 3.19 Appropriate Privileges |

1315 An implementation-defined means of associating privileges with a process with regard to the |
1316 function calls, function call options, and the commands that need special privileges. There may
1317 be zero or more such means. These means (or lack thereof) are described in the conformance
1318 document.

1319 Note: Function calls are defined in the System Interfaces volume of IEEE Std 1003.1-200x, and
1320 commands are defined in the Shell and Utilities volume of IEEE Std 1003.1-200x.

1321 3.20 Argument |

1322 In the shell command language, a parameter passed to a utility as the equivalent of a single |
1323 string in the argv array created by one of the exec functions. An argument is one of the options,
1324 option-arguments, or operands following the command name.

1325 Note: The Utility Argument Syntax is defined in detail in Section 12.1 (on page 197) and the Shell and
1326 Utilities volume of IEEE Std 1003.1-200x, Section 2.9.1.1, Command Search and Execution.

1327 In the C language, an expression in a function call expression or a sequence of preprocessing
1328 tokens in a function-like macro invocation.

Base Definitions, Issue 6 35

Arm (a Timer) Definitions

1329 3.21 Arm (a Timer)
1330 To start a timer measuring the passage of time, enabling notifying a process when the specified
1331 time or time interval has passed.

1332 3.22 Asterisk
1333 The character ’*’ .

1334 3.23 Async-Cancel-Safe Function
1335 A function that may be safely invoked by an application while the asynchronous form of
1336 cancelation is enabled. No function is async-cancel-safe unless explicitly described as such.

1337 3.24 Asynchronous Events
1338 Events that occur independently of the execution of the application.

1339 3.25 Asynchronous Input and Output
1340 A functionality enhancement to allow an application process to queue data input and output
1341 commands with asynchronous notification of completion. |

1342 3.26 Async-Signal-Safe Function
1343 A function that may be invoked, without restriction, from signal-catching functions. No function
1344 is async-signal-safe unless explicitly described as such. |

1345 3.27 Asynchronously-Generated Signal |

1346 A signal that is not attributable to a specific thread. Examples are signals sent via kill (), signals |
1347 sent from the keyboard, and signals delivered to process groups. Being asynchronous is a
1348 property of how the signal was generated and not a property of the signal number. All signals
1349 may be generated asynchronously.

1350 Note: The kill () function is defined in detail in the System Interfaces volume of IEEE Std 1003.1-200x.

1351 3.28 Asynchronous I/O Operation |

1352 An I/O operation that does not of itself cause the thread requesting the I/O to be blocked from |
1353 further use of the processor.

1354 This implies that the process and the I/O operation may be running concurrently.

36 Technical Standard (2001) (Draft April 13, 2001)

Definitions Asynchronous I/O Completion

1355 3.29 Asynchronous I/O Completion
1356 For an asynchronous read or write operation, when a corresponding synchronous read or write
1357 would have completed and when any associated status fields have been updated.

1358 3.30 Authentication
1359 The process of validating a user or process to verify that the user or process is not a counterfeit. |

1360 3.31 Authorization |

1361 The process of verifying that a user or process has permission to use a resource in the manner |
1362 requested.

1363 To ensure security, the user or process would also need to be authenticated before granting
1364 access.

1365 3.32 Background Job
1366 See Background Process Group in Section 3.34.

1367 3.33 Background Process
1368 A process that is a member of a background process group.

1369 3.34 Background Process Group (or Background Job)
1370 Any process group, other than a foreground process group, that is a member of a session that
1371 has established a connection with a controlling terminal.

1372 3.35 Backquote
1373 The character ’‘’ , also known as a grave accent .

1374 3.36 Backslash
1375 The character ’\’ , also known as a reverse solidus . |

1376 3.37 Backspace Character (<backspace>) |

1377 A character that, in the output stream, should cause printing (or displaying) to occur one column |
1378 position previous to the position about to be printed. If the position about to be printed is at the
1379 beginning of the current line, the behavior is unspecified. It is the character designated by ’\b’ |
1380 in the C language. It is unspecified whether this character is the exact sequence transmitted to an
1381 output device by the system to accomplish the backspace function. The <backspace> defined

Base Definitions, Issue 6 37

Backspace Character (<backspace>) Definitions

1382 here is not necessarily the ERASE special character.

1383 Note: Special Characters are defined in detail in Section 11.1.9 (on page 187).

1384 3.38 Barrier
1385 A synchronization object that allows multiple threads to synchronize at a particular point in
1386 their execution.

1387 3.39 Base Character
1388 One of the set of characters defined in the Latin alphabet. In Western European languages other
1389 than English, these characters are commonly used with diacritical marks (accents, cedilla, and so
1390 on) to extend the range of characters in an alphabet.

1391 3.40 Basename
1392 The final, or only, filename in a pathname. |

1393 3.41 Basic Regular Expression (BRE) |

1394 A regular expression (see Section 3.316 (on page 76)) used by the majority of utilities that select |
1395 strings from a set of character strings.

1396 Note: Basic Regular Expressions are described in detail in Section 9.3 (on page 167).

1397 3.42 Batch Access List |

1398 A list of user IDs and group IDs of those users and groups authorized to place batch jobs in a |
1399 batch queue.

1400 A batch access list is associated with a batch queue. A batch server uses the batch access list of a
1401 batch queue as one of the criteria in deciding to put a batch job in a batch queue.

1402 3.43 Batch Administrator
1403 A user that is authorized to modify all the attributes of queues and jobs and to change the status |
1404 of a batch server. |

1405 3.44 Batch Client |

1406 A computational entity that utilizes batch services by making requests of batch servers. |

1407 Batch clients often provide the means by which users access batch services, although a batch
1408 server may act as a batch client by virtue of making requests of another batch server. |

38 Technical Standard (2001) (Draft April 13, 2001)

Definitions Batch Destination

1409 3.45 Batch Destination |

1410 The batch server in a batch system to which a batch job should be sent for processing. |

1411 Acceptance of a batch job at a batch destination is the responsibility of a receiving batch server.
1412 A batch destination may consist of a batch server-specific portion, a network-wide portion, or
1413 both. The batch server-specific portion is referred to as the batch queue. The network-wide
1414 portion is referred to as a batch server name. |

1415 3.46 Batch Destination Identifier |

1416 A string that identifies a specific batch destination. |

1417 A string of characters in the portable character set used to specify a particular batch destination.

1418 Note: The portable character set is defined in detail in Section 6.1 (on page 111). |

1419 3.47 Batch Directive |

1420 A line from a file that is interpreted by the batch server. The line is usually in the form of a |
1421 comment and is an additional means of passing options to the qsub utility.

1422 Note: The qsub utility is defined in detail in the Shell and Utilities volume of IEEE Std 1003.1-200x.

1423 3.48 Batch Job |

1424 A set of computational tasks for a computing system. |

1425 Batch jobs are managed by batch servers.

1426 Once created, a batch job may be executing or pending execution. A batch job that is executing
1427 has an associated session leader (a process) that initiates and monitors the computational tasks
1428 of the batch job. |

1429 3.49 Batch Job Attribute |

1430 A named data type whose value affects the processing of a batch job. |

1431 The values of the attributes of a batch job affect the processing of that job by the batch server
1432 that manages the batch job. |

1433 3.50 Batch Job Identifier
1434 A unique name for a batch job. A name that is unique among all other batch job identifiers in a
1435 batch system and that identifies the batch server to which the batch job was originally
1436 submitted.

1437 3.51 Batch Job Name
1438 A label that is an attribute of a batch job. The batch job name is not necessarily unique. |

Base Definitions, Issue 6 39

Batch Job Owner Definitions

1439 3.52 Batch Job Owner |

1440 The username@hostname of the user submitting the batch job, where username is a user name (see |
1441 also Section 3.426 (on page 91)) and hostname is a network host name. |

1442 3.53 Batch Job Priority |

1443 A value specified by the user that may be used by an implementation to determine the order in |
1444 which batch jobs are selected to be executed. Job priority has a numeric value in the range −1 024
1445 to 1 023.

1446 Note: The batch job priority is not the execution priority (nice value) of the batch job.

1447 3.54 Batch Job State |

1448 An attribute of a batch job which determines the types of requests that the batch server that |
1449 manages the batch job can accept for the batch job. Valid states include QUEUED, RUNNING, |
1450 HELD, WAITING, EXITING, and TRANSITING. |

1451 3.55 Batch Name Service
1452 A service that assigns batch names that are unique within the batch name space, and that can
1453 translate a unique batch name into the location of the named batch entity.

1454 3.56 Batch Name Space
1455 The environment within which a batch name is known to be unique. |

1456 3.57 Batch Node |

1457 A host containing part or all of a batch system. |

1458 A batch node is a host meeting at least one of the following conditions:

1459 • Capable of executing a batch client

1460 • Contains a routing batch queue

1461 • Contains an execution batch queue

1462 3.58 Batch Operator
1463 A user that is authorized to modify some, but not all, of the attributes of jobs and queues, and |
1464 may change the status of the batch server. |

1465 3.59 Batch Queue |

1466 A manageable object that represents a set of batch jobs and is managed by a single batch server. |

40 Technical Standard (2001) (Draft April 13, 2001)

Definitions Batch Queue

1467 Note: A set of batch jobs is called a batch queue largely for historical reasons. Jobs are selected from |
1468 the batch queue for execution based on attributes such as priority, resource requirements, and
1469 hold conditions.

1470 See also the Shell and Utilities volume of IEEE Std 1003.1-200x, Section 3.1.2, Batch Queues. |

1471 3.60 Batch Queue Attribute |

1472 A named data type whose value affects the processing of all batch jobs that are members of the |
1473 batch queue.

1474 A batch queue has attributes that affect the processing of batch jobs that are members of the
1475 batch queue. |

1476 3.61 Batch Queue Position |

1477 The place, relative to other jobs in the batch queue, occupied by a particular job in a batch queue. |
1478 This is defined in part by submission time and priority; see also Section 3.62. |

1479 3.62 Batch Queue Priority |

1480 The maximum job priority allowed for any batch job in a given batch queue. |

1481 The batch queue priority is set and may be changed by users with appropriate privilege. The
1482 priority is bounded in an implementation-defined manner. |

1483 3.63 Batch Rerunability |

1484 An attribute of a batch job indicating that it may be rerun after an abnormal termination from |
1485 the beginning without affecting the validity of the results. |

1486 3.64 Batch Restart
1487 The action of resuming the processing of a batch job from the point of the last checkpoint.
1488 Typically, this is done if the batch job has been interrupted because of a system failure.

1489 3.65 Batch Server
1490 A computational entity that provides batch services. |

1491 3.66 Batch Server Name |

1492 A string of characters in the portable character set used to specify a particular server in a |
1493 network.

1494 Note: The portable character set is defined in detail in Section 6.1 (on page 111). |

Base Definitions, Issue 6 41

Batch Service Definitions

1495 3.67 Batch Service |

1496 Computational and organizational services performed by a batch system on behalf of batch jobs. |

1497 Batch services are of two types: requested and deferred.

1498 Note: Batch Services are listed in the Shell and Utilities volume of IEEE Std 1003.1-200x, Table 3-5,
1499 Batch Services Summary.

1500 3.68 Batch Service Request |

1501 A solicitation of services from a batch client to a batch server. |

1502 A batch service request may entail the exchange of any number of messages between the batch
1503 client and the batch server.

1504 When naming specific types of service requests, the term request is qualified by the type of
1505 request, as in Queue Batch Job Request and Delete Batch Job Request.

1506 3.69 Batch Submission
1507 The process by which a batch client requests that a batch server create a batch job via a Queue Job
1508 Request to perform a specified computational task.

1509 3.70 Batch System
1510 A collection of one or more batch servers.

1511 3.71 Batch Target User
1512 The name of a user on the batch destination batch server.

1513 The target user is the user name under whose account the batch job is to execute on the
1514 destination batch server.

1515 3.72 Batch User
1516 A user who is authorized to make use of batch services. |

1517 3.73 Bind
1518 The process of assigning a network address to an endpoint. |

1519 3.74 Blank Character (<blank>) |

1520 One of the characters that belong to the blank character class as defined via the LC_CTYPE |
1521 category in the current locale. In the POSIX locale, a <blank> is either a <tab> or a <space>.

42 Technical Standard (2001) (Draft April 13, 2001)

Definitions Blank Line

1522 3.75 Blank Line
1523 A line consisting solely of zero or more <blank>s terminated by a <newline>; see also Section
1524 3.144 (on page 52).

1525 3.76 Blocked Process (or Thread)
1526 A process (or thread) that is waiting for some condition (other than the availability of a
1527 processor) to be satisfied before it can continue execution.

1528 3.77 Blocking
1529 A property of an open file description that causes function calls associated with it to wait for the |
1530 requested action to be performed before returning. |

1531 3.78 Block-Mode Terminal |

1532 A terminal device operating in a mode incapable of the character-at-a-time input and output |
1533 operations described by some of the standard utilities.

1534 Note: Output Devices and Terminal Types are defined in detail in Section 10.2 (on page 181).

1535 3.79 Block Special File
1536 A file that refers to a device. A block special file is normally distinguished from a character
1537 special file by providing access to the device in a manner such that the hardware characteristics
1538 of the device are not visible. |

1539 3.80 Braces |

1540 The characters ’{’ (left brace) and ’}’ (right brace), also known as curly braces. When used in |
1541 the phrase ‘‘enclosed in (curly) braces’’ the symbol ’{’ immediately precedes the object to be
1542 enclosed, and ’}’ immediately follows it. When describing these characters in the portable
1543 character set, the names <left-brace> and <right-brace> are used. |

1544 3.81 Brackets |

1545 The characters ’[’ (left-bracket) and ’]’ (right-bracket), also known as square brackets . When |
1546 used in the phrase ‘‘enclosed in (square) brackets’’ the symbol ’[’ immediately precedes the
1547 object to be enclosed, and ’]’ immediately follows it. When describing these characters in the
1548 portable character set, the names <left-square-bracket> and <right-square-bracket> are used.

1549 3.82 Broadcast
1550 The transfer of data from one endpoint to several endpoints, as described in RFC 919 and
1551 RFC 922. |

Base Definitions, Issue 6 43

Built-In Utility (or Built-In) Definitions

1552 3.83 Built-In Utility (or Built-In) |

1553 A utility implemented within a shell. The utilities referred to as special built-ins have special |
1554 qualities. Unless qualified, the term built-in includes the special built-in utilities. Regular built-ins
1555 are not required to be actually built into the shell on the implementation, but they do have
1556 special command-search qualities.

1557 Note: Special Built-In Utilities are defined in detail in the Shell and Utilities volume of
1558 IEEE Std 1003.1-200x, Section 2.14, Special Built-In Utilities.

1559 Regular Built-In Utilities are defined in detail in the Shell and Utilities volume of
1560 IEEE Std 1003.1-200x, Section 2.9.1.1, Command Search and Execution.

1561 3.84 Byte |

1562 An individually addressable unit of data storage that is exactly an octet, used to store a character |
1563 or a portion of a character; see also Section 3.87. A byte is composed of a contiguous sequence of |
1564 8 bits. The least significant bit is called the low-order bit; the most significant is called the high- |
1565 order bit.

1566 Note: The definition of byte from the ISO C standard is broader than the above and might |
1567 accommodate hardware architectures with different sized addressable units than octets. |

1568 3.85 Byte Input/Output Functions |

1569 The functions that perform byte-oriented input from streams or byte-oriented output to streams: |
1570 fgetc(), fgets(), fprintf (), fputc(), fputs(), fread(), fscanf(), fwrite(), getc(), getchar(), gets(), printf(),
1571 putc(), putchar(), puts(), scanf(), ungetc(), vfprintf (), and vprintf().

1572 Note: Functions are defined in detail in the System Interfaces volume of IEEE Std 1003.1-200x.

1573 3.86 Carriage-Return Character (<carriage-return>) |

1574 A character that in the output stream indicates that printing should start at the beginning of the |
1575 same physical line in which the <carriage-return> occurred. It is the character designated by |
1576 ’\r’ in the C language. It is unspecified whether this character is the exact sequence
1577 transmitted to an output device by the system to accomplish the movement to the beginning of
1578 the line. |

1579 3.87 Character |

1580 A sequence of one or more bytes representing a single graphic symbol or control code. |
1581 Note: This term corresponds to the ISO C standard term multi-byte character, where a single-byte
1582 character is a special case of a multi-byte character. Unlike the usage in the ISO C standard,
1583 character here has no necessary relationship with storage space, and byte is used when storage
1584 space is discussed.

1585 See the definition of the portable character set in Section 6.1 (on page 111) for a further |
1586 explanation of the graphical representations of (abstract) characters, as opposed to character
1587 encodings.

44 Technical Standard (2001) (Draft April 13, 2001)

Definitions Character Array

1588 3.88 Character Array
1589 An array of elements of type char. |

1590 3.89 Character Class |

1591 A named set of characters sharing an attribute associated with the name of the class. The classes |
1592 and the characters that they contain are dependent on the value of the LC_CTYPE category in the
1593 current locale.

1594 Note: The LC_CTYPE category is defined in detail in Section 7.3.1 (on page 122).

1595 3.90 Character Set
1596 A finite set of different characters used for the representation, organization, or control of data. |

1597 3.91 Character Special File |

1598 A file that refers to a device. One specific type of character special file is a terminal device file. |
1599 Note: The General Terminal Interface is defined in detail in Chapter 11 (on page 183).

1600 3.92 Character String
1601 A contiguous sequence of characters terminated by and including the first null byte. |

1602 3.93 Child Process |

1603 A new process created (by fork () or spawn()) by a given process. A child process remains the |
1604 child of the creating process as long as both processes continue to exist.

1605 Note: The fork() and spawn() functions are defined in detail in the System Interfaces volume of
1606 IEEE Std 1003.1-200x.

1607 3.94 Circumflex
1608 The character ’ˆ’ . |

1609 3.95 Clock |

1610 A software or hardware object that can be used to measure the apparent or actual passage of |
1611 time.

1612 The current value of the time measured by a clock can be queried and, possibly, set to a value
1613 within the legal range of the clock.

Base Definitions, Issue 6 45

Clock Jump Definitions

1614 3.96 Clock Jump
1615 The difference between two successive distinct values of a clock, as observed from the
1616 application via one of the ‘‘get time’’ operations.

1617 3.97 Clock Tick
1618 An interval of time; an implementation-defined number of these occur each second. Clock ticks
1619 are one of the units that may be used to express a value found in type clock_t.

1620 3.98 Coded Character Set
1621 A set of unambiguous rules that establishes a character set and the one-to-one relationship
1622 between each character of the set and its bit representation. |

1623 3.99 Codeset |

1624 The result of applying rules that map a numeric code value to each element of a character set. An |
1625 element of a character set may be related to more than one numeric code value but the reverse is
1626 not true. However, for state-dependent encodings the relationship between numeric code values
1627 to elements of a character set may be further controlled by state information. The character set
1628 may contain fewer elements than the total number of possible numeric code values; that is, some
1629 code values may be unassigned.

1630 Note: Character Encoding is defined in detail in Section 6.2 (on page 114).

1631 3.100 Collating Element |

1632 The smallest entity used to determine the logical ordering of character or wide-character strings; |
1633 see also Section 3.102. A collating element consists of either a single character, or two or more
1634 characters collating as a single entity. The value of the LC_COLLATE category in the current
1635 locale determines the current set of collating elements. |

1636 3.101 Collation |

1637 The logical ordering of character or wide-character strings according to defined precedence |
1638 rules. These rules identify a collation sequence between the collating elements, and such
1639 additional rules that can be used to order strings consisting of multiple collating elements. |

1640 3.102 Collation Sequence |

1641 The relative order of collating elements as determined by the setting of the LC_COLLATE |
1642 category in the current locale. The collation sequence is used for sorting and is determined from
1643 the collating weights assigned to each collating element. In the absence of weights, the collation
1644 sequence is the order in which collating elements are specified between order_start and
1645 order_end keywords in the LC_COLLATE category.

46 Technical Standard (2001) (Draft April 13, 2001)

Definitions Collation Sequence

1646 Multi-level sorting is accomplished by assigning elements one or more collation weights, up to
1647 the limit {COLL_WEIGHTS_MAX}. On each level, elements may be given the same weight (at
1648 the primary level, called an equivalence class; see also Section 3.150 (on page 53)) or be omitted
1649 from the sequence. Strings that collate equally using the first assigned weight (primary ordering)
1650 are then compared using the next assigned weight (secondary ordering), and so on.

1651 Note: {COLL_WEIGHTS_MAX} is defined in detail in <limits.h>.

1652 3.103 Column Position |

1653 A unit of horizontal measure related to characters in a line. |

1654 It is assumed that each character in a character set has an intrinsic column width independent of
1655 any output device. Each printable character in the portable character set has a column width of
1656 one. The standard utilities, when used as described in IEEE Std 1003.1-200x, assume that all
1657 characters have integral column widths. The column width of a character is not necessarily
1658 related to the internal representation of the character (numbers of bits or bytes).

1659 The column position of a character in a line is defined as one plus the sum of the column widths
1660 of the preceding characters in the line. Column positions are numbered starting from 1.

1661 3.104 Command
1662 A directive to the shell to perform a particular task.

1663 Note: Shell Commands are defined in detail in the Shell and Utilities volume of IEEE Std 1003.1-200x,
1664 Section 2.9, Shell Commands.

1665 3.105 Command Language Interpreter |

1666 An interface that interprets sequences of text input as commands. It may operate on an input |
1667 stream or it may interactively prompt and read commands from a terminal. It is possible for
1668 applications to invoke utilities through a number of interfaces, which are collectively considered
1669 to act as command interpreters. The most obvious of these are the sh utility and the system()
1670 function, although popen() and the various forms of exec may also be considered to behave as
1671 interpreters.

1672 Note: The sh utility is defined in detail in the Shell and Utilities volume of IEEE Std 1003.1-200x.

1673 The system(), popen(), and exec functions are defined in detail in the System Interfaces volume
1674 of IEEE Std 1003.1-200x.

1675 3.106 Composite Graphic Symbol |

1676 A graphic symbol consisting of a combination of two or more other graphic symbols in a single |
1677 character position, such as a diacritical mark and a base character. |

1678 3.107 Condition Variable |

1679 A synchronization object which allows a thread to suspend execution, repeatedly, until some |
1680 associated predicate becomes true. A thread whose execution is suspended on a condition

Base Definitions, Issue 6 47

Condition Variable Definitions

1681 variable is said to be blocked on the condition variable.

1682 3.108 Connection
1683 An association established between two or more endpoints for the transfer of data

1684 3.109 Connection Mode
1685 The transfer of data in the context of a connection; see also Section 3.110.

1686 3.110 Connectionless Mode
1687 The transfer of data other than in the context of a connection; see also Section 3.109 and Section
1688 3.123 (on page 49).

1689 3.111 Control Character
1690 A character, other than a graphic character, that affects the recording, processing, transmission,
1691 or interpretation of text. |

1692 3.112 Control Operator |

1693 In the shell command language, a token that performs a control function. It is one of the |
1694 following symbols:

1695 & && () ; ;; newline | ||

1696 The end-of-input indicator used internally by the shell is also considered a control operator.

1697 Note: Token Recognition is defined in detail in the Shell and Utilities volume of IEEE Std 1003.1-200x,
1698 Section 2.3, Token Recognition.

1699 3.113 Controlling Process
1700 The session leader that established the connection to the controlling terminal. If the terminal
1701 subsequently ceases to be a controlling terminal for this session, the session leader ceases to be
1702 the controlling process. |

1703 3.114 Controlling Terminal |

1704 A terminal that is associated with a session. Each session may have at most one controlling |
1705 terminal associated with it, and a controlling terminal is associated with exactly one session.
1706 Certain input sequences from the controlling terminal cause signals to be sent to all processes in
1707 the process group associated with the controlling terminal.

1708 Note: The General Terminal Interface is defined in detail in Chapter 11 (on page 183).

48 Technical Standard (2001) (Draft April 13, 2001)

Definitions Controlling Terminal

1709 3.115 Conversion Descriptor
1710 A per-process unique value used to identify an open codeset conversion.

1711 3.116 Core File
1712 A file of unspecified format that may be generated when a process terminates abnormally. |

1713 3.117 CPU Time (Execution Time) |

1714 The time spent executing a process or thread, including the time spent executing system services |
1715 on behalf of that process or thread. If the Threads option is supported, then the value of the
1716 CPU-time clock for a process is implementation-defined. With this definition the sum of all the
1717 execution times of all the threads in a process might not equal the process execution time, even
1718 in a single-threaded process, because implementations may differ in how they account for time
1719 during context switches or for other reasons.

1720 3.118 CPU-Time Clock
1721 A clock that measures the execution time of a particular process or thread.

1722 3.119 CPU-Time Timer
1723 A timer attached to a CPU-time clock.

1724 3.120 Current Job
1725 In the context of job control, the job that will be used as the default for the fg or bg utilities. There
1726 is at most one current job; see also Section 3.203 (on page 60).

1727 3.121 Current Working Directory
1728 See Working Directory in Section 3.436 (on page 92).

1729 3.122 Cursor Position
1730 The line and column position on the screen denoted by the terminal’s cursor.

1731 3.123 Datagram
1732 A unit of data transferred from one endpoint to another in connectionless mode service.

Base Definitions, Issue 6 49

Data Segment Definitions

1733 3.124 Data Segment
1734 Memory associated with a process, that can contain dynamically allocated data. |

1735 3.125 Deferred Batch Service |

1736 A service that is performed as a result of events that are asynchronous with respect to requests. |
1737 Note: Once a batch job has been created, it is subject to deferred services.

1738 3.126 Device
1739 A computer peripheral or an object that appears to the application as such.

1740 3.127 Device ID
1741 A non-negative integer used to identify a device.

1742 3.128 Directory
1743 A file that contains directory entries. No two directory entries in the same directory have the
1744 same name.

1745 3.129 Directory Entry (or Link)
1746 An object that associates a filename with a file. Several directory entries can associate names
1747 with the same file.

1748 3.130 Directory Stream
1749 A sequence of all the directory entries in a particular directory. An open directory stream may be
1750 implemented using a file descriptor.

1751 3.131 Disarm (a Timer)
1752 To stop a timer from measuring the passage of time, disabling any future process notifications
1753 (until the timer is armed again).

1754 3.132 Display
1755 To output to the user’s terminal. If the output is not directed to a terminal, the results are
1756 undefined.

50 Technical Standard (2001) (Draft April 13, 2001)

Definitions Display Line

1757 3.133 Display Line
1758 A line of text on a physical device or an emulation thereof. Such a line will have a maximum
1759 number of characters which can be presented.

1760 Note: This may also be written as ‘‘line on the display’’.

1761 3.134 Dollar Sign
1762 The character ’$’ . |

1763 3.135 Dot |

1764 In the context of naming files, the filename consisting of a single dot character (’.’). |
1765 Note: In the context of shell special built-in utilities, see dot in the Shell and Utilities volume of
1766 IEEE Std 1003.1-200x, Section 2.14, Special Built-In Utilities.

1767 Pathname Resolution is defined in detail in Section 4.11 (on page 98).

1768 3.136 Dot-Dot |

1769 The filename consisting solely of two dot characters (".."). |
1770 Note: Pathname Resolution is defined in detail in Section 4.11 (on page 98).

1771 3.137 Double-Quote |

1772 The character ’"’ , also known as quotation-mark . |
1773 Note: The double adjective in this term refers to the two strokes in the character glyph.
1774 IEEE Std 1003.1-200x never uses the term double-quote to refer to two apostrophes or
1775 quotation marks.

1776 3.138 Downshifting
1777 The conversion of an uppercase character that has a single-character lowercase representation
1778 into this lowercase representation. |

1779 3.139 Driver |

1780 A module that controls data transferred to and received from devices. |
1781 Note: Drivers are traditionally written to be a part of the system implementation, although they are
1782 frequently written separately from the writing of the implementation. A driver may contain
1783 processor-specific code, and therefore be non-portable.

Base Definitions, Issue 6 51

Effective Group ID Definitions

1784 3.140 Effective Group ID
1785 An attribute of a process that is used in determining various permissions, including file access
1786 permissions; see also Section 3.188 (on page 58).

1787 3.141 Effective User ID
1788 An attribute of a process that is used in determining various permissions, including file access
1789 permissions; see also Section 3.425 (on page 91).

1790 3.142 Eight-Bit Transparency
1791 The ability of a software component to process 8-bit characters without modifying or utilizing
1792 any part of the character in a way that is inconsistent with the rules of the current coded
1793 character set.

1794 3.143 Empty Directory
1795 A directory that contains, at most, directory entries for dot and dot-dot, and has exactly one link |
1796 to it, in dot-dot. No other links to the directory may exist. It is unspecified whether an |
1797 implementation can ever consider the root directory to be empty.

1798 3.144 Empty Line
1799 A line consisting of only a <newline>; see also Section 3.75 (on page 43).

1800 3.145 Empty String (or Null String)
1801 A string whose first byte is a null byte.

1802 3.146 Empty Wide-Character String
1803 A wide-character string whose first element is a null wide-character code. |

1804 3.147 Encoding Rule |

1805 The rules used to convert between wide-character codes and multi-byte character codes. |
1806 Note: Stream Orientation and Encoding Rules are defined in detail in the System Interfaces volume
1807 of IEEE Std 1003.1-200x, Section 2.5.2, Stream Orientation and Encoding Rules.

1808 3.148 Entire Regular Expression |

1809 The concatenated set of one or more basic regular expressions or extended regular expressions |
1810 that make up the pattern specified for string selection.

52 Technical Standard (2001) (Draft April 13, 2001)

Definitions Entire Regular Expression

1811 Note: Regular Expressions are defined in detail in Chapter 9 (on page 165).

1812 3.149 Epoch |

1813 The time zero hours, zero minutes, zero seconds, on January 1, 1970 Coordinated Universal Time |
1814 (UTC). |
1815 Note: See also Seconds Since the Epoch defined in Section 4.14 (on page 100).

1816 3.150 Equivalence Class |

1817 A set of collating elements with the same primary collation weight. |

1818 Elements in an equivalence class are typically elements that naturally group together, such as all
1819 accented letters based on the same base letter.

1820 The collation order of elements within an equivalence class is determined by the weights
1821 assigned on any subsequent levels after the primary weight. |

1822 3.151 Era |

1823 A locale-specific method for counting and displaying years. |
1824 Note: The LC_TIME category is defined in detail in Section 7.3.5 (on page 142).

1825 3.152 Event Management
1826 The mechanism that enables applications to register for and be made aware of external events
1827 such as data becoming available for reading. |

1828 3.153 Executable File |

1829 A regular file acceptable as a new process image file by the equivalent of the exec family of |
1830 functions, and thus usable as one form of a utility. The standard utilities described as compilers
1831 can produce executable files, but other unspecified methods of producing executable files may
1832 also be provided. The internal format of an executable file is unspecified, but a conforming
1833 application cannot assume an executable file is a text file. |

1834 3.154 Execute |

1835 To perform command search and execution actions, as defined in the Shell and Utilities volume |
1836 of IEEE Std 1003.1-200x; see also Section 3.200 (on page 60).

1837 Note: Command Search and Execution is defined in detail in the Shell and Utilities volume of
1838 IEEE Std 1003.1-200x, Section 2.9.1.1, Command Search and Execution.

Base Definitions, Issue 6 53

Execution Time Definitions

1839 3.155 Execution Time
1840 See CPU Time in Section 3.117 (on page 49).

1841 3.156 Execution Time Monitoring
1842 A set of execution time monitoring primitives that allow online measuring of thread and process
1843 execution times. |

1844 3.157 Expand |

1845 In the shell command language, when not qualified, the act of applying word expansions. |
1846 Note: Word Expansions are defined in detail in the Shell and Utilities volume of
1847 IEEE Std 1003.1-200x, Section 2.6, Word Expansions.

1848 3.158 Extended Regular Expression (ERE) |

1849 A regular expression (see also Section 3.316 (on page 76)) that is an alternative to the Basic |
1850 Regular Expression using a more extensive syntax, occasionally used by some utilities.

1851 Note: Extended Regular Expressions are described in detail in Section 9.4 (on page 171).

1852 3.159 Extended Security Controls |

1853 Implementation-defined security controls allowed by the file access permission and appropriate |
1854 privilege (see also Section 3.19 (on page 35)) mechanisms, through which an implementation can
1855 support different security policies from those described in IEEE Std 1003.1-200x.

1856 Note: See also Extended Security Controls defined in Section 4.3 (on page 95).

1857 File Access Permissions are defined in detail in Section 4.4 (on page 95).

1858 3.160 Feature Test Macro |

1859 A macro used to determine whether a particular set of features is included from a header. |
1860 Note: See also the System Interfaces volume of IEEE Std 1003.1-200x, Section 2.2, The Compilation
1861 Environment.

1862 3.161 Field |

1863 In the shell command language, a unit of text that is the result of parameter expansion, |
1864 arithmetic expansion, command substitution, or field splitting. During command processing, the
1865 resulting fields are used as the command name and its arguments.

1866 Note: Parameter Expansion is defined in detail in the Shell and Utilities volume of
1867 IEEE Std 1003.1-200x, Section 2.6.2, Parameter Expansion.

1868 Arithmetic Expansion is defined in detail in the Shell and Utilities volume of
1869 IEEE Std 1003.1-200x, Section 2.6.4, Arithmetic Expansion.

54 Technical Standard (2001) (Draft April 13, 2001)

Definitions Field

1870 Command Substitution is defined in detail in the Shell and Utilities volume of
1871 IEEE Std 1003.1-200x, Section 2.6.3, Command Substitution.

1872 Field Splitting is defined in detail in the Shell and Utilities volume of IEEE Std 1003.1-200x,
1873 Section 2.6.5, Field Splitting.

1874 For further information on command processing, see the Shell and Utilities volume of
1875 IEEE Std 1003.1-200x, Section 2.9.1, Simple Commands.

1876 3.162 FIFO Special File (or FIFO) |

1877 A type of file with the property that data written to such a file is read on a first-in-first-out basis. |
1878 Note: Other characteristics of FIFOs are described in the System Interfaces volume of
1879 IEEE Std 1003.1-200x, lseek(), open(), read(), and write().

1880 3.163 File |

1881 An object that can be written to, or read from, or both. A file has certain attributes, including |
1882 access permissions and type. File types include regular file, character special file, block special
1883 file, FIFO special file, symbolic link, socket, and directory. Other types of files may be supported
1884 by the implementation.

1885 3.164 File Description
1886 See Open File Description in Section 3.253 (on page 67). |

1887 3.165 File Descriptor |

1888 A per-process unique, non-negative integer used to identify an open file for the purpose of file |
1889 access. The value of a file descriptor is from zero to {OPEN_MAX}. A process can have no more
1890 than {OPEN_MAX} file descriptors open simultaneously. File descriptors may also be used to
1891 implement message catalog descriptors and directory streams; see also Section 3.253 (on page
1892 67).

1893 Note: {OPEN_MAX} is defined in detail in <limits.h>.

1894 3.166 File Group Class |

1895 The property of a file indicating access permissions for a process related to the group |
1896 identification of a process. A process is in the file group class of a file if the process is not in the
1897 file owner class and if the effective group ID or one of the supplementary group IDs of the
1898 process matches the group ID associated with the file. Other members of the class may be
1899 implementation-defined. |

1900 3.167 File Mode |

1901 An object containing the file mode bits and file type of a file. |
1902 Note: File mode bits and file types are defined in detail in <sys/stat.h>.

Base Definitions, Issue 6 55

File Mode Definitions

1903 3.168 File Mode Bits |

1904 A file’s file permission bits, set-user-ID-on-execution bit (S_ISUID), and set-group-ID-on- |
1905 execution bit (S_ISGID).

1906 Note: File Mode Bits are defined in detail in <sys/stat.h>.

1907 3.169 Filename |

1908 A name consisting of 1 to {NAME_MAX} bytes used to name a file. The characters composing |
1909 the name may be selected from the set of all character values excluding the slash character and
1910 the null byte. The filenames dot and dot-dot have special meaning. A filename is sometimes
1911 referred to as a pathname component .

1912 Note: Pathname Resolution is defined in detail in Section 4.11 (on page 98).

1913 3.170 Filename Portability |

1914 Filenames should be constructed from the portable filename character set because the use of |
1915 other characters can be confusing or ambiguous in certain contexts. (For example, the use of a
1916 colon (’:’) in a pathname could cause ambiguity if that pathname were included in a PATH
1917 definition.) |

1918 3.171 File Offset |

1919 The byte position in the file where the next I/O operation begins. Each open file description |
1920 associated with a regular file, block special file, or directory has a file offset. A character special
1921 file that does not refer to a terminal device may have a file offset. There is no file offset specified
1922 for a pipe or FIFO.

1923 3.172 File Other Class
1924 The property of a file indicating access permissions for a process related to the user and group
1925 identification of a process. A process is in the file other class of a file if the process is not in the
1926 file owner class or file group class.

1927 3.173 File Owner Class
1928 The property of a file indicating access permissions for a process related to the user
1929 identification of a process. A process is in the file owner class of a file if the effective user ID of
1930 the process matches the user ID of the file. |

1931 3.174 File Permission Bits |

1932 Information about a file that is used, along with other information, to determine whether a |
1933 process has read, write, or execute/search permission to a file. The bits are divided into three
1934 parts: owner, group, and other. Each part is used with the corresponding file class of processes.
1935 These bits are contained in the file mode.

56 Technical Standard (2001) (Draft April 13, 2001)

Definitions File Permission Bits

1936 Note: File modes are defined in detail in <sys/stat.h>.

1937 File Access Permissions are defined in detail in Section 4.4 (on page 95).

1938 3.175 File Serial Number
1939 A per-file system unique identifier for a file.

1940 3.176 File System
1941 A collection of files and certain of their attributes. It provides a name space for file serial
1942 numbers referring to those files.

1943 3.177 File Type
1944 See File in Section 3.163 (on page 55).

1945 3.178 Filter
1946 A command whose operation consists of reading data from standard input or a list of input files
1947 and writing data to standard output. Typically, its function is to perform some transformation
1948 on the data stream.

1949 3.179 First Open (of a File)
1950 When a process opens a file that is not currently an open file within any process.

1951 3.180 Flow Control
1952 The mechanism employed by a communications provider that constrains a sending entity to
1953 wait until the receiving entities can safely receive additional data without loss.

1954 3.181 Foreground Job
1955 See Foreground Process Group in Section 3.183.

1956 3.182 Foreground Process
1957 A process that is a member of a foreground process group. |

1958 3.183 Foreground Process Group (or Foreground Job) |

1959 A process group whose member processes have certain privileges, denied to processes in |
1960 background process groups, when accessing their controlling terminal. Each session that has

Base Definitions, Issue 6 57

Foreground Process Group (or Foreground Job) Definitions

1961 established a connection with a controlling terminal has at most one process group of the session
1962 as the foreground process group of that controlling terminal.

1963 Note: The General Terminal Interface is defined in detail in Chapter 11.

1964 3.184 Foreground Process Group ID
1965 The process group ID of the foreground process group. |

1966 3.185 Form-Feed Character (<form-feed>) |

1967 A character that in the output stream indicates that printing should start on the next page of an |
1968 output device. It is the character designated by ’\f’ in the C language. If the <form-feed> is not |
1969 the first character of an output line, the result is unspecified. It is unspecified whether this
1970 character is the exact sequence transmitted to an output device by the system to accomplish the
1971 movement to the next page. |

1972 3.186 Graphic Character |

1973 A member of the graph character class of the current locale. |
1974 Note: The graph character class is defined in detail in Section 7.3.1 (on page 122).

1975 3.187 Group Database |

1976 A system database of implementation-defined format that contains at least the following |
1977 information for each group ID:

1978 • Group name

1979 • Numerical group ID

1980 • List of users allowed in the group

1981 The list of users allowed in the group is used by the newgrp utility.

1982 Note: The newgrp utility is defined in detail in the Shell and Utilities volume of IEEE Std 1003.1-200x.

1983 3.188 Group ID |

1984 A non-negative integer, which can be contained in an object of type gid_t, that is used to identify |
1985 a group of system users. Each system user is a member of at least one group. When the identity
1986 of a group is associated with a process, a group ID value is referred to as a real group ID, an
1987 effective group ID, one of the supplementary group IDs, or a saved set-group-ID.

1988 3.189 Group Name
1989 A string that is used to identify a group; see also Section 3.187. To be portable across conforming
1990 systems, the value is composed of characters from the portable filename character set. The
1991 hyphen should not be used as the first character of a portable group name.

58 Technical Standard (2001) (Draft April 13, 2001)

Definitions Hard Limit

1992 3.190 Hard Limit
1993 A system resource limitation that may be reset to a lesser or greater limit by a privileged process.
1994 A non-privileged process is restricted to only lowering its hard limit. |

1995 3.191 Hard Link |

1996 The relationship between two directory entries that represent the same file; see also Section 3.129 |
1997 (on page 50). The result of an execution of the ln utility (without the −s option) or the link ()
1998 function. This term is contrasted against symbolic link; see also Section 3.372 (on page 83).

1999 3.192 Home Directory
2000 The directory specified by the HOME environment variable. |

2001 3.193 Host Byte Order |

2002 The arrangement of bytes in any int type when using a specific machine architecture. |
2003 Note: Two common methods of byte ordering are big-endian and little-endian. Big-endian is a
2004 format for storage of binary data in which the most significant byte is placed first, with the rest
2005 in descending order. Little-endian is a format for storage or transmission of binary data in
2006 which the least significant byte is placed first, with the rest in ascending order. See also Section |
2007 4.8 (on page 97). |

2008 3.194 Incomplete Line
2009 A sequence of one or more non-<newline>s at the end of the file.

2010 3.195 Inf
2011 A value representing +infinity or a value representing −infinity that can be stored in a floating
2012 type. Not all systems support the Inf values.

2013 3.196 Instrumented Application
2014 An application that contains at least one call to the trace point function posix_trace_event(). Each
2015 process of an instrumented application has a mapping of trace event names to trace event type
2016 identifiers. This mapping is used by the trace stream that is created for that process. |

2017 3.197 Interactive Shell |

2018 A processing mode of the shell that is suitable for direct user interaction. |

Base Definitions, Issue 6 59

Internationalization Definitions

2019 3.198 Internationalization
2020 The provision within a computer program of the capability of making itself adaptable to the
2021 requirements of different native languages, local customs, and coded character sets.

2022 3.199 Interprocess Communication
2023 A functionality enhancement to add a high-performance, deterministic interprocess
2024 communication facility for local communication. |

2025 3.200 Invoke |

2026 To perform command search and execution actions, except that searching for shell functions and |
2027 special built-in utilities is suppressed; see also Section 3.154 (on page 53).

2028 Note: Command Search and Execution is defined in detail in the Shell and Utilities volume of
2029 IEEE Std 1003.1-200x, Section 2.9.1.1, Command Search and Execution.

2030 3.201 Job |

2031 A set of processes, comprising a shell pipeline, and any processes descended from it, that are all |
2032 in the same process group.

2033 Note: See also the Shell and Utilities volume of IEEE Std 1003.1-200x, Section 2.9.2, Pipelines.

2034 3.202 Job Control
2035 A facility that allows users selectively to stop (suspend) the execution of processes and continue
2036 (resume) their execution at a later point. The user typically employs this facility via the
2037 interactive interface jointly supplied by the terminal I/O driver and a command interpreter. |

2038 3.203 Job Control Job ID |

2039 A handle that is used to refer to a job. The job control job ID can be any of the forms shown in the |
2040 following table:

60 Technical Standard (2001) (Draft April 13, 2001)

Definitions Job Control Job ID

2041 Table 3-1 Job Control Job ID Formats

2042 Job Control
2043 Job ID Meaning___
2044 %% Current job.
2045 %+ Current job.
2046 %− Previous job.
2047 %n Job number n.
2048 %string Job whose command begins with string.
2049 %?string Job whose command contains string.___L

L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

2050 3.204 Last Close (of a File)
2051 When a process closes a file, resulting in the file not being an open file within any process.

2052 3.205 Line
2053 A sequence of zero or more non-<newline>s plus a terminating <newline>.

2054 3.206 Linger
2055 A period of time before terminating a connection, to allow outstanding data to be transferred.

2056 3.207 Link
2057 See Directory Entry in Section 3.129 (on page 50).

2058 3.208 Link Count
2059 The number of directory entries that refer to a particular file.

2060 3.209 Local Customs
2061 The conventions of a geographical area or territory for such things as date, time, and currency
2062 formats.

2063 3.210 Local Interprocess Communication (Local IPC)
2064 The transfer of data between processes in the same system. |

2065 3.211 Locale |

2066 The definition of the subset of a user’s environment that depends on language and cultural |
2067 conventions.

Base Definitions, Issue 6 61

Locale Definitions

2068 Note: Locales are defined in detail in Chapter 7 (on page 119).

2069 3.212 Localization
2070 The process of establishing information within a computer system specific to the operation of
2071 particular native languages, local customs, and coded character sets.

2072 3.213 Login
2073 The unspecified activity by which a user gains access to the system. Each login is associated
2074 with exactly one login name.

2075 3.214 Login Name
2076 A user name that is associated with a login.

2077 3.215 Map
2078 To create an association between a page-aligned range of the address space of a process and
2079 some memory object, such that a reference to an address in that range of the address space
2080 results in a reference to the associated memory object. The mapped memory object is not
2081 necessarily memory-resident. |

2082 3.216 Marked Message |

2083 A STREAMs message on which a certain flag is set. Marking a message gives the application |
2084 protocol-specific information. An application can use ioctl () to determine whether a given
2085 message is marked.

2086 Note: The ioctl () function is defined in detail in the System Interfaces volume of
2087 IEEE Std 1003.1-200x.

2088 3.217 Matched |

2089 A state applying to a sequence of zero or more characters when the characters in the sequence |
2090 correspond to a sequence of characters defined by a basic regular expression or extended regular
2091 expression pattern.

2092 Note: Regular Expressions are defined in detail in Chapter 9 (on page 165).

2093 3.218 Memory Mapped Files
2094 A facility to allow applications to access files as part of the address space. |

62 Technical Standard (2001) (Draft April 13, 2001)

Definitions Memory Object

2095 3.219 Memory Object |

2096 One of: |

2097 • A file (see Section 3.163 (on page 55))

2098 • A shared memory object (see Section 3.340 (on page 79))

2099 • A typed memory object (see Section 3.418 (on page 90))

2100 When used in conjunction with mmap(), a memory object appears in the address space of the
2101 calling process.

2102 Note: The mmap() function is defined in detail in the System Interfaces volume of
2103 IEEE Std 1003.1-200x.

2104 3.220 Memory-Resident
2105 The process of managing the implementation in such a way as to provide an upper bound on
2106 memory access times.

2107 3.221 Message
2108 In the context of programmatic message passing, information that can be transferred between
2109 processes or threads by being added to and removed from a message queue. A message consists
2110 of a fixed-size message buffer.

2111 3.222 Message Catalog
2112 In the context of providing natural language messages to the user, a file or storage area
2113 containing program messages, command prompts, and responses to prompts for a particular
2114 native language, territory, and codeset.

2115 3.223 Message Catalog Descriptor
2116 In the context of providing natural language messages to the user, a per-process unique value
2117 used to identify an open message catalog. A message catalog descriptor may be implemented
2118 using a file descriptor.

2119 3.224 Message Queue
2120 In the context of programmatic message passing, an object to which messages can be added and
2121 removed. Messages may be removed in the order in which they were added or in priority order. |

2122 3.225 Mode |

2123 A collection of attributes that specifies a file’s type and its access permissions. |
2124 Note: File Access Permissions are defined in detail in Section 4.4 (on page 95).

Base Definitions, Issue 6 63

Mode Definitions

2125 3.226 Monotonic Clock
2126 A clock whose value cannot be set via clock_settime() and which cannot have negative clock
2127 jumps. |

2128 3.227 Mount Point |

2129 Either the system root directory or a directory for which the st_dev field of structure stat differs |
2130 from that of its parent directory.

2131 Note: The stat structure is defined in detail in <sys/stat.h>.

2132 3.228 Multi-Character Collating Element
2133 A sequence of two or more characters that collate as an entity. For example, in some coded
2134 character sets, an accented character is represented by a non-spacing accent, followed by the
2135 letter. Other examples are the Spanish elements ch and ll .

2136 3.229 Mutex
2137 A synchronization object used to allow multiple threads to serialize their access to shared data.
2138 The name derives from the capability it provides; namely, mutual-exclusion. The thread that has
2139 locked a mutex becomes its owner and remains the owner until that same thread unlocks the
2140 mutex. |

2141 3.230 Name |

2142 In the shell command language, a word consisting solely of underscores, digits, and alphabetics |
2143 from the portable character set. The first character of a name is not a digit.

2144 Note: The portable character set is defined in detail in Section 6.1 (on page 111). |

2145 3.231 Named STREAM
2146 A STREAMS-based file descriptor that is attached to a name in the file system name space. All
2147 subsequent operations on the named STREAM act on the STREAM that was associated with the
2148 file descriptor until the name is disassociated from the STREAM.

2149 3.232 NaN (Not a Number)
2150 A set of values that may be stored in a floating type but that are neither Inf nor valid floating-
2151 point numbers. Not all systems support NaN values.

2152 3.233 Native Language
2153 A computer user’s spoken or written language, such as American English, British English,
2154 Danish, Dutch, French, German, Italian, Japanese, Norwegian, or Swedish. |

64 Technical Standard (2001) (Draft April 13, 2001)

Definitions Negative Response

2155 3.234 Negative Response |

2156 An input string that matches one of the responses acceptable to the LC_MESSAGES category |
2157 keyword noexpr, matching an extended regular expression in the current locale.

2158 Note: The LC_MESSAGES category is defined in detail in Section 7.3.6 (on page 148).

2159 3.235 Network |

2160 A collection of interconnected hosts. |
2161 Note: The term network in IEEE Std 1003.1-200x is used to refer to the network of hosts. The term
2162 batch system is used to refer to the network of batch servers.

2163 3.236 Network Address
2164 A network-visible identifier used to designate specific endpoints in a network. Specific
2165 endpoints on host systems have addresses, and host systems may also have addresses. |

2166 3.237 Network Byte Order |

2167 The way of representing any int type such that, when transmitted over a network via a network |
2168 endpoint, the int type is transmitted as an appropriate number of octets with the most
2169 significant octet first, followed by any other octets in descending order of significance.

2170 Note: This order is more commonly known as big-endian ordering. See also Section 4.8 (on page 97). |

2171 3.238 Newline Character (<newline>) |

2172 A character that in the output stream indicates that printing should start at the beginning of the |
2173 next line. It is the character designated by ’\n’ in the C language. It is unspecified whether this |
2174 character is the exact sequence transmitted to an output device by the system to accomplish the
2175 movement to the next line. |

2176 3.239 Nice Value |

2177 A number used as advice to the system to alter process scheduling. Numerically smaller values |
2178 give a process additional preference when scheduling a process to run. Numerically larger
2179 values reduce the preference and make a process less likely to run. Typically, a process with a
2180 smaller nice value runs to completion more quickly than an equivalent process with a higher
2181 nice value. The symbol {NZERO} specifies the default nice value of the system. |

2182 3.240 Non-Blocking |

2183 A property of an open file description that causes function calls involving it to return without |
2184 delay when it is detected that the requested action associated with the function call cannot be |
2185 completed without unknown delay. |
2186 Note: The exact semantics are dependent on the type of file associated with the open file description. |
2187 For data reads from devices such as ttys and FIFOs, this property causes the read to return |

Base Definitions, Issue 6 65

Non-Blocking Definitions

2188 immediately when no data was available. Similarly, for writes, it causes the call to return |
2189 immediately when the thread would otherwise be delayed in the write operation; for example, |
2190 because no space was available. For networking, it causes functions not to await protocol |
2191 events (for example, acknowledgements) to occur. See also the System Interfaces volume of |
2192 IEEE Std 1003.1-200x, Section 2.10.7, Socket I/O Mode. |

2193 3.241 Non-Spacing Characters
2194 A character, such as a character representing a diacritical mark in the ISO/IEC 6937: 1994
2195 standard coded character set, which is used in combination with other characters to form
2196 composite graphic symbols.

2197 3.242 NUL
2198 A character with all bits set to zero.

2199 3.243 Null Byte
2200 A byte with all bits set to zero.

2201 3.244 Null Pointer
2202 The value that is obtained by converting the number 0 into a pointer; for example, (void *) 0. The
2203 C language guarantees that this value does not match that of any legitimate pointer, so it is used
2204 by many functions that return pointers to indicate an error.

2205 3.245 Null String
2206 See Empty String in Section 3.145 (on page 52).

2207 3.246 Null Wide-Character Code
2208 A wide-character code with all bits set to zero.

2209 3.247 Number Sign
2210 The character ’#’ , also known as hash sign . |

2211 3.248 Object File |

2212 A regular file containing the output of a compiler, formatted as input to a linkage editor for |
2213 linking with other object files into an executable form. The methods of linking are unspecified
2214 and may involve the dynamic linking of objects at runtime. The internal format of an object file
2215 is unspecified, but a conforming application cannot assume an object file is a text file.

66 Technical Standard (2001) (Draft April 13, 2001)

Definitions Octet

2216 3.249 Octet
2217 Unit of data representation that consists of eight contiguous bits.

2218 3.250 Offset Maximum
2219 An attribute of an open file description representing the largest value that can be used as a file
2220 offset.

2221 3.251 Opaque Address
2222 An address such that the entity making use of it requires no details about its contents or format.

2223 3.252 Open File
2224 A file that is currently associated with a file descriptor. |

2225 3.253 Open File Description |

2226 A record of how a process or group of processes is accessing a file. Each file descriptor refers to |
2227 exactly one open file description, but an open file description can be referred to by more than
2228 one file descriptor. A file offset, file status, and file access modes are attributes of an open file
2229 description. |

2230 3.254 Operand |

2231 An argument to a command that is generally used as an object supplying information to a utility |
2232 necessary to complete its processing. Operands generally follow the options in a command line.

2233 Note: Utility Argument Syntax is defined in detail in Section 12.1 (on page 197).

2234 3.255 Operator
2235 In the shell command language, either a control operator or a redirection operator. |

2236 3.256 Option |

2237 An argument to a command that is generally used to specify changes in the utility’s default |
2238 behavior.

2239 Note: Utility Argument Syntax is defined in detail in Section 12.1 (on page 197).

2240 3.257 Option-Argument |

2241 A parameter that follows certain options. In some cases an option-argument is included within |
2242 the same argument string as the option—in most cases it is the next argument.

Base Definitions, Issue 6 67

Option-Argument Definitions

2243 Note: Utility Argument Syntax is defined in detail in Section 12.1 (on page 197).

2244 3.258 Orientation |

2245 A stream has one of three orientations: unoriented, byte-oriented, or wide-oriented. |
2246 Note: For further information, see the System Interfaces volume of IEEE Std 1003.1-200x, Section
2247 2.5.2, Stream Orientation and Encoding Rules.

2248 3.259 Orphaned Process Group
2249 A process group in which the parent of every member is either itself a member of the group or is
2250 not a member of the group’s session. |

2251 3.260 Page |

2252 The granularity of process memory mapping or locking. |

2253 Physical memory and memory objects can be mapped into the address space of a process on
2254 page boundaries and in integral multiples of pages. Process address space can be locked into
2255 memory (made memory-resident) on page boundaries and in integral multiples of pages.

2256 3.261 Page Size
2257 The size, in bytes, of the system unit of memory allocation, protection, and mapping. On systems
2258 that have segment rather than page-based memory architectures, the term page means a
2259 segment. |

2260 3.262 Parameter |

2261 In the shell command language, an entity that stores values. There are three types of parameters: |
2262 variables (named parameters), positional parameters, and special parameters. Parameter
2263 expansion is accomplished by introducing a parameter with the ’$’ character.

2264 Note: See also the Shell and Utilities volume of IEEE Std 1003.1-200x, Section 2.5, Parameters and
2265 Variables.

2266 In the C language, an object declared as part of a function declaration or definition that acquires
2267 a value on entry to the function, or an identifier following the macro name in a function-like
2268 macro definition. |

2269 3.263 Parent Directory |

2270 When discussing a given directory, the directory that both contains a directory entry for the |
2271 given directory and is represented by the pathname dot-dot in the given directory.

2272 When discussing other types of files, a directory containing a directory entry for the file under
2273 discussion.

68 Technical Standard (2001) (Draft April 13, 2001)

Definitions Parent Directory

2274 This concept does not apply to dot and dot-dot.

2275 3.264 Parent Process
2276 The process which created (or inherited) the process under discussion.

2277 3.265 Parent Process ID
2278 An attribute of a new process identifying the parent of the process. The parent process ID of a
2279 process is the process ID of its creator, for the lifetime of the creator. After the creator’s lifetime
2280 has ended, the parent process ID is the process ID of an implementation-defined system process. |

2281 3.266 Pathname |

2282 A character string that is used to identify a file. In the context of IEEE Std 1003.1-200x, a |
2283 pathname consists of, at most, {PATH_MAX} bytes, including the terminating null byte. It has an
2284 optional beginning slash, followed by zero or more filenames separated by slashes. A pathname
2285 may optionally contain one or more trailing slashes. Multiple successive slashes are considered
2286 to be the same as one slash.

2287 Note: Pathname Resolution is defined in detail in Section 4.11 (on page 98).

2288 3.267 Pathname Component
2289 See Filename in Section 3.169 (on page 56).

2290 3.268 Path Prefix
2291 A pathname, with an optional ending slash, that refers to a directory. |

2292 3.269 Pattern |

2293 A sequence of characters used either with regular expression notation or for pathname |
2294 expansion, as a means of selecting various character strings or pathnames, respectively.

2295 Note: Regular Expressions are defined in detail in Chapter 9 (on page 165).

2296 See also the Shell and Utilities volume of IEEE Std 1003.1-200x, Section 2.6.6, Pathname
2297 Expansion.

2298 The syntaxes of the two types of patterns are similar, but not identical; IEEE Std 1003.1-200x
2299 always indicates the type of pattern being referred to in the immediate context of the use of the
2300 term.

2301 3.270 Period
2302 The character ’.’ . The term period is contrasted with dot (see also Section 3.135 (on page 51)),
2303 which is used to describe a specific directory entry. |

Base Definitions, Issue 6 69

Permissions Definitions

2304 3.271 Permissions |

2305 Attributes of an object that determine the privilege necessary to access or manipulate the object. |
2306 Note: File Access Permissions are defined in detail in Section 4.4 (on page 95).

2307 3.272 Persistence |

2308 A mode for semaphores, shared memory, and message queues requiring that the object and its |
2309 state (including data, if any) are preserved after the object is no longer referenced by any process.

2310 Persistence of an object does not imply that the state of the object is maintained across a system
2311 crash or a system reboot. |

2312 3.273 Pipe |

2313 An object accessed by one of the pair of file descriptors created by the pipe() function. Once |
2314 created, the file descriptors can be used to manipulate it, and it behaves identically to a FIFO
2315 special file when accessed in this way. It has no name in the file hierarchy.

2316 Note: The pipe() function is defined in detail in the System Interfaces volume of
2317 IEEE Std 1003.1-200x.

2318 3.274 Polling
2319 A scheduling scheme whereby the local process periodically checks until the prespecified events
2320 (for example, read, write) have occurred. |

2321 3.275 Portable Character Set |

2322 The collection of characters that are required to be present in all locales supported by |
2323 conforming systems.

2324 Note: The portable character set is defined in detail in Section 6.1 (on page 111). |

2325 This term is contrasted against the smaller portable filename character set; see also Section 3.276. |

2326 3.276 Portable Filename Character Set |

2327 The set of characters from which portable filenames are constructed. |

2328 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
2329 a b c d e f g h i j k l m n o p q r s t u v w x y z
2330 0 1 2 3 4 5 6 7 8 9 . _ -

2331 The last three characters are the period, underscore, and hyphen characters, respectively. |

2332 3.277 Positional Parameter |

2333 In the shell command language, a parameter denoted by a single digit or one or more digits in |
2334 curly braces.

70 Technical Standard (2001) (Draft April 13, 2001)

Definitions Positional Parameter

2335 Note: For further information, see the Shell and Utilities volume of IEEE Std 1003.1-200x, Section
2336 2.5.1, Positional Parameters.

2337 3.278 Preallocation |

2338 The reservation of resources in a system for a particular use. |

2339 Preallocation does not imply that the resources are immediately allocated to that use, but merely
2340 indicates that they are guaranteed to be available in bounded time when needed.

2341 3.279 Preempted Process (or Thread)
2342 A running thread whose execution is suspended due to another thread becoming runnable at a
2343 higher priority. |

2344 3.280 Previous Job |

2345 In the context of job control, the job that will be used as the default for the fg or bg utilities if the |
2346 current job exits. There is at most one previous job; see also Section 3.203 (on page 60). |

2347 3.281 Printable Character |

2348 One of the characters included in the print character classification of the LC_CTYPE category in |
2349 the current locale.

2350 Note: The LC_CTYPE category is defined in detail in Section 7.3.1 (on page 122).

2351 3.282 Printable File |

2352 A text file consisting only of the characters included in the print and space character |
2353 classifications of the LC_CTYPE category and the <backspace>, all in the current locale.

2354 Note: The LC_CTYPE category is defined in detail in Section 7.3.1 (on page 122).

2355 3.283 Priority
2356 A non-negative integer associated with processes or threads whose value is constrained to a
2357 range defined by the applicable scheduling policy. Numerically higher values represent higher
2358 priorities.

2359 3.284 Priority Band
2360 The queuing order applied to normal priority STREAMS messages. High priority STREAMS
2361 messages are not grouped by priority bands. The only differentiation made by the STREAMS
2362 mechanism is between zero and non-zero bands, but specific protocol modules may differentiate
2363 between priority bands.

Base Definitions, Issue 6 71

Priority Inversion Definitions

2364 3.285 Priority Inversion
2365 A condition in which a thread that is not voluntarily suspended (waiting for an event or time
2366 delay) is not running while a lower priority thread is running. Such blocking of the higher
2367 priority thread is often caused by contention for a shared resource.

2368 3.286 Priority Scheduling
2369 A performance and determinism improvement facility to allow applications to determine the
2370 order in which threads that are ready to run are granted access to processor resources.

2371 3.287 Priority-Based Scheduling
2372 Scheduling in which the selection of a running thread is determined by the priorities of the
2373 runnable processes or threads.

2374 3.288 Privilege
2375 See Appropriate Privileges in Section 3.19 (on page 35). |

2376 3.289 Process |

2377 An address space with one or more threads executing within that address space, and the |
2378 required system resources for those threads.

2379 Note: Many of the system resources defined by IEEE Std 1003.1-200x are shared among all of the
2380 threads within a process. These include the process ID, the parent process ID, process group ID,
2381 session membership, real, effective, and saved-set user ID, real, effective, and saved-set group
2382 ID, supplementary group IDs, current working directory, root directory, file mode creation
2383 mask, and file descriptors.

2384 3.290 Process Group
2385 A collection of processes that permits the signaling of related processes. Each process in the
2386 system is a member of a process group that is identified by a process group ID. A newly created
2387 process joins the process group of its creator. |

2388 3.291 Process Group ID |

2389 The unique positive integer identifier representing a process group during its lifetime. |
2390 Note: See also Process Group ID Reuse defined in Section 4.12 (on page 99).

2391 3.292 Process Group Leader
2392 A process whose process ID is the same as its process group ID. |

72 Technical Standard (2001) (Draft April 13, 2001)

Definitions Process Group Lifetime

2393 3.293 Process Group Lifetime |

2394 A period of time that begins when a process group is created and ends when the last remaining |
2395 process in the group leaves the group, due either to the end of the last process’ lifetime or to the
2396 last remaining process calling the setsid() or setpgid() functions.

2397 Note: The setsid() and setpgid() functions are defined in detail in the System Interfaces volume of
2398 IEEE Std 1003.1-200x.

2399 3.294 Process ID |

2400 The unique positive integer identifier representing a process during its lifetime. |
2401 Note: See also Process ID Reuse defined in Section 4.12 (on page 99).

2402 3.295 Process Lifetime |

2403 The period of time that begins when a process is created and ends when its process ID is |
2404 returned to the system. After a process is created with a fork () function, it is considered active.
2405 At least one thread of control and address space exist until it terminates. It then enters an
2406 inactive state where certain resources may be returned to the system, although some resources,
2407 such as the process ID, are still in use. When another process executes a wait(), waitid (), or
2408 waitpid () function for an inactive process, the remaining resources are returned to the system.
2409 The last resource to be returned to the system is the process ID. At this time, the lifetime of the
2410 process ends.

2411 Note: The fork(), wait (), waitid (), and waitpid () functions are defined in detail in the System
2412 Interfaces volume of IEEE Std 1003.1-200x.

2413 3.296 Process Memory Locking
2414 A performance improvement facility to bind application programs into the high-performance
2415 random access memory of a computer system. This avoids potential latencies introduced by the
2416 operating system in storing parts of a program that were not recently referenced on secondary
2417 memory devices. |

2418 3.297 Process Termination |

2419 There are two kinds of process termination: |

2420 1. Normal termination occurs by a return from main() or when requested with the exit() or
2421 _exit() functions.

2422 2. Abnormal termination occurs when requested by the abort() function or when some
2423 signals are received.

2424 Note: The _exit (), abort(), and exit () functions are defined in detail in the System Interfaces volume
2425 of IEEE Std 1003.1-200x.

Base Definitions, Issue 6 73

Process-To-Process Communication Definitions

2426 3.298 Process-To-Process Communication
2427 The transfer of data between processes.

2428 3.299 Process Virtual Time
2429 The measurement of time in units elapsed by the system clock while a process is executing.

2430 3.300 Program
2431 A prepared sequence of instructions to the system to accomplish a defined task. The term
2432 program in IEEE Std 1003.1-200x encompasses applications written in the Shell Command
2433 Language, complex utility input languages (for example, awk, lex, sed, and so on), and high-level
2434 languages.

2435 3.301 Protocol
2436 A set of semantic and syntactic rules for exchanging information.

2437 3.302 Pseudo-Terminal
2438 A facility that provides an interface that is identical to the terminal subsystem. A pseudo- |
2439 terminal is composed of two devices: the master device and a slave device. The slave device |
2440 provides processes with an interface that is identical to the terminal interface, although there |
2441 need not be hardware behind that interface. Anything written on the master device is presented |
2442 to the slave as an input and anything written on the slave device is presented as an input on the |
2443 master side. |

2444 3.303 Radix Character
2445 The character that separates the integer part of a number from the fractional part. |

2446 3.304 Read-Only File System |

2447 A file system that has implementation-defined characteristics restricting modifications. |
2448 Note: File Times Update is described in detail in Section 4.7 (on page 96).

2449 3.305 Read-Write Lock |

2450 Multiple readers, single writer (read-write) locks allow many threads to have simultaneous |
2451 read-only access to data while allowing only one thread to have write access at any given time.
2452 They are typically used to protect data that is read-only more frequently than it is changed.

2453 Read-write locks can be used to synchronize threads in the current process and other processes if
2454 they are allocated in memory that is writable and shared among the cooperating processes and
2455 have been initialized for this behavior.

74 Technical Standard (2001) (Draft April 13, 2001)

Definitions Real Group ID

2456 3.306 Real Group ID
2457 The attribute of a process that, at the time of process creation, identifies the group of the user
2458 who created the process; see also Section 3.188 (on page 58).

2459 3.307 Real Time
2460 Time measured as total units elapsed by the system clock without regard to which thread is
2461 executing.

2462 3.308 Realtime Signal Extension
2463 A determinism improvement facility to enable asynchronous signal notifications to an
2464 application to be queued without impacting compatibility with the existing signal functions.

2465 3.309 Real User ID
2466 The attribute of a process that, at the time of process creation, identifies the user who created the
2467 process; see also Section 3.425 (on page 91).

2468 3.310 Record
2469 A collection of related data units or words which is treated as a unit. |

2470 3.311 Redirection |

2471 In the shell command language, a method of associating files with the input or output of |
2472 commands.

2473 Note: For further information, see the Shell and Utilities volume of IEEE Std 1003.1-200x, Section 2.7,
2474 Redirection.

2475 3.312 Redirection Operator
2476 In the shell command language, a token that performs a redirection function. It is one of the
2477 following symbols:

2478 < > >| << >> <& >& << − <>

2479 3.313 Reentrant Function
2480 A function whose effect, when called by two or more threads, is guaranteed to be as if the
2481 threads each executed the function one after another in an undefined order, even if the actual
2482 execution is interleaved.

Base Definitions, Issue 6 75

Referenced Shared Memory Object Definitions

2483 3.314 Referenced Shared Memory Object
2484 A shared memory object that is open or has one or more mappings defined on it.

2485 3.315 Refresh
2486 To ensure that the information on the user’s terminal screen is up-to-date. |

2487 3.316 Regular Expression |

2488 A pattern that selects specific strings from a set of character strings. |
2489 Note: Regular Expressions are described in detail in Chapter 9 (on page 165).

2490 3.317 Region |

2491 In the context of the address space of a process, a sequence of addresses. |

2492 In the context of a file, a sequence of offsets.

2493 3.318 Regular File
2494 A file that is a randomly accessible sequence of bytes, with no further structure imposed by the
2495 system. |

2496 3.319 Relative Pathname |

2497 A pathname not beginning with a slash. |
2498 Note: Pathname Resolution is defined in detail in Section 4.11 (on page 98).

2499 3.320 Relocatable File
2500 A file holding code or data suitable for linking with other object files to create an executable or a
2501 shared object file.

2502 3.321 Relocation
2503 The process of connecting symbolic references with symbolic definitions. For example, when a
2504 program calls a function, the associated call instruction transfers control to the proper
2505 destination address at execution.

2506 3.322 Requested Batch Service
2507 A service that is either rejected or performed prior to a response from the service to the
2508 requester.

76 Technical Standard (2001) (Draft April 13, 2001)

Definitions (Time) Resolution

2509 3.323 (Time) Resolution
2510 The minimum time interval that a clock can measure or whose passage a timer can detect.

2511 3.324 Root Directory
2512 A directory, associated with a process, that is used in pathname resolution for pathnames that
2513 begin with a slash.

2514 3.325 Runnable Process (or Thread)
2515 A thread that is capable of being a running thread, but for which no processor is available.

2516 3.326 Running Process (or Thread)
2517 A thread currently executing on a processor. On multi-processor systems there may be more
2518 than one such thread in a system at a time. |

2519 3.327 Saved Resource Limits |

2520 An attribute of a process that provides some flexibility in the handling of unrepresentable |
2521 resource limits, as described in the exec family of functions and setrlimit().

2522 Note: The exec and setrlimit () functions are defined in detail in the System Interfaces volume of
2523 IEEE Std 1003.1-200x.

2524 3.328 Saved Set-Group-ID |

2525 An attribute of a process that allows some flexibility in the assignment of the effective group ID |
2526 attribute, as described in the exec family of functions and setgid().

2527 Note: The exec and setgid() functions are defined in detail in the System Interfaces volume of
2528 IEEE Std 1003.1-200x.

2529 3.329 Saved Set-User-ID |

2530 An attribute of a process that allows some flexibility in the assignment of the effective user ID |
2531 attribute, as described in the exec family of functions and setuid().

2532 Note: The exec and setuid() functions are defined in detail in the System Interfaces volume of
2533 IEEE Std 1003.1-200x.

2534 3.330 Scheduling
2535 The application of a policy to select a runnable process or thread to become a running process or
2536 thread, or to alter one or more of the thread lists.

Base Definitions, Issue 6 77

Scheduling Allocation Domain Definitions

2537 3.331 Scheduling Allocation Domain
2538 The set of processors on which an individual thread can be scheduled at any given time. |

2539 3.332 Scheduling Contention Scope |

2540 A property of a thread that defines the set of threads against which that thread competes for |
2541 resources.

2542 For example, in a scheduling decision, threads sharing scheduling contention scope compete for
2543 processor resources. In IEEE Std 1003.1-200x, a thread has scheduling contention scope of either
2544 PTHREAD_SCOPE_SYSTEM or PTHREAD_SCOPE_PROCESS. |

2545 3.333 Scheduling Policy |

2546 A set of rules that is used to determine the order of execution of processes or threads to achieve |
2547 some goal.

2548 Note: Scheduling Policy is defined in detail in Section 4.13 (on page 99).

2549 3.334 Screen
2550 A rectangular region of columns and lines on a terminal display. A screen may be a portion of a
2551 physical display device or may occupy the entire physical area of the display device. |

2552 3.335 Scroll |

2553 To move the representation of data vertically or horizontally relative to the terminal screen. |
2554 There are two types of scrolling:

2555 1. The cursor moves with the data.

2556 2. The cursor remains stationary while the data moves.

2557 3.336 Semaphore |

2558 A minimum synchronization primitive to serve as a basis for more complex synchronization |
2559 mechanisms to be defined by the application program.

2560 Note: Semaphores are defined in detail in Section 4.15 (on page 100).

2561 3.337 Session |

2562 A collection of process groups established for job control purposes. Each process group is a |
2563 member of a session. A process is considered to be a member of the session of which its process
2564 group is a member. A newly created process joins the session of its creator. A process can alter
2565 its session membership; see setsid(). There can be multiple process groups in the same session.

2566 Note: The setsid() function is defined in detail in the System Interfaces volume of
2567 IEEE Std 1003.1-200x.

78 Technical Standard (2001) (Draft April 13, 2001)

Definitions Session

2568 3.338 Session Leader |

2569 A process that has created a session. |
2570 Note: For further information, see the setsid() function defined in the System Interfaces volume of
2571 IEEE Std 1003.1-200x.

2572 3.339 Session Lifetime
2573 The period between when a session is created and the end of the lifetime of all the process
2574 groups that remain as members of the session.

2575 3.340 Shared Memory Object
2576 An object that represents memory that can be mapped concurrently into the address space of
2577 more than one process.

2578 3.341 Shell
2579 A program that interprets sequences of text input as commands. It may operate on an input
2580 stream or it may interactively prompt and read commands from a terminal. |

2581 3.342 Shell, the |

2582 The Shell Command Language Interpreter; a specific instance of a shell. |
2583 Note: For further information, see the sh utility defined in the Shell and Utilities volume of
2584 IEEE Std 1003.1-200x.

2585 3.343 Shell Script |

2586 A file containing shell commands. If the file is made executable, it can be executed by specifying |
2587 its name as a simple command. Execution of a shell script causes a shell to execute the
2588 commands within the script. Alternatively, a shell can be requested to execute the commands in
2589 a shell script by specifying the name of the shell script as the operand to the sh utility.

2590 Note: Simple Commands are defined in detail in the Shell and Utilities volume of
2591 IEEE Std 1003.1-200x, Section 2.9.1, Simple Commands.

2592 The sh utility is defined in detail in the Shell and Utilities volume of IEEE Std 1003.1-200x.

2593 3.344 Signal
2594 A mechanism by which a process or thread may be notified of, or affected by, an event occurring
2595 in the system. Examples of such events include hardware exceptions and specific actions by
2596 processes. The term signal is also used to refer to the event itself.

Base Definitions, Issue 6 79

Signal Stack Definitions

2597 3.345 Signal Stack
2598 Memory established for a thread, in which signal handlers catching signals sent to that thread
2599 are executed.

2600 3.346 Single-Quote
2601 The character ’’’ , also known as apostrophe .

2602 3.347 Slash
2603 The character ’/’ , also known as solidus .

2604 3.348 Socket
2605 A file of a particular type that is used as a communications endpoint for process-to-process
2606 communication as described in the System Interfaces volume of IEEE Std 1003.1-200x.

2607 3.349 Socket Address
2608 An address associated with a socket or remote endpoint, including an address family identifier
2609 and addressing information specific to that address family. The address may include multiple
2610 parts, such as a network address associated with a host system and an identifier for a specific
2611 endpoint.

2612 3.350 Soft Limit
2613 A resource limitation established for each process that the process may set to any value less than
2614 or equal to the hard limit. |

2615 3.351 Source Code |

2616 When dealing with the Shell Command Language, input to the command language interpreter. |
2617 The term shell script is synonymous with this meaning.

2618 When dealing with an ISO/IEC-conforming programming language, source code is input to a
2619 compiler conforming to that ISO/IEC standard.

2620 Source code also refers to the input statements prepared for the following standard utilities:
2621 awk, bc, ed, lex, localedef, make, sed, and yacc.

2622 Source code can also refer to a collection of sources meeting any or all of these meanings.

2623 Note: The awk, bc, ed, lex, localedef, make, sed, and yacc utilities are defined in detail in the Shell and
2624 Utilities volume of IEEE Std 1003.1-200x.

80 Technical Standard (2001) (Draft April 13, 2001)

Definitions Space Character (<space>)

2625 3.352 Space Character (<space>) |

2626 The character defined in the portable character set as <space>. The <space> is a member of the |
2627 space character class of the current locale, but represents the single character, and not all of the
2628 possible members of the class; see also Section 3.431 (on page 92). |

2629 3.353 Spawn |

2630 A process creation primitive useful for systems that have difficulty with fork () and as an efficient |
2631 replacement for fork ()/exec.

2632 3.354 Special Built-In
2633 See Built-In Utility in Section 3.83 (on page 44). |

2634 3.355 Special Parameter |

2635 In the shell command language, a parameter named by a single character from the following list: |

2636 * @ # ? ! − $ 0

2637 Note: For further information, see the Shell and Utilities volume of IEEE Std 1003.1-200x, Section
2638 2.5.2, Special Parameters.

2639 3.356 Spin Lock
2640 A synchronization object used to allow multiple threads to serialize their access to shared data.

2641 3.357 Sporadic Server
2642 A scheduling policy for threads and processes that reserves a certain amount of execution
2643 capacity for processing aperiodic events at a given priority level.

2644 3.358 Standard Error
2645 An output stream usually intended to be used for diagnostic messages.

2646 3.359 Standard Input
2647 An input stream usually intended to be used for primary data input.

2648 3.360 Standard Output
2649 An output stream usually intended to be used for primary data output.

Base Definitions, Issue 6 81

Standard Utilities Definitions

2650 3.361 Standard Utilities
2651 The utilities described in the Shell and Utilities volume of IEEE Std 1003.1-200x. |

2652 3.362 Stream |

2653 Appearing in lowercase, a stream is a file access object that allows access to an ordered sequence |
2654 of characters, as described by the ISO C standard. Such objects can be created by the fdopen(),
2655 fopen(), or popen() functions, and are associated with a file descriptor. A stream provides the
2656 additional services of user-selectable buffering and formatted input and output; see also Section
2657 3.363.

2658 Note: For further information, see the System Interfaces volume of IEEE Std 1003.1-200x, Section 2.5,
2659 Standard I/O Streams.

2660 The fdopen (), fopen (), or popen() functions are defined in detail in the System Interfaces volume
2661 of IEEE Std 1003.1-200x.

2662 3.363 STREAM |

2663 Appearing in uppercase, STREAM refers to a full duplex connection between a process and an |
2664 open device or pseudo-device. It optionally includes one or more intermediate processing
2665 modules that are interposed between the process end of the STREAM and the device driver (or
2666 pseudo-device driver) end of the STREAM; see also Section 3.362.

2667 Note: For further information, see the System Interfaces volume of IEEE Std 1003.1-200x, Section 2.6,
2668 STREAMS.

2669 3.364 STREAM End
2670 The STREAM end is the driver end of the STREAM and is also known as the downstream end of
2671 the STREAM.

2672 3.365 STREAM Head
2673 The STREAM head is the beginning of the STREAM and is at the boundary between the system
2674 and the application process. This is also known as the upstream end of the STREAM.

2675 3.366 STREAMS Multiplexor
2676 A driver with multiple STREAMS connected to it. Multiplexing with STREAMS connected above
2677 is referred to as N-to-1, or upper multiplexing. Multiplexing with STREAMS connected below is
2678 referred to as 1-to-N or lower multiplexing.

2679 3.367 String
2680 A contiguous sequence of bytes terminated by and including the first null byte. |

82 Technical Standard (2001) (Draft April 13, 2001)

Definitions Subshell

2681 3.368 Subshell |

2682 A shell execution environment, distinguished from the main or current shell execution |
2683 environment.

2684 Note: For further information, see the Shell and Utilities volume of IEEE Std 1003.1-200x, Section 2.12,
2685 Shell Execution Environment.

2686 3.369 Successfully Transferred |

2687 For a write operation to a regular file, when the system ensures that all data written is readable |
2688 on any subsequent open of the file (even one that follows a system or power failure) in the
2689 absence of a failure of the physical storage medium.

2690 For a read operation, when an image of the data on the physical storage medium is available to
2691 the requesting process.

2692 3.370 Supplementary Group ID
2693 An attribute of a process used in determining file access permissions. A process has up to
2694 {NGROUPS_MAX} supplementary group IDs in addition to the effective group ID. The
2695 supplementary group IDs of a process are set to the supplementary group IDs of the parent
2696 process when the process is created.

2697 3.371 Suspended Job
2698 A job that has received a SIGSTOP, SIGTSTP, SIGTTIN, or SIGTTOU signal that caused the
2699 process group to stop. A suspended job is a background job, but a background job is not
2700 necessarily a suspended job. |

2701 3.372 Symbolic Link |

2702 A type of file with the property that when the file is encountered during pathname resolution, a |
2703 string stored by the file is used to modify the pathname resolution. The stored string has a length
2704 of {SYMLINK_MAX} bytes or fewer.

2705 Note: Pathname Resolution is defined in detail in Section 4.11 (on page 98).

2706 3.373 Synchronized Input and Output
2707 A determinism and robustness improvement mechanism to enhance the data input and output
2708 mechanisms, so that an application can ensure that the data being manipulated is physically
2709 present on secondary mass storage devices.

2710 3.374 Synchronized I/O Completion
2711 The state of an I/O operation that has either been successfully transferred or diagnosed as
2712 unsuccessful. |

Base Definitions, Issue 6 83

Synchronized I/O Data Integrity Completion Definitions

2713 3.375 Synchronized I/O Data Integrity Completion |

2714 For read, when the operation has been completed or diagnosed if unsuccessful. The read is |
2715 complete only when an image of the data has been successfully transferred to the requesting
2716 process. If there were any pending write requests affecting the data to be read at the time that
2717 the synchronized read operation was requested, these write requests are successfully transferred
2718 prior to reading the data.

2719 For write, when the operation has been completed or diagnosed if unsuccessful. The write is
2720 complete only when the data specified in the write request is successfully transferred and all file
2721 system information required to retrieve the data is successfully transferred.

2722 File attributes that are not necessary for data retrieval (access time, modification time, status
2723 change time) need not be successfully transferred prior to returning to the calling process.

2724 3.376 Synchronized I/O File Integrity Completion
2725 Identical to a synchronized I/O data integrity completion with the addition that all file attributes
2726 relative to the I/O operation (including access time, modification time, status change time) are
2727 successfully transferred prior to returning to the calling process.

2728 3.377 Synchronized I/O Operation
2729 An I/O operation performed on a file that provides the application assurance of the integrity of
2730 its data and files. |

2731 3.378 Synchronous I/O Operation |

2732 An I/O operation that causes the thread requesting the I/O to be blocked from further use of the |
2733 processor until that I/O operation completes.

2734 Note: A synchronous I/O operation does not imply synchronized I/O data integrity completion or
2735 synchronized I/O file integrity completion.

2736 3.379 Synchronously-Generated Signal |

2737 A signal that is attributable to a specific thread. |

2738 For example, a thread executing an illegal instruction or touching invalid memory causes a
2739 synchronously-generated signal. Being synchronous is a property of how the signal was
2740 generated and not a property of the signal number.

2741 3.380 System
2742 An implementation of IEEE Std 1003.1-200x.

84 Technical Standard (2001) (Draft April 13, 2001)

Definitions System Crash

2743 3.381 System Crash
2744 An interval initiated by an unspecified circumstance that causes all processes (possibly other
2745 than special system processes) to be terminated in an undefined manner, after which any
2746 changes to the state and contents of files created or written to by an application prior to the
2747 interval are undefined, except as required elsewhere in IEEE Std 1003.1-200x. |

2748 3.382 System Console |

2749 An implementation-defined device that receives messages sent by the syslog() function, and the |
2750 fmtmsg() function when the MM_CONSOLE flat is set. |
2751 Note: The syslog() and fmtmsg() functions are defined in detail in the System Interfaces volume of |
2752 IEEE Std 1003.1-200x. |

2753 3.383 System Databases |

2754 An implementation provides two system databases. |

2755 The group database contains the following information for each group:

2756 1. Group name

2757 2. Numerical group ID

2758 3. List of all users allowed in the group

2759 The user database contains the following information for each user:

2760 1. User name

2761 2. Numerical user ID

2762 3. Numerical group ID

2763 4. Initial working directory

2764 5. Initial user program

2765 If the initial user program field is null, the system default is used. If the initial working directory
2766 field is null, the interpretation of that field is implementation-defined. These databases may
2767 contain other fields that are unspecified by IEEE Std 1003.1-200x.

2768 3.384 System Documentation
2769 All documentation provided with an implementation except for the conformance document.
2770 Electronically distributed documents for an implementation are considered part of the system
2771 documentation.

2772 3.385 System Process
2773 An implementation-defined object, other than a process executing an application, that has a
2774 process ID.

Base Definitions, Issue 6 85

System Reboot Definitions

2775 3.386 System Reboot
2776 An implementation-defined sequence of events that may result in the loss of transitory data; that
2777 is, data that is not saved in permanent storage. For example, message queues, shared memory,
2778 semaphores, and processes. |

2779 3.387 System Trace Event |

2780 A trace event that is generated by the implementation, in response either to a system-initiated |
2781 action or to an application-requested action, except for a call to posix_trace_event(). When
2782 supported by the implementation, a system-initiated action generates a process-independent
2783 system trace event and an application-requested action generates a process-dependent system
2784 trace event. For a system trace event not defined by IEEE Std 1003.1-200x, the associated trace
2785 event type identifier is derived from the implementation-defined name for this trace event, and
2786 the associated data is of implementation-defined content and length.

2787 3.388 System-Wide
2788 Pertaining to events occurring in all processes existing in an implementation at a given point in
2789 time. |

2790 3.389 Tab Character (<tab>) |

2791 A character that in the output stream indicates that printing or displaying should start at the |
2792 next horizontal tabulation position on the current line. It is the character designated by ’\t’ in |
2793 the C language. If the current position is at or past the last defined horizontal tabulation
2794 position, the behavior is unspecified. It is unspecified whether this character is the exact
2795 sequence transmitted to an output device by the system to accomplish the tabulation. |

2796 3.390 Terminal (or Terminal Device) |

2797 A character special file that obeys the specifications of the general terminal interface. |
2798 Note: The General Terminal Interface is defined in detail in Chapter 11 (on page 183).

2799 3.391 Text Column
2800 A roughly rectangular block of characters capable of being laid out side-by-side next to other
2801 text columns on an output page or terminal screen. The widths of text columns are measured in
2802 column positions. |

2803 3.392 Text File |

2804 A file that contains characters organized into one or more lines. The lines do not contain NUL |
2805 characters and none can exceed {LINE_MAX} bytes in length, including the <newline>.
2806 Although IEEE Std 1003.1-200x does not distinguish between text files and binary files (see the
2807 ISO C standard), many utilities only produce predictable or meaningful output when operating
2808 on text files. The standard utilities that have such restrictions always specify text files in their

86 Technical Standard (2001) (Draft April 13, 2001)

Definitions Text File

2809 STDIN or INPUT FILES sections. |

2810 3.393 Thread |

2811 A single flow of control within a process. Each thread has its own thread ID, scheduling priority |
2812 and policy, errno value, thread-specific key/value bindings, and the required system resources to
2813 support a flow of control. Anything whose address may be determined by a thread, including
2814 but not limited to static variables, storage obtained via malloc (), directly addressable storage
2815 obtained through implementation-defined functions, and automatic variables, are accessible to
2816 all threads in the same process.

2817 Note: The malloc () function is defined in detail in the System Interfaces volume of
2818 IEEE Std 1003.1-200x.

2819 3.394 Thread ID
2820 Each thread in a process is uniquely identified during its lifetime by a value of type pthread_t
2821 called a thread ID. |

2822 3.395 Thread List |

2823 An ordered set of runnable threads that all have the same ordinal value for their priority. |

2824 The ordering of threads on the list is determined by a scheduling policy or policies. The set of
2825 thread lists includes all runnable threads in the system.

2826 3.396 Thread-Safe
2827 A function that may be safely invoked concurrently by multiple threads. Each function defined
2828 in the System Interfaces volume of IEEE Std 1003.1-200x is thread-safe unless explicitly stated
2829 otherwise. Examples are any ‘‘pure’’ function, a function which holds a mutex locked while it is
2830 accessing static storage, or objects shared among threads. |

2831 3.397 Thread-Specific Data Key |

2832 A process global handle of type pthread_key_t which is used for naming thread-specific data. |

2833 Although the same key value may be used by different threads, the values bound to the key by
2834 pthread_setspecific() and accessed by pthread_getspecific() are maintained on a per-thread basis
2835 and persist for the life of the calling thread.

2836 Note: The pthread_getspecific() and pthread_setspecific() functions are defined in detail in the System
2837 Interfaces volume of IEEE Std 1003.1-200x.

2838 3.398 Tilde
2839 The character ’˜’ .

Base Definitions, Issue 6 87

Timeouts Definitions

2840 3.399 Timeouts
2841 A method of limiting the length of time an interface will block; see also Section 3.76 (on page 43).

2842 3.400 Timer
2843 A mechanism that can notify a thread when the time as measured by a particular clock has
2844 reached or passed a specified value, or when a specified amount of time has passed.

2845 3.401 Timer Overrun
2846 A condition that occurs each time a timer, for which there is already an expiration signal queued
2847 to the process, expires. |

2848 3.402 Token |

2849 In the shell command language, a sequence of characters that the shell considers as a single unit |
2850 when reading input. A token is either an operator or a word.

2851 Note: The rules for reading input are defined in detail in the Shell and Utilities volume of
2852 IEEE Std 1003.1-200x, Section 2.3, Token Recognition.

2853 3.403 Trace Analyzer Process
2854 A process that extracts trace events from a trace stream to retrieve information about the
2855 behavior of an application. |

2856 3.404 Trace Controller Process |

2857 A process that creates a trace stream for tracing a process. |

2858 3.405 Trace Event |

2859 A data object that represents an action executed by the system, and that is recorded in a trace |
2860 stream. |

2861 3.406 Trace Event Type |

2862 A data object type that defines a class of trace event. |

2863 3.407 Trace Event Type Mapping |

2864 A one-to-one mapping between trace event types and trace event names. |

88 Technical Standard (2001) (Draft April 13, 2001)

Definitions Trace Filter

2865 3.408 Trace Filter
2866 A filter that allows the trace controller process to specify those trace event types that are to be
2867 ignored; that is, not generated.

2868 3.409 Trace Generation Version
2869 A data object that is an implementation-defined character string, generated by the trace system
2870 and describing the origin and version of the trace system. |

2871 3.410 Trace Log |

2872 The flushed image of a trace stream, if the trace stream is created with a trace log. |

2873 3.411 Trace Point
2874 An action that may cause a trace event to be generated. |

2875 3.412 Trace Stream |

2876 An opaque object that contains trace events plus internal data needed to interpret those trace |
2877 events.

2878 3.413 Trace Stream Identifier
2879 A handle to manage tracing operations in a trace stream.

2880 3.414 Trace System
2881 A system that allows both system and user trace events to be generated into a trace stream.
2882 These trace events can be retrieved later. |

2883 3.415 Traced Process |

2884 A process for which at least one trace stream has been created. A traced process is also called a |
2885 target process.

2886 3.416 Tracing Status of a Trace Stream
2887 A status that describes the state of an active trace stream. The tracing status of a trace stream can
2888 be retrieved from the trace stream attributes. An active trace stream can be in one of two states:
2889 running or suspended.

Base Definitions, Issue 6 89

Typed Memory Name Space Definitions

2890 3.417 Typed Memory Name Space
2891 A system-wide name space that contains the names of the typed memory objects present in the
2892 system. It is configurable for a given implementation.

2893 3.418 Typed Memory Object
2894 A combination of a typed memory pool and a typed memory port. The entire contents of the
2895 pool are accessible from the port. The typed memory object is identified through a name that
2896 belongs to the typed memory name space.

2897 3.419 Typed Memory Pool
2898 An extent of memory with the same operational characteristics. Typed memory pools may be
2899 contained within each other.

2900 3.420 Typed Memory Port
2901 A hardware access path to one or more typed memory pools.

2902 3.421 Unbind
2903 Remove the association between a network address and an endpoint.

2904 3.422 Unit Data
2905 See Datagram in Section 3.123 (on page 49).

2906 3.423 Upshifting
2907 The conversion of a lowercase character that has a single-character uppercase representation
2908 into this uppercase representation. |

2909 3.424 User Database |

2910 A system database of implementation-defined format that contains at least the following |
2911 information for each user ID:

2912 • User name

2913 • Numerical user ID

2914 • Initial numerical group ID

2915 • Initial working directory

2916 • Initial user program

90 Technical Standard (2001) (Draft April 13, 2001)

Definitions User Database

2917 The initial numerical group ID is used by the newgrp utility. Any other circumstances under
2918 which the initial values are operative are implementation-defined.

2919 If the initial user program field is null, an implementation-defined program is used.

2920 If the initial working directory field is null, the interpretation of that field is implementation-
2921 defined.

2922 Note: The newgrp utility is defined in detail in the Shell and Utilities volume of IEEE Std 1003.1-200x.

2923 3.425 User ID
2924 A non-negative integer that is used to identify a system user. When the identity of a user is
2925 associated with a process, a user ID value is referred to as a real user ID, an effective user ID, or a
2926 saved set-user-ID.

2927 3.426 User Name
2928 A string that is used to identify a user; see also Section 3.424 (on page 90). To be portable across
2929 systems conforming to IEEE Std 1003.1-200x, the value is composed of characters from the
2930 portable filename character set. The hyphen should not be used as the first character of a
2931 portable user name.

2932 3.427 User Trace Event
2933 A trace event that is generated explicitly by the application as a result of a call to
2934 posix_trace_event(). |

2935 3.428 Utility |

2936 A program, excluding special built-in utilities provided as part of the Shell Command Language, |
2937 that can be called by name from a shell to perform a specific task, or related set of tasks.

2938 Note: For further information on special built-in utilities, see the Shell and Utilities volume of
2939 IEEE Std 1003.1-200x, Section 2.14, Special Built-In Utilities.

2940 3.429 Variable |

2941 In the shell command language, a named parameter. |
2942 Note: For further information, see the Shell and Utilities volume of IEEE Std 1003.1-200x, Section 2.5,
2943 Parameters and Variables.

2944 3.430 Vertical-Tab Character (<vertical-tab>) |

2945 A character that in the output stream indicates that printing should start at the next vertical |
2946 tabulation position. It is the character designated by ’\v’ in the C language. If the current |
2947 position is at or past the last defined vertical tabulation position, the behavior is unspecified. It is
2948 unspecified whether this character is the exact sequence transmitted to an output device by the
2949 system to accomplish the tabulation. |

Base Definitions, Issue 6 91

White Space Definitions

2950 3.431 White Space |

2951 A sequence of one or more characters that belong to the space character class as defined via the |
2952 LC_CTYPE category in the current locale.

2953 In the POSIX locale, white space consists of one or more <blank>s (<space>s and <tab>s),
2954 <newline>s, <carriage-return>s, <form-feed>s, and <vertical-tab>s. |

2955 3.432 Wide-Character Code (C Language) |

2956 An integer value corresponding to a single graphic symbol or control code. |
2957 Note: C Language Wide-Character Codes are defined in detail in Section 6.3 (on page 115).

2958 3.433 Wide-Character Input/Output Functions |

2959 The functions that perform wide-oriented input from streams or wide-oriented output to |
2960 streams: fgetwc(), fputwc(), fputws(), fwprintf(), fwscanf(), getwc(), getwchar(), getws(), putwc(),
2961 putwchar(), ungetwc(), vfwprintf (), vwprintf(), wprintf(), and wscanf().

2962 Note: These functions are defined in detail in the System Interfaces volume of IEEE Std 1003.1-200x.

2963 3.434 Wide-Character String
2964 A contiguous sequence of wide-character codes terminated by and including the first null wide-
2965 character code. |

2966 3.435 Word |

2967 In the shell command language, a token other than an operator. In some cases a word is also a |
2968 portion of a word token: in the various forms of parameter expansion, such as ${name−word}, and
2969 variable assignment, such as name=word, the word is the portion of the token depicted by word .
2970 The concept of a word is no longer applicable following word expansions—only fields remain.

2971 Note: For further information, see the Shell and Utilities volume of IEEE Std 1003.1-200x, Section
2972 2.6.2, Parameter Expansion and the Shell and Utilities volume of IEEE Std 1003.1-200x, Section
2973 2.6, Word Expansions.

2974 3.436 Working Directory (or Current Working Directory)
2975 A directory, associated with a process, that is used in pathname resolution for pathnames that
2976 do not begin with a slash.

2977 3.437 Worldwide Portability Interface
2978 Functions for handling characters in a codeset-independent manner.

92 Technical Standard (2001) (Draft April 13, 2001)

Definitions Write

2979 3.438 Write
2980 To output characters to a file, such as standard output or standard error. Unless otherwise
2981 stated, standard output is the default output destination for all uses of the term write; see the
2982 distinction between display and write in Section 3.132 (on page 50).

2983 3.439 XSI
2984 The X/Open System Interface is the core application programming interface for C and sh
2985 programming for systems conforming to the Single UNIX Specification. This is a superset of the
2986 mandatory requirements for conformance to IEEE Std 1003.1-200x. |

2987 3.440 XSI-Conformant |

2988 A system which allows an application to be built using a set of services that are consistent across |
2989 all systems that conform to IEEE Std 1003.1-200x and that support the XSI extension.

2990 Note: See also Chapter 2 (on page 15).

2991 3.441 Zombie Process
2992 A process that has terminated and that is deleted when its exit status has been reported to
2993 another process which is waiting for that process to terminate.

2994 3.442 ±0
2995 The algebraic sign provides additional information about any variable that has the value zero
2996 when the representation allows the sign to be determined. |

Base Definitions, Issue 6 93

Definitions

2997 |

94 Technical Standard (2001) (Draft April 13, 2001)

2998

Chapter 4

General Concepts

2999 For the purposes of IEEE Std 1003.1-200x, the general concepts given in Chapter 4 apply.

3000 Note: No shading to denote extensions or options occurs in this chapter. Where the terms and
3001 definitions given in this chapter are used elsewhere in text related to extensions and options,
3002 they are shaded as appropriate.

3003 4.1 Concurrent Execution
3004 Functions that suspend the execution of the calling thread shall not cause the execution of other
3005 threads to be indefinitely suspended.

3006 4.2 Directory Protection
3007 If a directory is writable and the mode bit S_ISVTX is set on the directory, a process may remove
3008 or rename files within that directory only if one or more of the following is true:

3009 • The effective user ID of the process is the same as that of the owner ID of the file.

3010 • The effective user ID of the process is the same as that of the owner ID of the directory.

3011 • The process has appropriate privileges.

3012 If the S_ISVTX bit is set on a non-directory file, the behavior is unspecified.

3013 4.3 Extended Security Controls
3014 An implementation may provide implementation-defined extended security controls (see
3015 Section 3.159 (on page 54)). These permit an implementation to provide security mechanisms to
3016 implement different security policies than those described in IEEE Std 1003.1-200x. These
3017 mechanisms shall not alter or override the defined semantics of any of the interfaces in
3018 IEEE Std 1003.1-200x.

3019 4.4 File Access Permissions
3020 The standard file access control mechanism uses the file permission bits, as described below.

3021 Implementations may provide additional or alternate file access control mechanisms, or both. An
3022 additional access control mechanism shall only further restrict the access permissions defined by
3023 the file permission bits. An alternate file access control mechanism shall:

3024 • Specify file permission bits for the file owner class, file group class, and file other class of that
3025 file, corresponding to the access permissions.

3026 • Be enabled only by explicit user action, on a per-file basis by the file owner or a user with the
3027 appropriate privilege.

3028 • Be disabled for a file after the file permission bits are changed for that file with chmod(). The
3029 disabling of the alternate mechanism need not disable any additional mechanisms supported

Base Definitions, Issue 6 95

File Access Permissions General Concepts

3030 by an implementation.

3031 Whenever a process requests file access permission for read, write, or execute/search, if no |
3032 additional mechanism denies access, access shall be determined as follows: |

3033 • If a process has the appropriate privilege:

3034 — If read, write, or directory search permission is requested, access shall be granted. |

3035 — If execute permission is requested, access shall be granted if execute permission is |
3036 granted to at least one user by the file permission bits or by an alternate access control |
3037 mechanism; otherwise, access shall be denied. |

3038 • Otherwise:

3039 — The file permission bits of a file contain read, write, and execute/search permissions for
3040 the file owner class, file group class, and file other class.

3041 — Access shall be granted if an alternate access control mechanism is not enabled and the |
3042 requested access permission bit is set for the class (file owner class, file group class, or file
3043 other class) to which the process belongs, or if an alternate access control mechanism is
3044 enabled and it allows the requested access; otherwise, access shall be denied. |

3045 4.5 File Hierarchy
3046 Files in the system are organized in a hierarchical structure in which all of the non-terminal
3047 nodes are directories and all of the terminal nodes are any other type of file. Since multiple |
3048 directory entries may refer to the same file, the hierarchy is properly described as a directed |
3049 graph .

3050 4.6 Filenames
3051 For a filename to be portable across implementations conforming to IEEE Std 1003.1-200x, it |
3052 shall consist only of the portable filename character set as defined in Section 3.276 (on page 70). |

3053 The hyphen character shall not be used as the first character of a portable filename. Uppercase
3054 and lowercase letters shall retain their unique identities between conforming implementations.
3055 In the case of a portable pathname, the slash character may also be used.

3056 4.7 File Times Update
3057 Each file has three distinct associated time values: st_atime , st_mtime, and st_ctime. The st_atime
3058 field is associated with the times that the file data is accessed; st_mtime is associated with the
3059 times that the file data is modified; and st_ctime is associated with the times that the file status is
3060 changed. These values are returned in the file characteristics structure, as described in
3061 <sys/stat.h>.

3062 Each function or utility in IEEE Std 1003.1-200x that reads or writes data or changes file status
3063 indicates which of the appropriate time-related fields shall be ‘‘marked for update’’. If an
3064 implementation of such a function or utility marks for update a time-related field not specified
3065 by IEEE Std 1003.1-200x, this shall be documented, except that any changes caused by pathname
3066 resolution need not be documented. For the other functions or utilities in IEEE Std 1003.1-200x
3067 (those that are not explicitly required to read or write file data or change file status, but that in
3068 some implementations happen to do so), the effect is unspecified.

96 Technical Standard (2001) (Draft April 13, 2001)

General Concepts File Times Update

3069 An implementation may update fields that are marked for update immediately, or it may update
3070 such fields periodically. At an update point in time, any marked fields shall be set to the current |
3071 time and the update marks shall be cleared. All fields that are marked for update shall be |
3072 updated when the file ceases to be open by any process, or when a stat(), fstat(), or lstat() is |
3073 performed on the file. Other times at which updates are done are unspecified. Marks for update,
3074 and updates themselves, are not done for files on read-only file systems; see Section 3.304 (on
3075 page 74). |

3076 4.8 Host and Network Byte Orders |

3077 When data is transmitted over the network, it is sent as a sequence of octets (8-bit unsigned |
3078 values). If an entity (such as an address or a port number) can be larger than 8 bits, it needs to be |
3079 stored in several octets. The convention is that all such values are stored with 8 bits in each octet, |
3080 and with the first (lowest-addressed) octet holding the most-significant bits. This is called |
3081 ‘‘network byte order’’. |

3082 Network byte order may not be convenient for processing actual values. For this, it is more |
3083 sensible for values to be stored as ordinary integers. This is known as ‘‘host byte order’’. In host |
3084 byte order: |

3085 • The most significant bit might not be stored in the first byte in address order. |

3086 • Bits might not be allocated to bytes in any obvious order at all. |

3087 8-bit values stored in uint8_t objects do not require conversion to or from host byte order, as |
3088 they have the same representation. 16 and 32-bit values can be converted using the htonl(), |
3089 htons(), ntohl(), and ntohs() functions. When reading data that is to be converted to host byte |
3090 order, it should either be received directly into a uint16_t or uint32_t object or should be copied |
3091 from an array of bytes using memcpy() or similar. Passing the data through other types could |
3092 cause the byte order to be changed. Similar considerations apply when sending data. |

3093 4.9 Measurement of Execution Time
3094 The mechanism used to measure execution time shall be implementation-defined. The
3095 implementation shall also define to whom the CPU time that is consumed by interrupt handlers
3096 and system services on behalf of the operating system will be charged. See Section 3.117 (on
3097 page 49).

Base Definitions, Issue 6 97

Memory Synchronization General Concepts

3098 4.10 Memory Synchronization
3099 Applications shall ensure that access to any memory location by more than one thread of control
3100 (threads or processes) is restricted such that no thread of control can read or modify a memory
3101 location while another thread of control may be modifying it. Such access is restricted using
3102 functions that synchronize thread execution and also synchronize memory with respect to other
3103 threads. The following functions synchronize memory with respect to other threads:

3104 fork ()
3105 pthread_barrier_wait()
3106 pthread_cond_broadcast()
3107 pthread_cond_signal()
3108 pthread_cond_timedwait()
3109 pthread_cond_wait()
3110 pthread_create()
3111 pthread_join ()
3112 pthread_mutex_lock()

pthread_mutex_timedlock()
pthread_mutex_trylock()
pthread_mutex_unlock()
pthread_spin_lock()
pthread_spin_trylock()
pthread_spin_unlock()
pthread_rwlock_rdlock()
pthread_rwlock_timedrdlock()
pthread_rwlock_timedwrlock()

pthread_rwlock_tryrdlock()
pthread_rwlock_trywrlock()
pthread_rwlock_unlock()
pthread_rwlock_wrlock()
sem_post()
sem_trywait()
sem_wait()
wait()
waitpid ()

3113 Unless explicitly stated otherwise, if one of the above functions returns an error, it is unspecified
3114 whether the invocation causes memory to be synchronized.

3115 Applications may allow more than one thread of control to read a memory location
3116 simultaneously.

3117 4.11 Pathname Resolution
3118 Pathname resolution is performed for a process to resolve a pathname to a particular file in a file
3119 hierarchy. There may be multiple pathnames that resolve to the same file.

3120 Each filename in the pathname is located in the directory specified by its predecessor (for
3121 example, in the pathname fragment a/b, file b is located in directory a). Pathname resolution |
3122 shall fail if this cannot be accomplished. If the pathname begins with a slash, the predecessor of |
3123 the first filename in the pathname shall be taken to be the root directory of the process (such |
3124 pathnames are referred to as absolute pathnames). If the pathname does not begin with a slash, the |
3125 predecessor of the first filename of the pathname shall be taken to be the current working |
3126 directory of the process (such pathnames are referred to as relative pathnames). |

3127 The interpretation of a pathname component is dependent on the value of {NAME_MAX} and
3128 _POSIX_NO_TRUNC associated with the path prefix of that component. If any pathname
3129 component is longer than {NAME_MAX}, the implementation shall consider this an error.

3130 A pathname that contains at least one non-slash character and that ends with one or more
3131 trailing slashes shall be resolved as if a single dot character (’.’) were appended to the
3132 pathname.

3133 If a symbolic link is encountered during pathname resolution, the behavior shall depend on
3134 whether the pathname component is at the end of the pathname and on the function being
3135 performed. If all of the following are true, then pathname resolution is complete:

3136 1. This is the last pathname component of the pathname.

3137 2. The pathname has no trailing slash.

3138 3. The function is required to act on the symbolic link itself, or certain arguments direct that
3139 the function act on the symbolic link itself.

98 Technical Standard (2001) (Draft April 13, 2001)

General Concepts Pathname Resolution

3140 In all other cases, the system shall prefix the remaining pathname, if any, with the contents of the
3141 symbolic link. If the combined length exceeds {PATH_MAX}, and the implementation considers
3142 this to be an error, errno shall be set to [ENAMETOOLONG] and an error indication shall be
3143 returned. Otherwise, the resolved pathname shall be the resolution of the pathname just created.
3144 If the resulting pathname does not begin with a slash, the predecessor of the first filename of the
3145 pathname is taken to be the directory containing the symbolic link.

3146 If the system detects a loop in the pathname resolution process, it shall set errno to [ELOOP] and
3147 return an error indication. The same may happen if during the resolution process more symbolic
3148 links were followed than the implementation allows. This implementation-defined limit shall
3149 not be smaller than {SYMLOOP_MAX}.

3150 The special filename dot shall refer to the directory specified by its predecessor. The special |
3151 filename dot-dot shall refer to the parent directory of its predecessor directory. As a special case, |
3152 in the root directory, dot-dot may refer to the root directory itself.

3153 A pathname consisting of a single slash shall resolve to the root directory of the process. A null |
3154 pathname shall not be successfully resolved. A pathname that begins with two successive |
3155 slashes may be interpreted in an implementation-defined manner, although more than two |
3156 leading slashes shall be treated as a single slash. |

3157 4.12 Process ID Reuse
3158 A process group ID shall not be reused by the system until the process group lifetime ends.

3159 A process ID shall not be reused by the system until the process lifetime ends. In addition, if
3160 there exists a process group whose process group ID is equal to that process ID, the process ID
3161 shall not be reused by the system until the process group lifetime ends. A process that is not a
3162 system process shall not have a process ID of 1.

3163 4.13 Scheduling Policy
3164 A scheduling policy affects process or thread ordering:

3165 • When a process or thread is a running thread and it becomes a blocked thread

3166 • When a process or thread is a running thread and it becomes a preempted thread

3167 • When a process or thread is a blocked thread and it becomes a runnable thread

3168 • When a running thread calls a function that can change the priority or scheduling policy of a
3169 process or thread

3170 • In other scheduling policy-defined circumstances

3171 Conforming implementations shall define the manner in which each of the scheduling policies |
3172 may modify the priorities or otherwise affect the ordering of processes or threads at each of the |
3173 occurrences listed above. Additionally, conforming implementations shall define in what other |
3174 circumstances and in what manner each scheduling policy may modify the priorities or affect
3175 the ordering of processes or threads.

Base Definitions, Issue 6 99

Seconds Since the Epoch General Concepts

3176 4.14 Seconds Since the Epoch
3177 A value that approximates the number of seconds that have elapsed since the Epoch. A
3178 Coordinated Universal Time name (specified in terms of seconds (tm_sec), minutes (tm_min),
3179 hours (tm_hour), days since January 1 of the year (tm_yday), and calendar year minus 1900
3180 (tm_year)) is related to a time represented as seconds since the Epoch, according to the
3181 expression below.

3182 If the year is <1970 or the value is negative, the relationship is undefined. If the year is ≥1970 and
3183 the value is non-negative, the value is related to a Coordinated Universal Time name according
3184 to the C-language expression, where tm_sec, tm_min, tm_hour , tm_yday , and tm_year are all
3185 integer types:

3186 tm_sec + tm_min *60 + tm_hour *3600 + tm_yday *86400 +
3187 (tm_year −70)*31536000 + ((tm_year −69)/4)*86400 −
3188 ((tm_year −1)/100)*86400 + ((tm_year +299)/400)*86400

3189 The relationship between the actual time of day and the current value for seconds since the
3190 Epoch is unspecified.

3191 How any changes to the value of seconds since the Epoch are made to align to a desired
3192 relationship with the current actual time are made is implementation-defined. As represented in
3193 seconds since the Epoch, each and every day shall be accounted for by exactly 86 400 seconds.

3194 Note: The last three terms of the expression add in a day for each year that follows a leap year
3195 starting with the first leap year since the Epoch. The first term adds a day every 4 years |
3196 starting in 1973, the second subtracts a day back out every 100 years starting in 2001, and the |
3197 third adds a day back in every 400 years starting in 2001. The divisions in the formula are |
3198 integer divisions; that is, the remainder is discarded leaving only the integer quotient. |

3199 4.15 Semaphore
3200 A minimum synchronization primitive to serve as a basis for more complex synchronization
3201 mechanisms to be defined by the application program.

3202 For the semaphores associated with the Semaphores option, a semaphore is represented as a
3203 shareable resource that has a non-negative integer value. When the value is zero, there is a
3204 (possibly empty) set of threads awaiting the availability of the semaphore.

3205 For the semaphores associated with the X/Open System Interface Extension (XSI), a semaphore
3206 is a positive integer (0 through 32767). The semget() function can be called to create a set or array
3207 of semaphores. A semaphore set can contain one or more semaphores up to an implementation-
3208 defined value.

3209 Semaphore Lock Operation

3210 An operation that is applied to a semaphore. If, prior to the operation, the value of the
3211 semaphore is zero, the semaphore lock operation shall cause the calling thread to be blocked and
3212 added to the set of threads awaiting the semaphore; otherwise, the value shall be decremented. |

100 Technical Standard (2001) (Draft April 13, 2001)

General Concepts Semaphore

3213 Semaphore Unlock Operation

3214 An operation that is applied to a semaphore. If, prior to the operation, there are any threads in
3215 the set of threads awaiting the semaphore, then some thread from that set shall be removed from
3216 the set and becomes unblocked; otherwise, the semaphore value shall be incremented. |

3217 4.16 Thread-Safety
3218 Refer to the System Interfaces volume of IEEE Std 1003.1-200x, Section 2.9, Threads.

3219 4.17 Tracing
3220 The trace system allows a traced process to have a selection of events created for it. Traces
3221 consist of streams of trace event types.

3222 A trace event type is identified on the one hand by a trace event type name, also referenced as a
3223 trace event name, and on the other hand by a trace event type identifier. A trace event name is a
3224 human-readable string. A trace event type identifier is an opaque identifier used by the trace |
3225 system. There shall be a one-to-one relationship between trace event type identifiers and trace |
3226 event names for a given trace stream and also for a given traced process. The trace event type |
3227 identifier shall be generated automatically from a trace event name by the trace system either |
3228 when a trace controller process invokes posix_trace_trid_eventid_open() or when an instrumented |
3229 application process invokes posix_trace_eventid_open(). Trace event type identifiers are used to
3230 filter trace event types, to allow interpretation of user data, and to identify the kind of trace point
3231 that generated a trace event.

3232 Each trace event shall be of a particular trace event type, and associated with a trace event type |
3233 identifier. The execution of a trace point shall generate a trace event if a trace stream has been |
3234 created and started for the process that executed the trace point and if the corresponding trace |
3235 event type identifier is not ignored by filtering. |

3236 A generated trace event shall be recorded in a trace stream, and optionally also in a trace log if a
3237 trace log is associated with the trace stream, except that:

3238 • For a trace stream, if no resources are available for the event, the event is lost.

3239 • For a trace log, if no resources are available for the event, or a flush operation does not
3240 succeed, the event is lost.

3241 A trace event recorded in an active trace stream may be retrieved by an application having the
3242 appropriate privileges.

3243 A trace event recorded in a trace log may be retrieved by an application having the appropriate
3244 privileges after opening the trace log as a pre-recorded trace stream, with the function
3245 posix_trace_open().

3246 When a trace event is reported it is possible to retrieve the following:

3247 • A trace event type identifier

3248 • A timestamp

3249 • The process ID of the traced process, if the trace event is process-dependent

3250 • Any optional trace event data including its length

Base Definitions, Issue 6 101

Tracing General Concepts

3251 • If the Threads option is supported, the thread ID, if the trace event is process-dependent

3252 • The program address at which the trace point was invoked

3253 Trace events may be mapped from trace event types to trace event names. One such mapping |
3254 shall be associated with each trace stream. An active trace stream is associated with a traced |
3255 process, and also with its children if the Trace Inherit option is supported and also the |
3256 inheritance policy is set to _POSIX_TRACE_INHERIT. Therefore each traced process has a |
3257 mapping of the trace event names to trace event type identifiers that have been defined for that |
3258 process. |

3259 Traces can be recorded into either trace streams or trace logs. |

3260 The implementation and format of a trace stream are unspecified. A trace stream need not be
3261 and generally is not persistent. A trace stream may be either active or pre-recorded:

3262 • An active trace stream is a trace stream that has been created and has not yet been shut
3263 down. It can be of one of the two following classes:

3264 1. An active trace stream without a trace log that was created with the posix_trace_create()
3265 function

3266 2. If the Trace Log option is supported, an active trace stream with a trace log that was
3267 created with the posix_trace_create_withlog() function

3268 • A pre-recorded trace stream is a trace stream that was opened from a trace log object using
3269 the posix_trace_open() function.

3270 An active trace stream can loop. This behavior means that when the resources allocated by the
3271 trace system for the trace stream are exhausted, the trace system reuses the resources associated
3272 with the oldest recorded trace events to record new trace events.

3273 If the Trace Log option is supported, an active trace stream with a trace log can be flushed. This
3274 operation causes the trace system to write trace events from the trace stream to the associated
3275 trace log, following the defined policies or using an explicit function call. After this operation,
3276 the trace system may reuse the resources associated with the flushed trace events.

3277 An active trace stream with or without a trace log can be cleared. This operation shall cause all |
3278 the resources associated with this trace stream to be reinitialized. The trace stream shall behave |
3279 as if it was returning from its creation, except that the mapping of trace event type identifiers to |
3280 trace event names shall not be cleared. If a trace log was associated with this trace stream, the |
3281 trace log shall also be reinitialized. |

3282 A trace log shall be recorded when the posix_trace_shutdown() operation is invoked or during |
3283 tracing, depending on the tracing strategy which is defined by a log policy. After the trace
3284 stream has been shut down, the trace information can be retrieved from the associated trace log
3285 using the same interface used to retrieve information from an active trace stream.

3286 For a traced process, if the Trace Inherit option is supported and the trace stream’s inheritance
3287 attribute is _POSIX_TRACE_INHERIT, the initial targeted traced process shall be traced together |
3288 with all of its future children. The posix_pid member of each trace event in a trace stream shall be |
3289 the process ID of the traced process. |

3290 Each trace point may be an implementation-defined action such as a context switch, or an
3291 application-programmed action such as a call to a specific operating system service (for
3292 example, fork ()) or a call to posix_trace_event().

3293 Trace points may be filtered. The operation of the filter is to filter out (ignore) selected trace
3294 events. By default, no trace events are filtered.

102 Technical Standard (2001) (Draft April 13, 2001)

General Concepts Tracing

3295 The results of the tracing operations can be analyzed and monitored by a trace controller process
3296 or a trace analyzer process.

3297 Only the trace controller process has control of the trace stream it has created. The control of the
3298 operation of a trace stream is done using its corresponding trace stream identifier. The trace
3299 controller process is able to:

3300 • Initialize the attributes of a trace stream

3301 • Create the trace stream

3302 • Start and stop tracing

3303 • Know the mapping of the traced process

3304 • If the Trace Event Filter option is supported, filter the type of trace events to be recorded

3305 • Shut the trace stream down

3306 A traced process may also be a trace controller process. Only the trace controller process can |
3307 control its trace stream(s). A trace stream created by a trace controller process shall be shut |
3308 down if its controller process terminates or executes another file. |

3309 A trace controller process may also be a trace analyzer process. Trace analysis can be done
3310 concurrently with the traced process or can be done off-line, in the same or in a different
3311 platform.

3312 4.18 Treatment of Error Conditions for Mathematical Functions
3313 For all the functions in the <math.h> header, an application wishing to check for error situations
3314 should set errno to 0 and call feclearexcept(FE_ALL_EXCEPT) before calling the function. On
3315 return, if errno is non-zero or fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW |
3316 FE_UNDERFLOW) is non-zero, an error has occurred.

3317 The following error conditions are defined for all functions in the <math.h> header.

3318 4.18.1 Domain Error

3319 A domain error shall occur if an input argument is outside the domain over which the
3320 mathematical function is defined. The description of each function lists any required domain
3321 errors; an implementation may define additional domain errors, provided that such errors are
3322 consistent with the mathematical definition of the function.

3323 On a domain error, the function shall return an implementation-defined value; if the integer |
3324 expression (math_errhandling & MATH_ERRNO) is non-zero, errno shall be set to [EDOM]; if |
3325 the integer expression (math_errhandling & MATH_ERREXCEPT) is non-zero, the ‘‘invalid’’ |
3326 floating-point exception shall be raised. |

Base Definitions, Issue 6 103

Treatment of Error Conditions for Mathematical Functions General Concepts

3327 4.18.2 Pole Error

3328 A pole error occurs if the mathematical result of the function is an exact infinity (for example,
3329 log(0.0)).

3330 On a pole error, the function shall return the value of the macro HUGE_VAL, HUGE_VALF, or |
3331 HUGE_VALL according to the return type, with the same sign as the correct value of the |
3332 function; if the integer expression (math_errhandling & MATH_ERRNO) is non-zero, errno shall |
3333 be set to [ERANGE]; if the integer expression (math_errhandling & MATH_ERREXCEPT) is |
3334 non-zero, the ‘‘divide-by-zero’’ floating-point exception shall be raised. |

3335 4.18.3 Range Error

3336 A range error shall occur if the finite mathematical result of the function cannot be represented in
3337 an object of the specified type, due to extreme magnitude.

3338 4.18.3.1 Result Overflows

3339 A floating result overflows if the magnitude of the mathematical result is finite but so large that
3340 the mathematical result cannot be represented without extraordinary roundoff error in an object
3341 of the specified type. If a floating result overflows and default rounding is in effect, then the |
3342 function shall return the value of the macro HUGE_VAL, HUGE_VALF, or HUGE_VALL |
3343 according to the return type, with the same sign as the correct value of the function; if the integer |
3344 expression (math_errhandling & MATH_ERRNO) is non-zero, errno shall be set to [ERANGE]; if |
3345 the integer expression (math_errhandling & MATH_ERREXCEPT) is non-zero, the ‘‘overflow’’ |
3346 floating-point exception shall be raised. |

3347 4.18.3.2 Result Underflows

3348 The result underflows if the magnitude of the mathematical result is so small that the
3349 mathematical result cannot be represented, without extraordinary roundoff error, in an object of
3350 the specified type. If the result underflows, the function shall return an implementation-defined |
3351 value whose magnitude is no greater than the smallest normalized positive number in the |
3352 specified type; if the integer expression (math_errhandling & MATH_ERRNO) is non-zero, |
3353 whether errno is set to [ERANGE] is implementation-defined; if the integer expression |
3354 (math_errhandling & MATH_ERREXCEPT) is non-zero, whether the ‘‘underflow’’ floating-point |
3355 exception is raised is implementation-defined.

3356 4.19 Treatment of NaN Arguments for the Mathematical Functions
3357 For functions called with a NaN argument, no errors shall occur and a NaN shall be returned, |
3358 except where stated otherwise. |

3359 If a function with one or more NaN arguments returns a NaN result, the result should be the
3360 same as one of the NaN arguments (after possible type conversion), except perhaps for the sign.

3361 On implementations that support the IEC 60559: 1989 standard floating point, functions with
3362 signaling NaN argument(s) shall be treated as if the function were called with an argument that |
3363 is a required domain error and shall return a quiet NaN result, except where stated otherwise. |
3364 Note: The function might never see the signaling NaN, since it might trigger when the arguments are |
3365 evaluated during the function call. |

3366 On implementations that support the IEC 60559: 1989 standard floating point, for those
3367 functions that do not have a documented domain error, the following shall apply:

104 Technical Standard (2001) (Draft April 13, 2001)

General Concepts Treatment of NaN Arguments for the Mathematical Functions

3368 These functions shall fail if:

3369 Domain Error Any argument is a signaling NaN.

3370 Either, the integer expression (math_errhandling & MATH_ERRNO) is non-zero and errno
3371 shall be set to [EDOM], or the integer expression (math_errhandling & MATH_ERREXCEPT)
3372 is non-zero and the invalid floating-point exception shall be raised.

3373 4.20 Utility
3374 A utility program shall be either an executable file, such as might be produced by a compiler or
3375 linker system from computer source code, or a file of shell source code, directly interpreted by
3376 the shell. The program may have been produced by the user, provided by the system
3377 implementor, or acquired from an independent distributor.

3378 The system may implement certain utilities as shell functions (see the Shell and Utilities volume
3379 of IEEE Std 1003.1-200x, Section 2.9.5, Function Definition Command) or built-in utilities, but
3380 only an application that is aware of the command search order described in the Shell and
3381 Utilities volume of IEEE Std 1003.1-200x, Section 2.9.1.1, Command Search and Execution or of
3382 performance characteristics can discern differences between the behavior of such a function or
3383 built-in utility and that of an executable file.

3384 4.21 Variable Assignment
3385 In the shell command language, a word consisting of the following parts:

3386 varname =value

3387 When used in a context where assignment is defined to occur and at no other time, the value
3388 (representing a word or field) shall be assigned as the value of the variable denoted by varname .

3389 Note: For further information, see the Shell and Utilities volume of IEEE Std 1003.1-200x, Section
3390 2.9.1, Simple Commands.

3391 The varname and value parts shall meet the requirements for a name and a word, respectively, |
3392 except that they are delimited by the embedded unquoted equals-sign, in addition to other |
3393 delimiters. |
3394 Note: Additional delimiters are described in the Shell and Utilities volume of IEEE Std 1003.1-200x,
3395 Section 2.3, Token Recognition.

3396 When a variable assignment is done, the variable shall be created if it did not already exist. If
3397 value is not specified, the variable shall be given a null value.

3398 Note: An alternative form of variable assignment:

3399 symbol =value

3400 (where symbol is a valid word delimited by an equals-sign, but not a valid name) produces
3401 unspecified results. The form symbol=value is used by the KornShell name[expression]=value
3402 syntax.

Base Definitions, Issue 6 105

General Concepts

3403 |

106 Technical Standard (2001) (Draft April 13, 2001)

3404

Chapter 5

File Format Notation

3405 The STDIN, STDOUT, STDERR, INPUT FILES, and OUTPUT FILES sections of the utility
3406 descriptions use a syntax to describe the data organization within the files, when that
3407 organization is not otherwise obvious. The syntax is similar to that used by the System Interfaces
3408 volume of IEEE Std 1003.1-200x printf() function, as described in this chapter. When used in
3409 STDIN or INPUT FILES sections of the utility descriptions, this syntax describes the format that
3410 could have been used to write the text to be read, not a format that could be used by the System
3411 Interfaces volume of IEEE Std 1003.1-200x scanf() function to read the input file.

3412 The description of an individual record is as follows:

3413 "< format >", [<arg1 >, < arg2 >,..., < argn >]

3414 The format is a character string that contains three types of objects defined below:

3415 1. Characters that are not escape sequences or conversion specifications, as described below, shall
3416 be copied to the output.

3417 2. Escape Sequences represent non-graphic characters.

3418 3. Conversion Specifications specify the output format of each argument; (see below).

3419 The following characters have the following special meaning in the format string:

3420 ’ ’ (An empty character position.) Represents one or more <blank>s.

3421 ∆ Represents exactly one <space>.

3422 Table 5-1 lists escape sequences and associated actions on display devices capable of the action.

Base Definitions, Issue 6 107

File Format Notation

3423 Table 5-1 Escape Sequences and Associated Actions

3424 Escape Represents
3425 Sequence Character Terminal Action___
3426 ’\\’ Print the character ’\’ .backslash
3427 ’\a’ Attempt to alert the user through audible or visible notification. |alert
3428 ’\b’ Move the printing position to one column before the current |
3429 position, unless the current position is the start of a line. |

backspace

3430 ’\f’ Move the printing position to the initial printing position of the |
3431 next logical page. |

form-feed

3432 ’\n’ Move the printing position to the start of the next line. |newline
3433 ’\r’ Move the printing position to the start of the current line. |carriage-return
3434 ’\t’ Move the printing position to the next tab position on the current |
3435 line. If there are no more tab positions remaining on the line, the |
3436 behavior is undefined.

tab

3437 ’\v’ Move the printing position to the start of the next vertical tab |
3438 position. If there are no more vertical tab positions left on the
3439 page, the behavior is undefined.

vertical-tab

___L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

3440 Each conversion specification is introduced by the percent-sign character (’%’). After the |
3441 character ’%’ , the following shall appear in sequence:

3442 flags Zero or more flags , in any order, that modify the meaning of the conversion
3443 specification.

3444 field width An optional string of decimal digits to specify a minimum field width. For an
3445 output field, if the converted value has fewer bytes than the field width, it shall be
3446 padded on the left (or right, if the left-adjustment flag (’ −’), described below, has
3447 been given) to the field width.

3448 precision Gives the minimum number of digits to appear for the d, o, i , u, x , or X conversion
3449 specifiers (the field is padded with leading zeros), the number of digits to appear
3450 after the radix character for the e and f conversion specifiers, the maximum
3451 number of significant digits for the g conversion specifier; or the maximum
3452 number of bytes to be written from a string in the s conversion specifier. The
3453 precision shall take the form of a period (’.’) followed by a decimal digit string; a
3454 null digit string is treated as zero.

3455 conversion specifier characters
3456 A conversion specifier character (see below) that indicates the type of conversion
3457 to be applied.

3458 The flag characters and their meanings are:

3459 − The result of the conversion shall be left-justified within the field.

3460 + The result of a signed conversion shall always begin with a sign (’+’ or ’ −’).

3461 <space> If the first character of a signed conversion is not a sign, a <space> shall be
3462 prefixed to the result. This means that if the <space> and ’+’ flags both appear,
3463 the <space> flag shall be ignored.

3464 # The value shall be converted to an alternative form. For c , d, i , u, and s conversion |
3465 specifiers, the behavior is undefined. For the o conversion specifier, it shall
3466 increase the precision to force the first digit of the result to be a zero. For x or X
3467 conversion specifiers, a non-zero result has 0x or 0X prefixed to it, respectively. For

108 Technical Standard (2001) (Draft April 13, 2001)

File Format Notation

3468 e, E, f , g, and G conversion specifiers, the result shall always contain a radix
3469 character, even if no digits follow the radix character. For g and G conversion
3470 specifiers, trailing zeros shall not be removed from the result as they usually are. |

3471 0 For d, i , o, u, x , X, e, E, f , g, and G conversion specifiers, leading zeros (following |
3472 any indication of sign or base) shall be used to pad to the field width; no space
3473 padding is performed. If the ’0’ and ’ −’ flags both appear, the ’0’ flag shall be
3474 ignored. For d, i , o, u, x , and X conversion specifiers, if a precision is specified, the
3475 ’0’ flag shall be ignored. For other conversion specifiers, the behavior is
3476 undefined.

3477 Each conversion specifier character shall result in fetching zero or more arguments. The results
3478 are undefined if there are insufficient arguments for the format. If the format is exhausted while
3479 arguments remain, the excess arguments shall be ignored.

3480 The conversion specifiers and their meanings are:

3481 d,i ,o,u,x ,X The integer argument shall be written as signed decimal (d or i), unsigned octal
3482 (o), unsigned decimal (u), or unsigned hexadecimal notation (x and X). The d and
3483 i specifiers shall convert to signed decimal in the style "[−] dddd " . The x
3484 conversion specifier shall use the numbers and letters "0123456789abcdef" and
3485 the X conversion specifier shall use the numbers and letters
3486 "0123456789ABCDEF" . The precision component of the argument shall specify
3487 the minimum number of digits to appear. If the value being converted can be
3488 represented in fewer digits than the specified minimum, it shall be expanded with
3489 leading zeros. The default precision shall be 1. The result of converting a zero
3490 value with a precision of 0 shall be no characters. If both the field width and
3491 precision are omitted, the implementation may precede, follow, or precede and
3492 follow numeric arguments of types d, i , and u with <blank>s; arguments of type o
3493 (octal) may be preceded with leading zeros.

3494 f The floating-point number argument shall be written in decimal notation in the
3495 style [−]ddd.ddd, where the number of digits after the radix character (shown here
3496 as a decimal point) shall be equal to the precision specification. The LC_NUMERIC
3497 locale category shall determine the radix character to use in this format. If the
3498 precision is omitted from the argument, six digits shall be written after the radix
3499 character; if the precision is explicitly 0, no radix character shall appear.

3500 e,E The floating-point number argument shall be written in the style [−]d.ddde±dd (the
3501 symbol ’ ±’ indicates either a plus or minus sign), where there is one digit before
3502 the radix character (shown here as a decimal point) and the number of digits after
3503 it is equal to the precision. The LC_NUMERIC locale category shall determine the
3504 radix character to use in this format. When the precision is missing, six digits shall
3505 be written after the radix character; if the precision is 0, no radix character shall
3506 appear. The E conversion specifier shall produce a number with E instead of e
3507 introducing the exponent. The exponent shall always contain at least two digits.
3508 However, if the value to be written requires an exponent greater than two digits,
3509 additional exponent digits shall be written as necessary.

3510 g,G The floating-point number argument shall be written in style f or e (or in style F or |
3511 E in the case of a Gconversion specifier), with the precision specifying the number
3512 of significant digits. The style used depends on the value converted: style e (or E)
3513 shall be used only if the exponent resulting from the conversion is less than −4 or
3514 greater than or equal to the precision. Trailing zeros are removed from the result. A
3515 radix character shall appear only if it is followed by a digit.

Base Definitions, Issue 6 109

File Format Notation

3516 c The integer argument shall be converted to an unsigned char and the resulting
3517 byte shall be written.

3518 s The argument shall be taken to be a string and bytes from the string shall be
3519 written until the end of the string or the number of bytes indicated by the precision
3520 specification of the argument is reached. If the precision is omitted from the
3521 argument, it shall be taken to be infinite, so all bytes up to the end of the string
3522 shall be written.

3523 % Write a ’%’ character; no argument is converted.

3524 In no case does a nonexistent or insufficient field width cause truncation of a field; if the result of
3525 a conversion is wider than the field width, the field is simply expanded to contain the conversion
3526 result. The term field width should not be confused with the term precision used in the description
3527 of %s.

3528 Examples

3529 To represent the output of a program that prints a date and time in the form Sunday, July 3,
3530 10:02, where weekday and month are strings:

3531 "%s, ∆%s∆%d,∆%d:%.2d\n" < weekday >, < month >, < day >, < hour >, < min >

3532 To show ’ π’ written to 5 decimal places:

3533 "pi ∆=∆%.5f\n",< value of π>

3534 To show an input file format consisting of five colon-separated fields:

3535 "%s:%s:%s:%s:%s\n", < arg1 >, < arg2 >, < arg3 >, < arg4 >, < arg5 > |

110 Technical Standard (2001) (Draft April 13, 2001)

3536

Chapter 6

Character Set

3537 6.1 Portable Character Set
3538 Conforming implementations shall support one or more coded character sets. Each supported
3539 locale shall include the portable character set, which is the set of symbolic names for characters in
3540 Table 6-1. This is used to describe characters within the text of IEEE Std 1003.1-200x. The first
3541 eight entries in Table 6-1 are defined in the ISO/IEC 6429: 1992 standard and the rest of the
3542 characters are defined in the ISO/IEC 10646-1: 2000 standard.

3543 Table 6-1 Portable Character Set
3544 ___
3545 Symbolic Name Glyph UCS Description___LL LL LL LL LL

3546 <NUL> <U0000> NULL (NUL)
3547 <alert> <U0007> BELL (BEL)
3548 <backspace> <U0008> BACKSPACE (BS)
3549 <tab> <U0009> CHARACTER TABULATION (HT)
3550 <carriage-return> <U000D> CARRIAGE RETURN (CR)
3551 <newline> <U000A> LINE FEED (LF)
3552 <vertical-tab> <U000B> LINE TABULATION (VT)
3553 <form-feed> <U000C> FORM FEED (FF)
3554 <space> <U0020> SPACE
3555 <exclamation-mark> ! <U0021> EXCLAMATION MARK
3556 <quotation-mark> " <U0022> QUOTATION MARK
3557 <number-sign> # <U0023> NUMBER SIGN
3558 <dollar-sign> $ <U0024> DOLLAR SIGN
3559 <percent-sign> % <U0025> PERCENT SIGN
3560 <ampersand> & <U0026> AMPERSAND
3561 <apostrophe> ’ <U0027> APOSTROPHE
3562 <left-parenthesis> (<U0028> LEFT PARENTHESIS
3563 <right-parenthesis>) <U0029> RIGHT PARENTHESIS
3564 <asterisk> * <U002A> ASTERISK
3565 <plus-sign> + <U002B> PLUS SIGN
3566 <comma> , <U002C> COMMA
3567 <hyphen-minus> − <U002D> HYPHEN-MINUS
3568 <hyphen> - <U002D> HYPHEN-MINUS
3569 <full-stop> . <U002E> FULL STOP
3570 <period> . <U002E> FULL STOP
3571 <slash> / <U002F> SOLIDUS
3572 <solidus> / <U002F> SOLIDUS
3573 <zero> 0 <U0030> DIGIT ZERO
3574 <one> 1 <U0031> DIGIT ONE
3575 <two> 2 <U0032> DIGIT TWO
3576 <three> 3 <U0033> DIGIT THREE___LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Base Definitions, Issue 6 111

Portable Character Set Character Set

3577 ___
3578 Symbolic Name Glyph UCS Description___LL LL LL LL LL

3579 <four> 4 <U0034> DIGIT FOUR
3580 <five> 5 <U0035> DIGIT FIVE
3581 <six> 6 <U0036> DIGIT SIX
3582 <seven> 7 <U0037> DIGIT SEVEN
3583 <eight> 8 <U0038> DIGIT EIGHT
3584 <nine> 9 <U0039> DIGIT NINE
3585 <colon> : <U003A> COLON
3586 <semicolon> ; <U003B> SEMICOLON
3587 <less-than-sign> < <U003C> LESS-THAN SIGN
3588 <equals-sign> = <U003D> EQUALS SIGN
3589 <greater-than-sign> > <U003E> GREATER-THAN SIGN
3590 <question-mark> ? <U003F> QUESTION MARK
3591 <commercial-at> @ <U0040>
3592 <A> A <U0041> LATIN CAPITAL LETTER A
3593 B <U0042> LATIN CAPITAL LETTER B
3594 <C> C <U0043> LATIN CAPITAL LETTER C
3595 <D> D <U0044> LATIN CAPITAL LETTER D
3596 <E> E <U0045> LATIN CAPITAL LETTER E
3597 <F> F <U0046> LATIN CAPITAL LETTER F
3598 <G> G <U0047> LATIN CAPITAL LETTER G
3599 <H> H <U0048> LATIN CAPITAL LETTER H
3600 <I> I <U0049> LATIN CAPITAL LETTER I
3601 <J> J <U004A> LATIN CAPITAL LETTER J
3602 <K> K <U004B> LATIN CAPITAL LETTER K
3603 <L> L <U004C> LATIN CAPITAL LETTER L
3604 <M> M <U004D> LATIN CAPITAL LETTER M
3605 <N> N <U004E> LATIN CAPITAL LETTER N
3606 <O> O <U004F> LATIN CAPITAL LETTER O
3607 <P> P <U0050> LATIN CAPITAL LETTER P
3608 <Q> Q <U0051> LATIN CAPITAL LETTER Q
3609 <R> R <U0052> LATIN CAPITAL LETTER R
3610 <S> S <U0053> LATIN CAPITAL LETTER S
3611 <T> T <U0054> LATIN CAPITAL LETTER T
3612 <U> U <U0055> LATIN CAPITAL LETTER U
3613 <V> V <U0056> LATIN CAPITAL LETTER V
3614 <W> W <U0057> LATIN CAPITAL LETTER W
3615 <X> X <U0058> LATIN CAPITAL LETTER X
3616 <Y> Y <U0059> LATIN CAPITAL LETTER Y
3617 <Z> Z <U005A> LATIN CAPITAL LETTER Z
3618 <left-square-bracket> [<U005B> LEFT SQUARE BRACKET
3619 <backslash> \ <U005C> REVERSE SOLIDUS
3620 <reverse-solidus> \ <U005C> REVERSE SOLIDUS
3621 <right-square-bracket>] <U005D> RIGHT SQUARE BRACKET
3622 <circumflex-accent> ^ <U005E> CIRCUMFLEX ACCENT
3623 <circumflex> ^ <U005E> CIRCUMFLEX ACCENT
3624 <low-line> _ <U005F> LOW LINE
3625 <underscore> _ <U005F> LOW LINE___LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

112 Technical Standard (2001) (Draft April 13, 2001)

Character Set Portable Character Set

3626 ___
3627 Symbolic Name Glyph UCS Description___LL LL LL LL LL

3628 <grave-accent> ‘ <U0060> GRAVE ACCENT
3629 <a> a <U0061> LATIN SMALL LETTER A
3630 b <U0062> LATIN SMALL LETTER B
3631 <c> c <U0063> LATIN SMALL LETTER C
3632 <d> d <U0064> LATIN SMALL LETTER D
3633 <e> e <U0065> LATIN SMALL LETTER E
3634 <f> f <U0066> LATIN SMALL LETTER F
3635 <g> g <U0067> LATIN SMALL LETTER G
3636 <h> h <U0068> LATIN SMALL LETTER H
3637 <i> i <U0069> LATIN SMALL LETTER I
3638 <j> j <U006A> LATIN SMALL LETTER J
3639 <k> k <U006B> LATIN SMALL LETTER K
3640 <l> l <U006C> LATIN SMALL LETTER L
3641 <m> m <U006D> LATIN SMALL LETTER M
3642 <n> n <U006E> LATIN SMALL LETTER N
3643 <o> o <U006F> LATIN SMALL LETTER O
3644 <p> p <U0070> LATIN SMALL LETTER P
3645 <q> q <U0071> LATIN SMALL LETTER Q
3646 <r> r <U0072> LATIN SMALL LETTER R
3647 <s> s <U0073> LATIN SMALL LETTER S
3648 <t> t <U0074> LATIN SMALL LETTER T
3649 <u> u <U0075> LATIN SMALL LETTER U
3650 <v> v <U0076> LATIN SMALL LETTER V
3651 <w> w <U0077> LATIN SMALL LETTER W
3652 <x> x <U0078> LATIN SMALL LETTER X
3653 <y> y <U0079> LATIN SMALL LETTER Y
3654 <z> z <U007A> LATIN SMALL LETTER Z
3655 <left-brace> { <U007B> LEFT CURLY BRACKET
3656 <left-curly-bracket> { <U007B> LEFT CURLY BRACKET
3657 <vertical-line> | <U007C> VERTICAL LINE
3658 <right-brace> } <U007D> RIGHT CURLY BRACKET
3659 <right-curly-bracket> } <U007D> RIGHT CURLY BRACKET
3660 <tilde> ~ <U007E> TILDE___LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

3661 IEEE Std 1003.1-200x uses character names other than the above, but only in an informative way;
3662 for example, in examples to illustrate the use of characters beyond the portable character set
3663 with the facilities of IEEE Std 1003.1-200x.

3664 Table 6-1 (on page 111) defines the characters in the portable character set and the corresponding
3665 symbolic character names used to identify each character in a character set description file. The
3666 table contains more than one symbolic character name for characters whose traditional name
3667 differs from the chosen name. Characters defined in Table 6-2 (on page 116) may also be used in
3668 character set description files.

3669 IEEE Std 1003.1-200x places only the following requirements on the encoded values of the
3670 characters in the portable character set:

3671 • If the encoded values associated with each member of the portable character set are not
3672 invariant across all locales supported by the implementation, if an application accesses any
3673 pair of locales where the character encodings differ, or accesses data from an application
3674 running in a locale which has different encodings from the application’s current locale, the
3675 results are unspecified.

Base Definitions, Issue 6 113

Portable Character Set Character Set

3676 • The encoded values associated with the digits 0 to 9 shall be such that the value of each
3677 character after 0 shall be one greater than the value of the previous character.

3678 • A null character, NUL, which has all bits set to zero, shall be in the set of characters.

3679 • The encoded values associated with the members of the portable character set are each
3680 represented in a single byte. Moreover, if the value is stored in an object of C-language type
3681 char, it is guaranteed to be positive (except the NUL, which is always zero).

3682 Conforming implementations shall support certain character and character set attributes, as
3683 defined in Section 7.2 (on page 120).

3684 6.2 Character Encoding
3685 The POSIX locale contains the characters in Table 6-1 (on page 111), which have the properties
3686 listed in Section 7.3.1 (on page 122). In other locales, the presence, meaning, and representation
3687 of any additional characters is locale-specific.

3688 In locales other than the POSIX locale, a character may have a state-dependent encoding. There
3689 are two types of these encodings:

3690 • A single-shift encoding (where each character not in the initial shift state is preceded by a
3691 shift code) can be defined if each shift-code and character sequence is considered a multi-
3692 byte character. This is done using the concatenated-constant format in a character set
3693 description file, as described in Section 6.4 (on page 115). If the implementation supports a
3694 character encoding of this type, all of the standard utilities in the Shell and Utilities volume of |
3695 IEEE Std 1003.1-200x shall support it. Use of a single-shift encoding with any of the functions |
3696 in the System Interfaces volume of IEEE Std 1003.1-200x that do not specifically mention the
3697 effects of state-dependent encoding is implementation-defined.

3698 • A locking-shift encoding (where the state of the character is determined by a shift code that
3699 may affect more than the single character following it) cannot be defined with the current
3700 character set description file format. Use of a locking-shift encoding with any of the standard
3701 utilities in the Shell and Utilities volume of IEEE Std 1003.1-200x or with any of the functions
3702 in the System Interfaces volume of IEEE Std 1003.1-200x that do not specifically mention the
3703 effects of state-dependent encoding is implementation-defined.

3704 While in the initial shift state, all characters in the portable character set shall retain their usual |
3705 interpretation and shall not alter the shift state. The interpretation for subsequent bytes in the |
3706 sequence shall be a function of the current shift state. A byte with all bits zero shall be |
3707 interpreted as the null character independent of shift state. Thus a byte with all bits zero shall |
3708 never occur in the second or subsequent bytes of a character. |

3709 The maximum allowable number of bytes in a character in the current locale shall be indicated |
3710 by {MB_CUR_MAX}, defined in the <stdlib.h> header and by the <mb_cur_max> value in a |
3711 character set description file; see Section 6.4 (on page 115). The implementation’s maximum |
3712 number of bytes in a character shall be defined by the C-language macro {MB_LEN_MAX}. |

114 Technical Standard (2001) (Draft April 13, 2001)

Character Set C Language Wide-Character Codes

3713 6.3 C Language Wide-Character Codes
3714 In the shell, the standard utilities are written so that the encodings of characters are described by
3715 the locale’s LC_CTYPE definition (see Section 7.3.1 (on page 122)) and there is no differentiation
3716 between characters consisting of single octets (8-bit bytes) or multiple bytes. However, in the C |
3717 language, a differentiation is made. To ease the handling of variable length characters, the C |
3718 language has introduced the concept of wide-character codes. |

3719 All wide-character codes in a given process consist of an equal number of bits. This is in contrast
3720 to characters, which can consist of a variable number of bytes. The byte or byte sequence that
3721 represents a character can also be represented as a wide-character code. Wide-character codes
3722 thus provide a uniform size for manipulating text data. A wide-character code having all bits
3723 zero is the null wide-character code (see Section 3.246 (on page 66)), and terminates wide-
3724 character strings (see Section 3.432 (on page 92)). The wide-character value for each member of |
3725 the portable character set shall equal its value when used as the lone character in an integer |
3726 character constant. Wide-character codes for other characters are locale and implementation- |
3727 defined. State shift bytes shall not have a wide-character code representation. |

3728 6.4 Character Set Description File
3729 Implementations shall provide a character set description file for at least one coded character set
3730 supported by the implementation. These files are referred to elsewhere in IEEE Std 1003.1-200x
3731 as charmap files. It is implementation-defined whether or not users or applications can provide
3732 additional character set description files.

3733 IEEE Std 1003.1-200x does not require that multiple character sets or codesets be supported.
3734 Although multiple charmap files are supported, it is the responsibility of the implementation to
3735 provide the file or files; if only one is provided, only that one is accessible using the localedef
3736 utility’s −f option.

3737 Each character set description file, except those that use the ISO/IEC 10646-1: 2000 standard
3738 position values as the encoding values, shall define characteristics for the coded character set
3739 and the encoding for the characters specified in Table 6-1 (on page 111), and may define
3740 encoding for additional characters supported by the implementation. Other information about
3741 the coded character set may also be in the file. Coded character set character values shall be
3742 defined using symbolic character names followed by character encoding values.

3743 Each symbolic name specified in Table 6-1 (on page 111) shall be included in the file and shall be
3744 mapped to a unique coding value, except as noted below. The glyphs ’{’ , ’}’ , ’_’ , ’-’ , ’/’ ,
3745 ’\’ , ’.’ , and ’ˆ’ have more than one symbolic name; all symbolic names for each such glyph
3746 shall be included, each with identical encoding. If some or all of the control characters identified
3747 in Table 6-2 (on page 116) are supported by the implementation, the symbolic names and their
3748 corresponding encoding values shall be included in the file. Some of the encodings associated
3749 with the symbolic names in Table 6-2 (on page 116) may be the same as characters found in Table
3750 6-1 (on page 111); both names shall be provided for each encoding.

Base Definitions, Issue 6 115

Character Set Description File Character Set

3751 Table 6-2 Control Character Set

3752 <ACK> <DC2> <ENQ> <FS> <IS4> <SOH>
3753 <BEL> <DC3> <EOT> <GS> <LF> <STX>
3754 <BS> <DC4> <ESC> <HT> <NAK> <SUB>
3755 <CAN> <ETB> <IS1> <RS> <SYN>
3756 <CR> <DLE> <ETX> <IS2> <SI> <US>
3757 <DC1> <FF> <IS3> <SO> <VT>___LL

L
L
L
L
L
L

LL
L
L
L
L
L
L

3758 The following declarations can precede the character definitions. Each shall consist of the |
3759 symbol shown in the following list, starting in column 1, including the surrounding brackets, |
3760 followed by one or more <blank>s, followed by the value to be assigned to the symbol.

3761 <code_set_name> The name of the coded character set for which the character set
3762 description file is defined. The characters of the name shall be taken from
3763 the set of characters with visible glyphs defined in Table 6-1 (on page
3764 111).

3765 <mb_cur_max> The maximum number of bytes in a multi-byte character. This shall |
3766 default to 1. |

3767 <mb_cur_min> An unsigned positive integer value that defines the minimum number of
3768 XSI bytes in a character for the encoded character set. On XSI-conformant
3769 systems, <mb_cur_min> shall always be 1.

3770 <escape_char> The character used to indicate that the characters following shall be |
3771 interpreted in a special way, as defined later in this section. This shall |
3772 default to backslash (’\’), which is the character used in all the following |
3773 text and examples, unless otherwise noted.

3774 <comment_char> The character that, when placed in column 1 of a charmap line, is used to |
3775 indicate that the line shall be ignored. The default character shall be the |
3776 number sign (’#’). |

3777 The character set mapping definitions shall be all the lines immediately following an identifier
3778 line containing the string "CHARMAP" starting in column 1, and preceding a trailer line
3779 containing the string "END CHARMAP"starting in column 1. Empty lines and lines containing a
3780 <comment_char> in the first column shall be ignored. Each non-comment line of the character
3781 set mapping definition (that is, between the "CHARMAP"and "END CHARMAP"lines of the file)
3782 shall be in either of two forms:

3783 "%s %s %s\n", < symbolic-name >, < encoding >, < comments >

3784 or:

3785 "%s...%s %s %s\n", < symbolic-name >, < symbolic-name >,
3786 <encoding >, < comments >

3787 In the first format, the line in the character set mapping definition shall define a single symbolic |
3788 name and a corresponding encoding. A symbolic name is one or more characters from the set |
3789 shown with visible glyphs in Table 6-1 (on page 111), enclosed between angle brackets. A |
3790 character following an escape character is interpreted as itself; for example, the sequence
3791 "<\\\>>" represents the symbolic name "\>" enclosed between angle brackets.

3792 In the second format, the line in the character set mapping definition shall define a range of one |
3793 or more symbolic names. In this form, the symbolic names shall consist of zero or more non- |
3794 numeric characters from the set shown with visible glyphs in Table 6-1 (on page 111), followed |
3795 by an integer formed by one or more decimal digits. Both integers shall contain the same number
3796 of digits. The characters preceding the integer shall be identical in the two symbolic names, and

116 Technical Standard (2001) (Draft April 13, 2001)

Character Set Character Set Description File

3797 the integer formed by the digits in the second symbolic name shall be equal to or greater than the
3798 integer formed by the digits in the first name. This shall be interpreted as a series of symbolic
3799 names formed from the common part and each of the integers between the first and the second
3800 integer, inclusive. As an example, <j0101>. . .<j0104> is interpreted as the symbolic names
3801 <j0101>, <j0102>, <j0103>, and <j0104>, in that order.

3802 A character set mapping definition line shall exist for all symbolic names specified in Table 6-1
3803 (on page 111), and shall define the coded character value that corresponds to the character |
3804 indicated in the table, or the coded character value that corresponds to the control character
3805 symbolic name. If the control characters commonly associated with the symbolic names in Table
3806 6-2 (on page 116) are supported by the implementation, the symbolic name and the
3807 corresponding encoding value shall be included in the file. Additional unique symbolic names
3808 may be included. A coded character value can be represented by more than one symbolic name.

3809 The encoding part is expressed as one (for single-byte character values) or more concatenated
3810 decimal, octal, or hexadecimal constants in the following formats:

3811 "%cd%u", < escape_char >, < decimal byte value >
3812 "%cx%x", < escape_char >, < hexadecimal byte value >
3813 "%c%o", < escape_char >, < octal byte value >

3814 Decimal constants shall be represented by two or three decimal digits, preceded by the escape |
3815 character and the lowercase letter ’d’ ; for example, "\d05" , "\d97" , or "\d143" . |
3816 Hexadecimal constants shall be represented by two hexadecimal digits, preceded by the escape |
3817 character and the lowercase letter ’x’ ; for example, "\x05" , "\x61" , or "\x8f" . Octal |
3818 constants shall be represented by two or three octal digits, preceded by the escape character; for |
3819 example, "\05" , "\141" , or "\217" . In a portable charmap file, each constant represents an 8-
3820 bit byte. When constants are concatenated for multi-byte character values, they shall be of the |
3821 same type, and interpreted in byte order from first to last with the least significant byte of the |
3822 multi-byte character specified by the last constant. The manner in which these constants are |
3823 represented in the character stored in the system is implementation-defined. (This notation was |
3824 chosen for reasons of portability. There is no requirement that the internal representation in the |
3825 computer memory be in this same order.) Omitting bytes from a multi-byte character definition |
3826 produces undefined results. |

3827 In lines defining ranges of symbolic names, the encoded value shall be the value for the first |
3828 symbolic name in the range (the symbolic name preceding the ellipsis). Subsequent symbolic |
3829 names defined by the range shall have encoding values in increasing order. Bytes shall be treated |
3830 as unsigned octets, and carry shall be propagated between the bytes as necessary to represent |
3831 the range. For example, the line: |

3832 <j0101>...<j0104> \d129\d254

3833 is interpreted as:

3834 <j0101> \d129\d254
3835 <j0102> \d129\d255
3836 <j0103> \d130\d0
3837 <j0104> \d130\d1

3838 Note that this line is interpreted as the example even on systems with bytes larger than 8 bits. |

3839 The comment is optional. |

3840 The following declarations can follow the character set mapping definitions (after the "END
3841 CHARMAP"statement). Each shall consist of the keyword shown in the following list, starting in
3842 column 1, followed by the value(s) to be associated to the keyword, as defined below.

Base Definitions, Issue 6 117

Character Set Description File Character Set

3843 WIDTH An unsigned positive integer value defining the column width (see Section 3.103
3844 (on page 47)) for the printable characters in the coded character set specified in
3845 Table 6-1 (on page 111) and Table 6-2 (on page 116). Coded character set character |
3846 values shall be defined using symbolic character names followed by column width
3847 values. Defining a character with more than one WIDTH produces undefined
3848 results. The END WIDTH keyword shall be used to terminate the WIDTH
3849 definitions. Specifying the width of a non-printable character in a WIDTH
3850 declaration produces undefined results.

3851 WIDTH_DEFAULT
3852 An unsigned positive integer value defining the default column width for any
3853 printable character not listed by one of the WIDTH keywords. If no
3854 WIDTH_DEFAULT keyword is included in the charmap, the default character
3855 width shall be 1.

3856 Example

3857 After the "END CHARMAP"statement, a syntax for a width definition would be:

3858 WIDTH
3859 <A> 1
3860 1
3861 <C>...<Z> 1
3862 <foo1>...<foon> 2
3863 END WIDTH

3864 In this example, the numerical code point values represented by the symbols <A> and are
3865 assigned a width of 1. The code point values <C> to <Z> inclusive (<C>, <D>, <E>, and so on)
3866 are also assigned a width of 1. Using <A>. . .<Z> would have required fewer lines, but the
3867 alternative was shown to demonstrate flexibility. The keyword WIDTH_DEFAULT could have
3868 been added as appropriate.

3869 6.4.1 State-Dependent Character Encodings

3870 This section addresses the use of state-dependent character encodings (that is, those in which the
3871 encoding of a character is dependent on one or more shift codes that may precede it).

3872 A single-shift encoding (where each character not in the initial shift state is preceded by a shift
3873 code) can be defined in the charmap format if each shift-code/character sequence is considered a
3874 multi-byte character, defined using the concatenated-constant format described in Section 6.4
3875 (on page 115). If the implementation supports a character encoding of this type, all of the
3876 standard utilities shall support it. A locking-shift encoding (where the state of the character is
3877 determined by a shift code that may affect more than the single character following it) could be
3878 defined with an extension to the charmap format described in Section 6.4 (on page 115). If the
3879 implementation supports a character encoding of this type, any of the standard utilities that
3880 describe character (versus byte) or text-file manipulation shall have the following characteristics:

3881 1. The utility shall process the statefully encoded data as a concatenation of state-
3882 independent characters. The presence of redundant locking shifts shall not affect the
3883 comparison of two statefully encoded strings.

3884 2. A utility that divides, truncates, or extracts substrings from statefully encoded data shall
3885 produce output that contains locking shifts at the beginning or end of the resulting data, if
3886 appropriate, to retain correct state information. |

118 Technical Standard (2001) (Draft April 13, 2001)

3887

Chapter 7

Locale

3888 7.1 General
3889 A locale is the definition of the subset of a user’s environment that depends on language and
3890 cultural conventions. It is made up from one or more categories. Each category is identified by
3891 its name and controls specific aspects of the behavior of components of the system. Category
3892 names correspond to the following environment variable names:

3893 LC_CTYPE Character classification and case conversion.

3894 LC_COLLATE Collation order.

3895 LC_MONETARY Monetary formatting.

3896 LC_NUMERIC Numeric, non-monetary formatting.

3897 LC_TIME Date and time formats.

3898 LC_MESSAGES Formats of informative and diagnostic messages and interactive responses.

3899 The standard utilities in the Shell and Utilities volume of IEEE Std 1003.1-200x shall base their
3900 behavior on the current locale, as defined in the ENVIRONMENT VARIABLES section for each
3901 utility. The behavior of some of the C-language functions defined in the System Interfaces
3902 volume of IEEE Std 1003.1-200x shall also be modified based on the current locale, as defined by
3903 the last call to setlocale ().

3904 Locales other than those supplied by the implementation can be created via the localedef utility,
3905 provided that the _POSIX2_LOCALEDEF symbol is defined on the system. Even if localedef is not
3906 provided, all implementations conforming to the System Interfaces volume of
3907 IEEE Std 1003.1-200x shall provide one or more locales that behave as described in this chapter.
3908 The input to the utility is described in Section 7.3 (on page 120). The value that is used to specify
3909 a locale when using environment variables shall be the string specified as the name operand to
3910 the localedef utility when the locale was created. The strings "C" and "POSIX" are reserved as
3911 identifiers for the POSIX locale (see Section 7.2 (on page 120)). When the value of a locale
3912 environment variable begins with a slash (’/’), it shall be interpreted as the pathname of the
3913 locale definition; the type of file (regular, directory, and so on) used to store the locale definition
3914 is implementation-defined. If the value does not begin with a slash, the mechanism used to
3915 locate the locale is implementation-defined.

3916 If different character sets are used by the locale categories, the results achieved by an application
3917 utilizing these categories are undefined. Likewise, if different codesets are used for the data
3918 being processed by interfaces whose behavior is dependent on the current locale, or the codeset
3919 is different from the codeset assumed when the locale was created, the result is also undefined.

3920 Applications can select the desired locale by invoking the setlocale () function (or equivalent)
3921 with the appropriate value. If the function is invoked with an empty string, such as:

3922 setlocale(LC_ALL, "");

3923 the value of the corresponding environment variable is used. If the environment variable is
3924 unset or is set to the empty string, the implementation shall set the appropriate environment as
3925 defined in Chapter 8 (on page 157).

Base Definitions, Issue 6 119

POSIX Locale Locale

3926 7.2 POSIX Locale
3927 Conforming systems shall provide a POSIX locale , also known as the C locale. The behavior of
3928 standard utilities and functions in the POSIX locale shall be as if the locale was defined via the
3929 localedef utility with input data from the POSIX locale tables in Section 7.3.

3930 The tables in Section 7.3 describe the characteristics and behavior of the POSIX locale for data
3931 consisting entirely of characters from the portable character set and the control character set. For
3932 other characters, the behavior is unspecified. For C-language programs, the POSIX locale shall be |
3933 the default locale when the setlocale () function is not called. |

3934 The POSIX locale can be specified by assigning to the appropriate environment variables the
3935 values "C" or "POSIX" .

3936 All implementations shall define a locale as the default locale, to be invoked when no
3937 environment variables are set, or set to the empty string. This default locale can be the POSIX
3938 locale or any other implementation-defined locale. Some implementations may provide facilities
3939 for local installation administrators to set the default locale, customizing it for each location.
3940 IEEE Std 1003.1-200x does not require such a facility.

3941 7.3 Locale Definition
3942 The capability to specify additional locales to those provided by an implementation is optional,
3943 denoted by the _POSIX2_LOCALEDEF symbol. If the option is not supported, only
3944 implementation-supplied locales are available. Such locales shall be documented using the
3945 format specified in this section.

3946 Locales can be described with the file format presented in this section. The file format is that
3947 accepted by the localedef utility. For the purposes of this section, the file is referred to as the locale
3948 definition file , but no locales shall be affected by this file unless it is processed by localedef or some
3949 similar mechanism. Any requirements in this section imposed upon the utility shall apply to
3950 localedef or to any other similar utility used to install locale information using the locale
3951 definition file format described here.

3952 The locale definition file shall contain one or more locale category source definitions, and shall
3953 not contain more than one definition for the same locale category. If the file contains source
3954 definitions for more than one category, implementation-defined categories, if present, shall
3955 appear after the categories defined by Section 7.1 (on page 119). A category source definition
3956 contains either the definition of a category or a copy directive. For a description of the copy
3957 directive, see localedef. In the event that some of the information for a locale category, as
3958 specified in this volume of IEEE Std 1003.1-200x, is missing from the locale source definition, the
3959 behavior of that category, if it is referenced, is unspecified.

3960 A category source definition shall consist of a category header, a category body, and a category
3961 trailer. A category header shall consist of the character string naming of the category, beginning
3962 with the characters LC_. The category trailer shall consist of the string "END" , followed by one
3963 or more <blank>s and the string used in the corresponding category header.

3964 The category body shall consist of one or more lines of text. Each line shall contain an identifier,
3965 optionally followed by one or more operands. Identifiers shall be either keywords, identifying a
3966 particular locale element, or collating elements. In addition to the keywords defined in this
3967 volume of IEEE Std 1003.1-200x, the source can contain implementation-defined keywords. Each
3968 keyword within a locale shall have a unique name (that is, two categories cannot have a
3969 commonly-named keyword); no keyword shall start with the characters LC_. Identifiers shall be
3970 separated from the operands by one or more <blank>s.

120 Technical Standard (2001) (Draft April 13, 2001)

Locale Locale Definition

3971 Operands shall be characters, collating elements, or strings of characters. Strings shall be
3972 enclosed in double-quotes. Literal double-quotes within strings shall be preceded by the <escape
3973 character>, described below. When a keyword is followed by more than one operand, the
3974 operands shall be separated by semicolons; <blank>s shall be allowed both before and after a
3975 semicolon.

3976 The first category header in the file can be preceded by a line modifying the comment character.
3977 It shall have the following format, starting in column 1:

3978 "comment_char %c\n", < comment character >

3979 The comment character shall default to the number sign (’#’). Blank lines and lines containing
3980 the <comment character> in the first position shall be ignored.

3981 The first category header in the file can be preceded by a line modifying the escape character to
3982 be used in the file. It shall have the following format, starting in column 1:

3983 "escape_char %c\n", < escape character >

3984 The escape character shall default to backslash, which is the character used in all examples
3985 shown in this volume of IEEE Std 1003.1-200x.

3986 A line can be continued by placing an escape character as the last character on the line; this
3987 continuation character shall be discarded from the input. Although the implementation need not
3988 accept any one portion of a continued line with a length exceeding {LINE_MAX} bytes, it shall
3989 place no limits on the accumulated length of the continued line. Comment lines shall not be
3990 continued on a subsequent line using an escaped newline character.

3991 Individual characters, characters in strings, and collating elements shall be represented using
3992 symbolic names, as defined below. In addition, characters can be represented using the
3993 characters themselves or as octal, hexadecimal, or decimal constants. When non-symbolic
3994 notation is used, the resultant locale definitions are in many cases not portable between systems.
3995 The left angle bracket (’<’) is a reserved symbol, denoting the start of a symbolic name; when
3996 used to represent itself it shall be preceded by the escape character. The following rules apply to
3997 character representation:

3998 1. A character can be represented via a symbolic name, enclosed within angle brackets ’<’
3999 and ’>’ . The symbolic name, including the angle brackets, shall exactly match a symbolic
4000 name defined in the charmap file specified via the localedef −f option, and it shall be
4001 replaced by a character value determined from the value associated with the symbolic
4002 name in the charmap file. The use of a symbolic name not found in the charmap file shall
4003 constitute an error, unless the category is LC_CTYPE or LC_COLLATE, in which case it
4004 shall constitute a warning condition (see localedef for a description of actions resulting from
4005 errors and warnings). The specification of a symbolic name in a collating-element or
4006 collating-symbol section that duplicates a symbolic name in the charmap file (if present)
4007 shall be an error. Use of the escape character or a right angle bracket within a symbolic
4008 name is invalid unless the character is preceded by the escape character.

4009 For example:

4010 <c>;<c −cedilla> "<M><a><y>"

4011 2. A character in the portable character set can be represented by the character itself, in which
4012 case the value of the character is implementation-defined. (Implementations may allow
4013 other characters to be represented as themselves, but such locale definitions are not
4014 portable.) Within a string, the double-quote character, the escape character, and the right
4015 angle bracket character shall be escaped (preceded by the escape character) to be
4016 interpreted as the character itself. Outside strings, the characters:

Base Definitions, Issue 6 121

Locale Definition Locale

4017 , ; < > escape_char

4018 shall be escaped to be interpreted as the character itself.

4019 For example:

4020 c "May"

4021 3. A character can be represented as an octal constant. An octal constant shall be specified as
4022 the escape character followed by two or three octal digits. Each constant shall represent a
4023 byte value. Multi-byte values can be represented by concatenated constants specified in
4024 byte order with the last constant specifying the least significant byte of the character.

4025 For example:

4026 \143;\347;\143\150 "\115\141\171"

4027 4. A character can be represented as a hexadecimal constant. A hexadecimal constant shall be
4028 specified as the escape character followed by an ’x’ followed by two hexadecimal digits.
4029 Each constant shall represent a byte value. Multi-byte values can be represented by
4030 concatenated constants specified in byte order with the last constant specifying the least
4031 significant byte of the character.

4032 For example:

4033 \x63;\xe7;\x63\x68 "\x4d\x61\x79"

4034 5. A character can be represented as a decimal constant. A decimal constant shall be specified
4035 as the escape character followed by a ’d’ followed by two or three decimal digits. Each
4036 constant represents a byte value. Multi-byte values can be represented by concatenated
4037 constants specified in byte order with the last constant specifying the least significant byte
4038 of the character.

4039 For example:

4040 \d99;\d231;\d99\d104 "\d77\d97\d121"

4041 Implementations may accept single-digit octal, decimal, or hexadecimal constants following the |
4042 escape character. Only characters existing in the character set for which the locale definition is
4043 created shall be specified, whether using symbolic names, the characters themselves, or octal,
4044 decimal, or hexadecimal constants. If a charmap file is present, only characters defined in the
4045 charmap can be specified using octal, decimal, or hexadecimal constants. Symbolic names not
4046 present in the charmap file can be specified and shall be ignored, as specified under item 1
4047 above.

4048 7.3.1 LC_CTYPE

4049 The LC_CTYPE category shall define character classification, case conversion, and other
4050 character attributes. In addition, a series of characters can be represented by three adjacent
4051 periods representing an ellipsis symbol ("..."). The ellipsis specification shall be interpreted as
4052 meaning that all values between the values preceding and following it represent valid
4053 characters. The ellipsis specification shall be valid only within a single encoded character set;
4054 that is, within a group of characters of the same size. An ellipsis shall be interpreted as including
4055 in the list all characters with an encoded value higher than the encoded value of the character
4056 preceding the ellipsis and lower than the encoded value of the character following the ellipsis.

4057 For example:

4058 \x30;...;\x39;

122 Technical Standard (2001) (Draft April 13, 2001)

Locale Locale Definition

4059 includes in the character class all characters with encoded values between the endpoints.

4060 The following keywords shall be recognized. In the descriptions, the term ‘‘automatically
4061 included’’ means that it shall not be an error either to include or omit any of the referenced
4062 characters; the implementation provides them if missing (even if the entire keyword is missing)
4063 and accepts them silently if present. When the implementation automatically includes a missing
4064 character, it shall have an encoded value dependent on the charmap file in effect (see the
4065 description of the localedef −f option); otherwise, it shall have a value derived from an
4066 implementation-defined character mapping.

4067 The character classes digit, xdigit, lower, upper, and space have a set of automatically included
4068 characters. These only need to be specified if the character values (that is, encoding) differ from
4069 the implementation default values. It is not possible to define a locale without these
4070 automatically included characters unless some implementation extension is used to prevent
4071 their inclusion. Such a definition would not be a proper superset of the C or POSIX locale and
4072 thus, it might not be possible for conforming applications to work properly.

4073 copy Specify the name of an existing locale which shall be used as the definition of |
4074 this category. If this keyword is specified, no other keyword shall be specified. |

4075 upper Define characters to be classified as uppercase letters.

4076 In the POSIX locale, the 26 uppercase letters shall be included: |

4077 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

4078 In a locale definition file, no character specified for the keywords cntrl, digit,
4079 punct, or space shall be specified. The uppercase letters <A> to <Z>, as
4080 defined in Section 6.4 (on page 115) (the portable character set), are
4081 automatically included in this class.

4082 lower Define characters to be classified as lowercase letters.

4083 In the POSIX locale, the 26 lowercase letters shall be included: |

4084 a b c d e f g h i j k l m n o p q r s t u v w x y z

4085 In a locale definition file, no character specified for the keywords cntrl, digit,
4086 punct, or space shall be specified. The lowercase letters <a> to <z> of the
4087 portable character set are automatically included in this class.

4088 alpha Define characters to be classified as letters.

4089 In the POSIX locale, all characters in the classes upper and lower shall be |
4090 included. |

4091 In a locale definition file, no character specified for the keywords cntrl, digit,
4092 punct, or space shall be specified. Characters classified as either upper or
4093 lower are automatically included in this class.

4094 digit Define the characters to be classified as numeric digits.

4095 In the POSIX locale, only:

4096 0 1 2 3 4 5 6 7 8 9

4097 shall be included. |

4098 In a locale definition file, only the digits <zero>, <one>, <two>, <three>,
4099 <four>, <five>, <six>, <seven>, <eight>, and <nine> shall be specified, and in
4100 contiguous ascending sequence by numerical value. The digits <zero> to
4101 <nine> of the portable character set are automatically included in this class.

Base Definitions, Issue 6 123

Locale Definition Locale

4102 alnum Define characters to be classified as letters and numeric digits. Only the
4103 characters specified for the alpha and digit keywords shall be specified.
4104 Characters specified for the keywords alpha and digit are automatically
4105 included in this class.

4106 space Define characters to be classified as white-space characters.

4107 In the POSIX locale, at a minimum, the <space>, <form-feed>, <newline>,
4108 <carriage-return>, <tab>, and <vertical-tab> shall be included. |

4109 In a locale definition file, no character specified for the keywords upper,
4110 lower, alpha, digit, graph, or xdigit shall be specified. The <space>, <form-
4111 feed>, <newline>, <carriage-return>, <tab>, and <vertical-tab> of the portable
4112 character set, and any characters included in the class blank are automatically
4113 included in this class.

4114 cntrl Define characters to be classified as control characters.

4115 In the POSIX locale, no characters in classes alpha or print shall be included. |

4116 In a locale definition file, no character specified for the keywords upper,
4117 lower, alpha, digit, punct, graph, print, or xdigit shall be specified.

4118 punct Define characters to be classified as punctuation characters.

4119 In the POSIX locale, neither the <space> nor any characters in classes alpha,
4120 digit, or cntrl shall be included. |

4121 In a locale definition file, no character specified for the keywords upper,
4122 lower, alpha, digit, cntrl, xdigit, or as the <space> shall be specified.

4123 graph Define characters to be classified as printable characters, not including the
4124 <space>.

4125 In the POSIX locale, all characters in classes alpha, digit, and punct shall be |
4126 included; no characters in class cntrl shall be included. |

4127 In a locale definition file, characters specified for the keywords upper, lower,
4128 alpha, digit, xdigit, and punct are automatically included in this class. No
4129 character specified for the keyword cntrl shall be specified.

4130 print Define characters to be classified as printable characters, including the
4131 <space>.

4132 In the POSIX locale, all characters in class graph shall be included; no |
4133 characters in class cntrl shall be included. |

4134 In a locale definition file, characters specified for the keywords upper, lower,
4135 alpha, digit, xdigit, punct, graph, and the <space> are automatically included
4136 in this class. No character specified for the keyword cntrl shall be specified.

4137 xdigit Define the characters to be classified as hexadecimal digits.

4138 In the POSIX locale, only:

4139 0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e f

4140 shall be included. |

4141 In a locale definition file, only the characters defined for the class digit shall be
4142 specified, in contiguous ascending sequence by numerical value, followed by
4143 one or more sets of six characters representing the hexadecimal digits 10 to 15

124 Technical Standard (2001) (Draft April 13, 2001)

Locale Locale Definition

4144 inclusive, with each set in ascending order (for example, <A>, , <C>, <D>,
4145 <E>, <F>, <a>, , <c>, <d>, <e>, <f>). The digits <zero> to <nine>, the
4146 uppercase letters <A> to <F>, and the lowercase letters <a> to <f> of the
4147 portable character set are automatically included in this class.

4148 blank Define characters to be classified as <blank>s.

4149 In the POSIX locale, only the <space> and <tab> shall be included. |

4150 In a locale definition file, the <space> and <tab> are automatically included in
4151 this class. LI charclass Define one or more locale-specific character class |
4152 names as strings separated by semicolons. Each named character class can
4153 then be defined subsequently in the LC_CTYPE definition. A character class |
4154 name shall consist of at least one and at most {CHARCLASS_NAME_MAX} |
4155 bytes of alphanumeric characters from the portable filename character set. The |
4156 first character of a character class name shall not be a digit. The name shall not |
4157 match any of the LC_CTYPE keywords defined in this volume of |
4158 IEEE Std 1003.1-200x. Future revisions of IEEE Std 1003.1-200x will not specify
4159 any LC_CTYPE keywords containing uppercase letters.

4160 charclass-name Define characters to be classified as belonging to the named locale-specific
4161 character class. In the POSIX locale, locale-specific named character classes
4162 need not exist.

4163 If a class name is defined by a charclass keyword, but no characters are
4164 subsequently assigned to it, this is not an error; it represents a class without
4165 any characters belonging to it.

4166 The charclass-name can be used as the property argument to the wctype()
4167 function, in regular expression and shell pattern-matching bracket
4168 expressions, and by the tr command.

4169 toupper Define the mapping of lowercase letters to uppercase letters.

4170 In the POSIX locale, at a minimum, the 26 lowercase characters:

4171 a b c d e f g h i j k l m n o p q r s t u v w x y z

4172 shall be mapped to the corresponding 26 uppercase characters: |

4173 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

4174 In a locale definition file, the operand shall consist of character pairs, |
4175 separated by semicolons. The characters in each character pair shall be |
4176 separated by a comma and the pair enclosed by parentheses. The first |
4177 character in each pair is the lowercase letter, the second the corresponding |
4178 uppercase letter. Only characters specified for the keywords lower and upper
4179 shall be specified. The lowercase letters <a> to <z>, and their corresponding
4180 uppercase letters <A> to <Z>, of the portable character set are automatically
4181 included in this mapping, but only when the toupper keyword is omitted
4182 from the locale definition.

4183 tolower Define the mapping of uppercase letters to lowercase letters.

4184 In the POSIX locale, at a minimum, the 26 uppercase characters:

4185 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

4186 shall be mapped to the corresponding 26 lowercase characters: |

Base Definitions, Issue 6 125

Locale Definition Locale

4187 a b c d e f g h i j k l m n o p q r s t u v w x y z

4188 In a locale definition file, the operand shall consist of character pairs, |
4189 separated by semicolons. The characters in each character pair shall be |
4190 separated by a comma and the pair enclosed by parentheses. The first |
4191 character in each pair is the uppercase letter, the second the corresponding |
4192 lowercase letter. Only characters specified for the keywords lower and upper
4193 shall be specified. If the tolower keyword is omitted from the locale definition,
4194 the mapping is the reverse mapping of the one specified for toupper.

4195 The following table shows the character class combinations allowed:

4196 Table 7-1 Valid Character Class Combinations

4197 Can Also Belong To___
4198 In Class upper lower alpha digit space cntrl punct graph print xdigit blank___
4199 upper — A x x x x A A — x
4200 lower — A x x x x A A — x
4201 alpha — — x x x x A A — x
4202 digit x x x x x x A A A x
4203 space x x x x — * * * x —
4204 cntrl x x x x — x x x x —
4205 punct x x x x — x A A x —
4206 graph — — — — — x — A — —
4207 print — — — — — x — — — —
4208 xdigit — — — — x x x A A x
4209 blank x x x x A — * * * x___LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

4210 Notes:

4211 1. Explanation of codes:

4212 A Automatically included; see text.

4213 — Permitted.

4214 x Mutually-exclusive.

4215 * See note 2.

4216 2. The <space>, which is part of the space and blank classes, cannot belong to punct or
4217 graph, but shall automatically belong to the print class. Other space or blank characters
4218 can be classified as any of punct, graph, or print.

4219 7.3.1.1 LC_CTYPE Category in the POSIX Locale

4220 The character classifications for the POSIX locale follow; the code listing depicts the localedef
4221 input, the table represents the same information, sorted by character.

4222 LC_CTYPE
4223 # The following is the POSIX locale LC_CTYPE.
4224 # "alpha" is by default "upper" and "lower"
4225 # "alnum" is by definition "alpha" and "digit"
4226 # "print" is by default "alnum", "punct" and the <space>
4227 # "graph" is by default "alnum" and "punct"
4228 #
4229 upper <A>;;<C>;<D>;<E>;<F>;<G>;<H>;<I>;<J>;<K>;<L>;<M>;\
4230 <N>;<O>;<P>;<Q>;<R>;<S>;<T>;<U>;<V>;<W>;<X>;<Y>;<Z>
4231 #

126 Technical Standard (2001) (Draft April 13, 2001)

Locale Locale Definition

4232 lower <a>;;<c>;<d>;<e>;<f>;<g>;<h>;<i>;<j>;<k>;<l>;<m>;\
4233 <n>;<o>;<p>;<q>;<r>;<s>;<t>;<u>;<v>;<w>;<x>;<y>;<z>
4234 #
4235 digit <zero>;<one>;<two>;<three>;<four>;<five>;<six>;\
4236 <seven>;<eight>;<nine>
4237 #
4238 space <tab>;<newline>;<vertical-tab>;<form-feed>;\
4239 <carriage-return>;<space>
4240 #
4241 cntrl <alert>;<backspace>;<tab>;<newline>;<vertical-tab>;\
4242 <form-feed>;<carriage-return>;\
4243 <NUL>;<SOH>;<STX>;<ETX>;<EOT>;<ENQ>;<ACK>;<SO>;\
4244 <SI>;<DLE>;<DC1>;<DC2>;<DC3>;<DC4>;<NAK>;<SYN>;\
4245 <ETB>;<CAN>;;<SUB>;<ESC>;<IS4>;<IS3>;<IS2>;\
4246 <IS1>;
4247 #
4248 punct <exclamation-mark>;<quotation-mark>;<number-sign>;\
4249 <dollar-sign>;<percent-sign>;<ampersand>;<apostrophe>;\
4250 <left-parenthesis>;<right-parenthesis>;<asterisk>;\
4251 <plus-sign>;<comma>;<hyphen>;<period>;<slash>;\
4252 <colon>;<semicolon>;<less-than-sign>;<equals-sign>;\
4253 <greater-than-sign>;<question-mark>;<commercial-at>;\
4254 <left-square-bracket>;<backslash>;<right-square-bracket>;\
4255 <circumflex>;<underscore>;<grave-accent>;<left-curly-bracket>;\
4256 <vertical-line>;<right-curly-bracket>;<tilde>
4257 #
4258 xdigit <zero>;<one>;<two>;<three>;<four>;<five>;<six>;<seven>;\
4259 <eight>;<nine>;<A>;;<C>;<D>;<E>;<F>;<a>;;<c>;<d>;<e>;<f>
4260 #
4261 blank <space>;<tab>
4262 #
4263 toupper (<a>,<A>);(,);(<c>,<C>);(<d>,<D>);(<e>,<E>);\
4264 (<f>,<F>);(<g>,<G>);(<h>,<H>);(<i>,<I>);(<j>,<J>);\
4265 (<k>,<K>);(<l>,<L>);(<m>,<M>);(<n>,<N>);(<o>,<O>);\
4266 (<p>,<P>);(<q>,<Q>);(<r>,<R>);(<s>,<S>);(<t>,<T>);\
4267 (<u>,<U>);(<v>,<V>);(<w>,<W>);(<x>,<X>);(<y>,<Y>);(<z>,<Z>)
4268 #
4269 tolower (<A>,<a>);(,);(<C>,<c>);(<D>,<d>);(<E>,<e>);\
4270 (<F>,<f>);(<G>,<g>);(<H>,<h>);(<I>,<i>);(<J>,<j>);\
4271 (<K>,<k>);(<L>,<l>);(<M>,<m>);(<N>,<n>);(<O>,<o>);\
4272 (<P>,<p>);(<Q>,<q>);(<R>,<r>);(<S>,<s>);(<T>,<t>);\
4273 (<U>,<u>);(<V>,<v>);(<W>,<w>);(<X>,<x>);(<Y>,<y>);(<Z>,<z>)
4274 END LC_CTYPE

Base Definitions, Issue 6 127

Locale Definition Locale

4275 __
4276 Symbolic Name Other Case Character Classes__LL LL LL LL

4277 <NUL> cntrl
4278 <SOH> cntrl
4279 <STX> cntrl
4280 <ETX> cntrl
4281 <EOT> cntrl
4282 <ENQ> cntrl
4283 <ACK> cntrl
4284 <alert> cntrl
4285 <backspace> cntrl
4286 <tab> cntrl, space, blank
4287 <newline> cntrl, space
4288 <vertical-tab> cntrl, space
4289 <form-feed> cntrl, space
4290 <carriage-return> cntrl, space
4291 <SO> cntrl
4292 <SI> cntrl
4293 <DLE> cntrl
4294 <DC1> cntrl
4295 <DC2> cntrl
4296 <DC3> cntrl
4297 <DC4> cntrl
4298 <NAK> cntrl
4299 <SYN> cntrl
4300 <ETB> cntrl
4301 <CAN> cntrl
4302 cntrl
4303 <SUB> cntrl
4304 <ESC> cntrl
4305 <IS4> cntrl
4306 <IS3> cntrl
4307 <IS2> cntrl
4308 <IS1> cntrl
4309 <space> space, print, blank
4310 <exclamation-mark> punct, print, graph
4311 <quotation-mark> punct, print, graph
4312 <number-sign> punct, print, graph
4313 <dollar-sign> punct, print, graph
4314 <percent-sign> punct, print, graph
4315 <ampersand> punct, print, graph
4316 <apostrophe> punct, print, graph
4317 <left-parenthesis> punct, print, graph
4318 <right-parenthesis> punct, print, graph
4319 <asterisk> punct, print, graph
4320 <plus-sign> punct, print, graph
4321 <comma> punct, print, graph
4322 <hyphen> punct, print, graph
4323 <period> punct, print, graph__LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

128 Technical Standard (2001) (Draft April 13, 2001)

Locale Locale Definition

4324 __
4325 Symbolic Name Other Case Character Classes__LL LL LL LL

4326 <slash> punct, print, graph
4327 <zero> digit, xdigit, print, graph
4328 <one> digit, xdigit, print, graph
4329 <two> digit, xdigit, print, graph
4330 <three> digit, xdigit, print, graph
4331 <four> digit, xdigit, print, graph
4332 <five> digit, xdigit, print, graph
4333 <six> digit, xdigit, print, graph
4334 <seven> digit, xdigit, print, graph
4335 <eight> digit, xdigit, print, graph
4336 <nine> digit, xdigit, print, graph
4337 <colon> punct, print, graph
4338 <semicolon> punct, print, graph
4339 <less-than-sign> punct, print, graph
4340 <equals-sign> punct, print, graph
4341 <greater-than-sign> punct, print, graph
4342 <question-mark> punct, print, graph
4343 <commercial-at> punct, print, graph
4344 <A> <a> upper, xdigit, alpha, print, graph
4345 upper, xdigit, alpha, print, graph
4346 <C> <c> upper, xdigit, alpha, print, graph
4347 <D> <d> upper, xdigit, alpha, print, graph
4348 <E> <e> upper, xdigit, alpha, print, graph
4349 <F> <f> upper, xdigit, alpha, print, graph
4350 <G> <g> upper, alpha, print, graph
4351 <H> <h> upper, alpha, print, graph
4352 <I> <i> upper, alpha, print, graph
4353 <J> <j> upper, alpha, print, graph
4354 <K> <k> upper, alpha, print, graph
4355 <L> <l> upper, alpha, print, graph
4356 <M> <m> upper, alpha, print, graph
4357 <N> <n> upper, alpha, print, graph
4358 <O> <o> upper, alpha, print, graph
4359 <P> <p> upper, alpha, print, graph
4360 <Q> <q> upper, alpha, print, graph
4361 <R> <r> upper, alpha, print, graph
4362 <S> <s> upper, alpha, print, graph
4363 <T> <t> upper, alpha, print, graph
4364 <U> <u> upper, alpha, print, graph
4365 <V> <v> upper, alpha, print, graph
4366 <W> <w> upper, alpha, print, graph
4367 <X> <x> upper, alpha, print, graph
4368 <Y> <y> upper, alpha, print, graph
4369 <Z> <z> upper, alpha, print, graph
4370 <left-square-bracket> punct, print, graph
4371 <backslash> punct, print, graph
4372 <right-square-bracket> punct, print, graph__LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Base Definitions, Issue 6 129

Locale Definition Locale

4373 __
4374 Symbolic Name Other Case Character Classes__LL LL LL LL

4375 <circumflex> punct, print, graph
4376 <underscore> punct, print, graph
4377 <grave-accent> punct, print, graph
4378 <a> <A> lower, xdigit, alpha, print, graph
4379 lower, xdigit, alpha, print, graph
4380 <c> <C> lower, xdigit, alpha, print, graph
4381 <d> <D> lower, xdigit, alpha, print, graph
4382 <e> <E> lower, xdigit, alpha, print, graph
4383 <f> <F> lower, xdigit, alpha, print, graph
4384 <g> <G> lower, alpha, print, graph
4385 <h> <H> lower, alpha, print, graph
4386 <i> <I> lower, alpha, print, graph
4387 <j> <J> lower, alpha, print, graph
4388 <k> <K> lower, alpha, print, graph
4389 <l> <L> lower, alpha, print, graph
4390 <m> <M> lower, alpha, print, graph
4391 <n> <N> lower, alpha, print, graph
4392 <o> <O> lower, alpha, print, graph
4393 <p> <P> lower, alpha, print, graph
4394 <q> <Q> lower, alpha, print, graph
4395 <r> <R> lower, alpha, print, graph
4396 <s> <S> lower, alpha, print, graph
4397 <t> <T> lower, alpha, print, graph
4398 <u> <U> lower, alpha, print, graph
4399 <v> <V> lower, alpha, print, graph
4400 <w> <W> lower, alpha, print, graph
4401 <x> <X> lower, alpha, print, graph
4402 <y> <Y> lower, alpha, print, graph
4403 <z> <Z> lower, alpha, print, graph
4404 <left-curly-bracket> punct, print, graph
4405 <vertical-line> punct, print, graph
4406 <right-curly-bracket> punct, print, graph
4407 <tilde> punct, print, graph
4408 cntrl__L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

4409 7.3.2 LC_COLLATE

4410 The LC_COLLATE category provides a collation sequence definition for numerous utilities in the
4411 Shell and Utilities volume of IEEE Std 1003.1-200x (sort, uniq, and so on), regular expression
4412 matching (see Chapter 9 (on page 165)) and the strcoll(), strxfrm(), wcscoll(), and wcsxfrm()
4413 functions in the System Interfaces volume of IEEE Std 1003.1-200x.

4414 A collation sequence definition shall define the relative order between collating elements
4415 (characters and multi-character collating elements) in the locale. This order is expressed in terms
4416 of collation values; that is, by assigning each element one or more collation values (also known
4417 as collation weights). This does not imply that implementations shall assign such values, but
4418 that ordering of strings using the resultant collation definition in the locale behaves as if such
4419 assignment is done and used in the collation process. At least the following capabilities are
4420 provided:

4421 1. Multi-character collating elements. Specification of multi-character collating elements
4422 (that is, sequences of two or more characters to be collated as an entity).

130 Technical Standard (2001) (Draft April 13, 2001)

Locale Locale Definition

4423 2. User-defined ordering of collating elements. Each collating element shall be assigned a
4424 collation value defining its order in the character (or basic) collation sequence. This
4425 ordering is used by regular expressions and pattern matching and, unless collation weights
4426 are explicitly specified, also as the collation weight to be used in sorting.

4427 3. Multiple weights and equivalence classes. Collating elements can be assigned one or
4428 more (up to the limit {COLL_WEIGHTS_MAX}, as defined in <limits.h>) collating weights
4429 for use in sorting. The first weight is hereafter referred to as the primary weight.

4430 4. One-to-many mapping. A single character is mapped into a string of collating elements.

4431 5. Equivalence class definition. Two or more collating elements have the same collation
4432 value (primary weight).

4433 6. Ordering by weights. When two strings are compared to determine their relative order,
4434 the two strings are first broken up into a series of collating elements; the elements in each
4435 successive pair of elements are then compared according to the relative primary weights
4436 for the elements. If equal, and more than one weight has been assigned, then the pairs of
4437 collating elements are recompared according to the relative subsequent weights, until
4438 either a pair of collating elements compare unequal or the weights are exhausted.

4439 The following keywords shall be recognized in a collation sequence definition. They are
4440 described in detail in the following sections.

4441 copy Specify the name of an existing locale which shall be used as the |
4442 definition of this category. If this keyword is specified, no other keyword |
4443 shall be specified. |

4444 collating-element Define a collating-element symbol representing a multi-character
4445 collating element. This keyword is optional.

4446 collating-symbol Define a collating symbol for use in collation order statements. This
4447 keyword is optional.

4448 order_start Define collation rules. This statement shall be followed by one or more |
4449 collation order statements, assigning character collation values and
4450 collation weights to collating elements.

4451 order_end Specify the end of the collation-order statements.

4452 7.3.2.1 The collating-element Keyword

4453 In addition to the collating elements in the character set, the collating-element keyword can be
4454 used to define multi-character collating elements. The syntax is as follows:

4455 "collating-element %s from \"%s\"\n", < collating-symbol >, < string >

4456 The <collating-symbol> operand shall be a symbolic name, enclosed between angle brackets (’<’
4457 and ’>’), and shall not duplicate any symbolic name in the current charmap file (if any), or any
4458 other symbolic name defined in this collation definition. The string operand is a string of two or
4459 more characters that collates as an entity. A <collating-element> defined via this keyword is only
4460 recognized with the LC_COLLATE category.

4461 For example:

4462 collating-element <ch> from "<c><h>"
4463 collating-element <e-acute> from "<acute><e>"
4464 collating-element <ll> from "ll"

Base Definitions, Issue 6 131

Locale Definition Locale

4465 7.3.2.2 The collating-symbol Keyword

4466 This keyword shall be used to define symbols for use in collation sequence statements; that is,
4467 between the order_start and the order_end keywords. The syntax is as follows:

4468 "collating-symbol %s\n", < collating-symbol >

4469 The <collating-symbol> shall be a symbolic name, enclosed between angle brackets (’<’ and
4470 ’>’), and shall not duplicate any symbolic name in the current charmap file (if any), or any
4471 other symbolic name defined in this collation definition. A <collating-symbol> defined via this
4472 keyword is only recognized within the LC_COLLATE category.

4473 For example:

4474 collating-symbol <UPPER_CASE>
4475 collating-symbol <HIGH>

4476 The collating-symbol keyword defines a symbolic name that can be associated with a relative
4477 position in the character order sequence. While such a symbolic name does not represent any
4478 collating element, it can be used as a weight.

4479 7.3.2.3 The order_start Keyword

4480 The order_start keyword shall precede collation order entries and also define the number of
4481 weights for this collation sequence definition and other collation rules. The syntax is as follows:

4482 "order_start %s;%s;...;%s\n", < sort-rules >, < sort-rules > ...

4483 The operands to the order_start keyword are optional. If present, the operands define rules to be
4484 applied when strings are compared. The number of operands define how many weights each
4485 element is assigned; if no operands are present, one forward operand is assumed. If present, the
4486 first operand defines rules to be applied when comparing strings using the first (primary)
4487 weight; the second when comparing strings using the second weight, and so on. Operands shall
4488 be separated by semicolons (’;’). Each operand shall consist of one or more collation
4489 directives, separated by commas (’,’). If the number of operands exceeds the
4490 {COLL_WEIGHTS_MAX} limit, the utility shall issue a warning message. The following
4491 directives shall be supported:

4492 forward Specifies that comparison operations for the weight level shall proceed from start
4493 of string towards the end of string.

4494 backward Specifies that comparison operations for the weight level shall proceed from end of
4495 string towards the beginning of string.

4496 position Specifies that comparison operations for the weight level shall consider the relative
4497 position of elements in the strings not subject to IGNORE. The string containing
4498 an element not subject to IGNORE after the fewest collating elements subject to
4499 IGNORE from the start of the compare shall collate first. If both strings contain a
4500 character not subject to IGNORE in the same relative position, the collating values
4501 assigned to the elements shall determine the ordering. In case of equality,
4502 subsequent characters not subject to IGNORE shall be considered in the same
4503 manner.

4504 The directives forward and backward are mutually-exclusive.

4505 If no operands are specified, a single forward operand shall be assumed.

4506 For example:

132 Technical Standard (2001) (Draft April 13, 2001)

Locale Locale Definition

4507 order_start forward;backward

4508 7.3.2.4 Collation Order

4509 The order_start keyword shall be followed by collating identifier entries. The syntax for the
4510 collating element entries is as follows:

4511 "%s %s;%s;...;%s\n", < collating-identifier >, < weight >, < weight >, ...

4512 Each collating-identifier shall consist of either a character (in any of the forms defined in Section
4513 7.3 (on page 120)), a <collating-element>, a <collating-symbol>, an ellipsis, or the special symbol
4514 UNDEFINED. The order in which collating elements are specified determines the character
4515 order sequence, such that each collating element shall compare less than the elements following
4516 it.

4517 A <collating-element> shall be used to specify multi-character collating elements, and indicates
4518 that the character sequence specified via the <collating-element> is to be collated as a unit and in
4519 the relative order specified by its place.

4520 A <collating-symbol> can be used to define a position in the relative order for use in weights. No
4521 weights shall be specified with a <collating-symbol>.

4522 The ellipsis symbol specifies that a sequence of characters shall collate according to their
4523 encoded character values. It shall be interpreted as indicating that all characters with a coded
4524 character set value higher than the value of the character in the preceding line, and lower than
4525 the coded character set value for the character in the following line, in the current coded
4526 character set, shall be placed in the character collation order between the previous and the
4527 following character in ascending order according to their coded character set values. An initial
4528 ellipsis shall be interpreted as if the preceding line specified the NUL character, and a trailing
4529 ellipsis as if the following line specified the highest coded character set value in the current
4530 coded character set. An ellipsis shall be treated as invalid if the preceding or following lines do
4531 not specify characters in the current coded character set. The use of the ellipsis symbol ties the
4532 definition to a specific coded character set and may preclude the definition from being portable
4533 between implementations.

4534 The symbol UNDEFINED shall be interpreted as including all coded character set values not
4535 specified explicitly or via the ellipsis symbol. Such characters shall be inserted in the character
4536 collation order at the point indicated by the symbol, and in ascending order according to their
4537 coded character set values. If no UNDEFINED symbol is specified, and the current coded
4538 character set contains characters not specified in this section, the utility shall issue a warning
4539 message and place such characters at the end of the character collation order.

4540 The optional operands for each collation-element shall be used to define the primary, secondary,
4541 or subsequent weights for the collating element. The first operand specifies the relative primary
4542 weight, the second the relative secondary weight, and so on. Two or more collation-elements can
4543 be assigned the same weight; they belong to the same equivalence class if they have the same
4544 primary weight. Collation shall behave as if, for each weight level, elements subject to IGNORE
4545 are removed, unless the position collation directive is specified for the corresponding level with
4546 the order_start keyword. Then each successive pair of elements shall be compared according to
4547 the relative weights for the elements. If the two strings compare equal, the process shall be
4548 repeated for the next weight level, up to the limit {COLL_WEIGHTS_MAX}.

4549 Weights shall be expressed as characters (in any of the forms specified in Section 7.3 (on page
4550 120)), <collating-symbol>s, <collating-element>s, an ellipsis, or the special symbol IGNORE. A
4551 single character, a <collating-symbol>, or a <collating-element> shall represent the relative position
4552 in the character collating sequence of the character or symbol, rather than the character or
4553 characters themselves. Thus, rather than assigning absolute values to weights, a particular

Base Definitions, Issue 6 133

Locale Definition Locale

4554 weight is expressed using the relative order value assigned to a collating element based on its
4555 order in the character collation sequence.

4556 One-to-many mapping is indicated by specifying two or more concatenated characters or
4557 symbolic names. For example, if the <eszet> is given the string "<s><s>" as a weight,
4558 comparisons are performed as if all occurrences of the <eszet> are replaced by "<s><s>"
4559 (assuming that "<s>" has the collating weight "<s>"). If it is necessary to define <eszet> and
4560 "<s><s>" as an equivalence class, then a collating element must be defined for the string "ss" .

4561 All characters specified via an ellipsis shall by default be assigned unique weights, equal to the
4562 relative order of characters. Characters specified via an explicit or implicit UNDEFINED special
4563 symbol shall by default be assigned the same primary weight (that is, they belong to the same
4564 equivalence class). An ellipsis symbol as a weight shall be interpreted to mean that each
4565 character in the sequence shall have unique weights, equal to the relative order of their character
4566 in the character collation sequence. The use of the ellipsis as a weight shall be treated as an error
4567 if the collating element is neither an ellipsis nor the special symbol UNDEFINED.

4568 The special keyword IGNORE as a weight shall indicate that when strings are compared using
4569 the weights at the level where IGNORE is specified, the collating element shall be ignored; that
4570 is, as if the string did not contain the collating element. In regular expressions and pattern
4571 matching, all characters that are subject to IGNORE in their primary weight form an
4572 equivalence class.

4573 An empty operand shall be interpreted as the collating element itself.

4574 For example, the order statement:

4575 <a> <a>;<a>

4576 is equal to:

4577 <a>

4578 An ellipsis can be used as an operand if the collating element was an ellipsis, and shall be
4579 interpreted as the value of each character defined by the ellipsis.

4580 The collation order as defined in this section affects the interpretation of bracket expressions in
4581 regular expressions (see Section 9.3.5 (on page 168)).

4582 For example:

4583 order_start forward;backward
4584 UNDEFINED IGNORE;IGNORE
4585 <LOW>
4586 <space> <LOW>;<space>
4587 ... <LOW>;...
4588 <a> <a>;<a>
4589 <a-acute> <a>;<a-acute>
4590 <a-grave> <a>;<a-grave>
4591 <A> <a>;<A>
4592 <A-acute> <a>;<A-acute>
4593 <A-grave> <a>;<A-grave>
4594 <ch> <ch>;<ch>
4595 <Ch> <ch>;<Ch>
4596 <s> <s>;<s>
4597 <eszet> "<s><s>";"<eszet><eszet>"
4598 order_end

134 Technical Standard (2001) (Draft April 13, 2001)

Locale Locale Definition

4599 This example is interpreted as follows:

4600 1. The UNDEFINED means that all characters not specified in this definition (explicitly or
4601 via the ellipsis) shall be ignored for collation purposes.

4602 2. All characters between <space> and ’a’ shall have the same primary equivalence class
4603 and individual secondary weights based on their ordinal encoded values.

4604 3. All characters based on the uppercase or lowercase character ’a’ belong to the same
4605 primary equivalence class.

4606 4. The multi-character collating element <ch> is represented by the collating symbol <ch>
4607 and belongs to the same primary equivalence class as the multi-character collating element
4608 <Ch>.

4609 7.3.2.5 The order_end Keyword

4610 The collating order entries shall be terminated with an order_end keyword.

4611 7.3.2.6 LC_COLLATE Category in the POSIX Locale

4612 The collation sequence definition of the POSIX locale follows; the code listing depicts the
4613 localedef input.

4614 LC_COLLATE
4615 # This is the POSIX locale definition for the LC_COLLATE category.
4616 # The order is the same as in the ASCII codeset.
4617 order_start forward
4618 <NUL>
4619 <SOH>
4620 <STX>
4621 <ETX>
4622 <EOT>
4623 <ENQ>
4624 <ACK>
4625 <alert>
4626 <backspace>
4627 <tab>
4628 <newline>
4629 <vertical-tab>
4630 <form-feed>
4631 <carriage-return>
4632 <SO>
4633 <SI>
4634 <DLE>
4635 <DC1>
4636 <DC2>
4637 <DC3>
4638 <DC4>
4639 <NAK>
4640 <SYN>
4641 <ETB>
4642 <CAN>
4643
4644 <SUB>
4645 <ESC>

Base Definitions, Issue 6 135

Locale Definition Locale

4646 <IS4>
4647 <IS3>
4648 <IS2>
4649 <IS1>
4650 <space>
4651 <exclamation-mark>
4652 <quotation-mark>
4653 <number-sign>
4654 <dollar-sign>
4655 <percent-sign>
4656 <ampersand>
4657 <apostrophe>
4658 <left-parenthesis>
4659 <right-parenthesis>
4660 <asterisk>
4661 <plus-sign>
4662 <comma>
4663 <hyphen>
4664 <period>
4665 <slash>
4666 <zero>
4667 <one>
4668 <two>
4669 <three>
4670 <four>
4671 <five>
4672 <six>
4673 <seven>
4674 <eight>
4675 <nine>
4676 <colon>
4677 <semicolon>
4678 <less-than-sign>
4679 <equals-sign>
4680 <greater-than-sign>
4681 <question-mark>
4682 <commercial-at>
4683 <A>
4684
4685 <C>
4686 <D>
4687 <E>
4688 <F>
4689 <G>
4690 <H>
4691 <I>
4692 <J>
4693 <K>
4694 <L>
4695 <M>
4696 <N>
4697 <O>

136 Technical Standard (2001) (Draft April 13, 2001)

Locale Locale Definition

4698 <P>
4699 <Q>
4700 <R>
4701 <S>
4702 <T>
4703 <U>
4704 <V>
4705 <W>
4706 <X>
4707 <Y>
4708 <Z>
4709 <left-square-bracket>
4710 <backslash>
4711 <right-square-bracket>
4712 <circumflex>
4713 <underscore>
4714 <grave-accent>
4715 <a>
4716
4717 <c>
4718 <d>
4719 <e>
4720 <f>
4721 <g>
4722 <h>
4723 <i>
4724 <j>
4725 <k>
4726 <l>
4727 <m>
4728 <n>
4729 <o>
4730 <p>
4731 <q>
4732 <r>
4733 <s>
4734 <t>
4735 <u>
4736 <v>
4737 <w>
4738 <x>
4739 <y>
4740 <z>
4741 <left-curly-bracket>
4742 <vertical-line>
4743 <right-curly-bracket>
4744 <tilde>
4745
4746 order_end
4747 #
4748 END LC_COLLATE

Base Definitions, Issue 6 137

Locale Definition Locale

4749 7.3.3 LC_MONETARY

4750 The LC_MONETARY category shall define the rules and symbols that are used to format
4751 XSI monetary numeric information. This information is available through the localeconv () function
4752 and is used by the strfmon() function.

4753 XSI Some of the information is also available in an alternative form via the nl_langinfo () function
4754 (see CRNCYSTR in <langinfo.h>).

4755 The following items are defined in this category of the locale. The item names are the keywords
4756 recognized by the localedef utility when defining a locale. They are also similar to the member
4757 names of the lconv structure defined in <locale.h>; see <locale.h> for the exact symbols in the
4758 header. The localeconv () function returns {CHAR_MAX} for unspecified integer items and the
4759 empty string ("") for unspecified or size zero string items.

4760 In a locale definition file, the operands are strings, formatted as indicated by the grammar in
4761 Section 7.4 (on page 149). For some keywords, the strings can contain only integers. Keywords
4762 that are not provided, string values set to the empty string (""), or integer keywords set to −1,
4763 are used to indicate that the value is not available in the locale. The following keywords shall be
4764 recognized:

4765 copy Specify the name of an existing locale which shall be used as the |
4766 definition of this category. If this keyword is specified, no other keyword |
4767 shall be specified. |
4768 Note: This is a localedef utility keyword, unavailable through localeconv ().

4769 int_curr_symbol The international currency symbol. The operand shall be a four-character
4770 string, with the first three characters containing the alphabetic
4771 international currency symbol in accordance with those specified in the
4772 ISO 4217: 1995 standard. The fourth character shall be the character used
4773 to separate the international currency symbol from the monetary
4774 quantity.

4775 currency_symbol The string that shall be used as the local currency symbol.

4776 mon_decimal_point The operand is a string containing the symbol that shall be used as the
4777 decimal delimiter (radix character) in monetary formatted quantities. |

4778 mon_thousands_sep The operand is a string containing the symbol that shall be used as a
4779 separator for groups of digits to the left of the decimal delimiter in |
4780 formatted monetary quantities. |

4781 mon_grouping Define the size of each group of digits in formatted monetary quantities.
4782 The operand is a sequence of integers separated by semicolons. Each
4783 integer specifies the number of digits in each group, with the initial
4784 integer defining the size of the group immediately preceding the decimal
4785 delimiter, and the following integers defining the preceding groups. If the
4786 last integer is not −1, then the size of the previous group (if any) shall be
4787 repeatedly used for the remainder of the digits. If the last integer is −1,
4788 then no further grouping shall be performed.

4789 positive_sign A string that shall be used to indicate a non-negative-valued formatted
4790 monetary quantity.

4791 negative_sign A string that shall be used to indicate a negative-valued formatted
4792 monetary quantity.

4793 int_frac_digits An integer representing the number of fractional digits (those to the right
4794 of the decimal delimiter) to be written in a formatted monetary quantity

138 Technical Standard (2001) (Draft April 13, 2001)

Locale Locale Definition

4795 using int_curr_symbol.

4796 frac_digits An integer representing the number of fractional digits (those to the right
4797 of the decimal delimiter) to be written in a formatted monetary quantity
4798 using currency_symbol.

4799 p_cs_precedes An integer set to 1 if the currency_symbol precedes the value for a |
4800 monetary quantity with a non-negative value, and set to 0 if the symbol
4801 succeeds the value.

4802 p_sep_by_space An integer set to 0 if no space separates the currency_symbol from the |
4803 value for a monetary quantity with a non-negative value, set to 1 if a
4804 space separates the symbol from the value, and set to 2 if a space
4805 separates the symbol and the sign string, if adjacent.

4806 n_cs_precedes An integer set to 1 if the currency_symbol precedes the value for a |
4807 monetary quantity with a negative value, and set to 0 if the symbol
4808 succeeds the value.

4809 n_sep_by_space An integer set to 0 if no space separates the currency_symbol from the |
4810 value for a monetary quantity with a negative value, set to 1 if a space
4811 separates the symbol from the value, and set to 2 if a space separates the
4812 symbol and the sign string, if adjacent.

4813 p_sign_posn An integer set to a value indicating the positioning of the positive_sign
4814 for a monetary quantity with a non-negative value. The following integer |
4815 values shall be recognized for int_n_sign_posn, int_p_sign_posn, |
4816 n_sign_posn, and p_sign_posn: |

4817 0 Parentheses enclose the quantity and the currency_symbol. |

4818 1 The sign string precedes the quantity and the currency_symbol. |

4819 2 The sign string succeeds the quantity and the currency_symbol. |

4820 3 The sign string precedes the currency_symbol. |

4821 4 The sign string succeeds the currency_symbol. |

4822 n_sign_posn An integer set to a value indicating the positioning of the negative_sign
4823 for a negative formatted monetary quantity. |

4824 int_p_cs_precedes An integer set to 1 if the int_curr_symbol precedes the value for a |
4825 monetary quantity with a non-negative value, and set to 0 if the symbol |
4826 succeeds the value. |

4827 int_n_cs_precedes An integer set to 1 if the int_curr_symbol precedes the value for a |
4828 monetary quantity with a negative value, and set to 0 if the symbol |
4829 succeeds the value. |

4830 int_p_sep_by_space An integer to set 0 if no space separates the int_curr_symbol from the |
4831 value for a monetary quantity with a non-negative value, set to 1 if a |
4832 space separates the symbol from the value, and set to 2 if a space |
4833 separates the symbol and the sign string, if adjacent. |

4834 int_n_sep_by_space An integer set to 0 if no space separates the int_curr_symbol from the |
4835 value for a monetary quantity with a negative value, set to 1 if a space |
4836 separates the symbol from the value, and set to 2 if a space separates the |
4837 symbol and the sign string, if adjacent. |

Base Definitions, Issue 6 139

Locale Definition Locale

4838 int_p_sign_posn An integer set to a value indicating the positioning of the positive_sign |
4839 for a positive monetary quantity formatted with the international format. |

4840 int_n_sign_posn An integer set to a value indicating the positioning of the negative_sign |
4841 for a negative monetary quantity formatted with the international format. |

4842 7.3.3.1 LC_MONETARY Category in the POSIX Locale

4843 The monetary formatting definitions for the POSIX locale follow; the code listing depicting the
4844 XSI localedef input, the table representing the same information with the addition of localeconv () and
4845 nl_langinfo ()formats. All values are unspecified in the POSIX locale.

4846 LC_MONETARY
4847 # This is the POSIX locale definition for
4848 # the LC_MONETARY category.
4849 #
4850 int_curr_symbol ""
4851 currency_symbol ""
4852 mon_decimal_point ""
4853 mon_thousands_sep ""
4854 mon_grouping -1
4855 positive_sign ""
4856 negative_sign ""
4857 int_frac_digits -1
4858 frac_digits -1
4859 p_cs_precedes -1
4860 p_sep_by_space -1
4861 n_cs_precedes -1
4862 n_sep_by_space -1
4863 p_sign_posn -1
4864 n_sign_posn -1
4865 #
4866 END LC_MONETARY

__
4867 langinfo POSIX Locale localeconv() localedef
4868 Item Constant Value Value Value__
4869 int_curr_symbol — N/A " " " "
4870 currency_symbol CRNCYSTR N/A " " " "
4871 mon_decimal_point — N/A " " " "
4872 mon_thousands_sep — N/A " " " "
4873 mon_grouping — N/A " " " "
4874 positive_sign — N/A " " " "
4875 negative_sign — N/A " " " "
4876 int_frac_digits — N/A {CHAR_MAX} −1
4877 frac_digits — N/A {CHAR_MAX} −1
4878 p_cs_precedes CRNCYSTR N/A {CHAR_MAX} −1
4879 p_sep_by_space — N/A {CHAR_MAX} −1
4880 n_cs_precedes CRNCYSTR N/A {CHAR_MAX} −1
4881 n_sep_by_space — N/A {CHAR_MAX} −1
4882 p_sign_posn — N/A {CHAR_MAX} −1
4883 n_sign_posn — N/A {CHAR_MAX} −1__L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

4884 XSI In the preceding table, the langinfo Constant column represents an XSI-conformant extension.
4885 The entry N/A indicates that the value is not available in the POSIX locale.

140 Technical Standard (2001) (Draft April 13, 2001)

Locale Locale Definition

4886 7.3.4 LC_NUMERIC

4887 The LC_NUMERIC category shall define the rules and symbols that are used to format non-
4888 XSI monetary numeric information. This information is available through the localeconv () function.
4889 Some of the information is also available in an alternative form via the nl_langinfo () function.

4890 The following items are defined in this category of the locale. The item names are the keywords
4891 recognized by the localedef utility when defining a locale. They are also similar to the member
4892 names of the lconv structure defined in <locale.h>; see <locale.h> for the exact symbols in the
4893 header. The localeconv () function returns {CHAR_MAX} for unspecified integer items and the
4894 empty string ("") for unspecified or size zero string items.

4895 In a locale definition file, the operands are strings, formatted as indicated by the grammar in
4896 Section 7.4 (on page 149). For some keywords, the strings can only contain integers. Keywords
4897 that are not provided, string values set to the empty string (""), or integer keywords set to −1,
4898 shall be used to indicate that the value is not available in the locale. The following keywords
4899 shall be recognized:

4900 copy Specify the name of an existing locale which shall be used as the definition of |
4901 this category. If this keyword is specified, no other keyword shall be specified. |
4902 Note: This is a localedef utility keyword, unavailable through localeconv ().

4903 decimal_point The operand is a string containing the symbol that shall be used as the
4904 decimal delimiter (radix character) in numeric, non-monetary formatted
4905 quantities. This keyword cannot be omitted and cannot be set to the empty
4906 string. In contexts where standards limit the decimal_point to a single byte,
4907 the result of specifying a multi-byte operand shall be unspecified.

4908 thousands_sep The operand is a string containing the symbol that shall be used as a separator
4909 for groups of digits to the left of the decimal delimiter in numeric, non-
4910 monetary formatted monetary quantities. In contexts where standards limit
4911 the thousands_sep to a single byte, the result of specifying a multi-byte
4912 operand shall be unspecified.

4913 grouping Define the size of each group of digits in formatted non-monetary quantities.
4914 The operand is a sequence of integers separated by semicolons. Each integer
4915 specifies the number of digits in each group, with the initial integer defining
4916 the size of the group immediately preceding the decimal delimiter, and the
4917 following integers defining the preceding groups. If the last integer is not −1,
4918 then the size of the previous group (if any) shall be repeatedly used for the
4919 remainder of the digits. If the last integer is −1, then no further grouping shall
4920 be performed.

4921 7.3.4.1 LC_NUMERIC Category in the POSIX Locale

4922 The non-monetary numeric formatting definitions for the POSIX locale follow; the code listing
4923 depicting the localedef input, the table representing the same information with the addition of
4924 XSI localeconv () values, and nl_langinfo () constants.

4925 LC_NUMERIC
4926 # This is the POSIX locale definition for
4927 # the LC_NUMERIC category.
4928 #
4929 decimal_point "<period>"
4930 thousands_sep ""
4931 grouping -1
4932 #

Base Definitions, Issue 6 141

Locale Definition Locale

4933 END LC_NUMERIC
__

4934 langinfo POSIX Locale localeconv() localedef
4935 Item Constant Value Value Value__
4936 decimal_point RADIXCHAR "." "." .
4937 thousands_sep THOUSEP N/A " " " "
4938 grouping — N/A " " −1__LL

L
L
L
L
L

LL
L
L
L
L
L

LL
L
L
L
L
L

LL
L
L
L
L
L

LL
L
L
L
L
L

LL
L
L
L
L
L

4939 XSI In the preceding table, the langinfo Constant column represents an XSI-conforming extension.
4940 The entry N/A indicates that the value is not available in the POSIX locale.

4941 7.3.5 LC_TIME

4942 The LC_TIME category shall define the interpretation of the conversion specifications supported
4943 XSI by the date utility and shall affect the behavior of the strftime(), wcsftime(), strptime(), and
4944 nl_langinfo () functions. Since the interfaces for C-language access and locale definition differ |
4945 significantly, they are described separately.

4946 7.3.5.1 LC_TIME Locale Definition

4947 For locale definition, the following mandatory keywords shall be recognized:

4948 copy Specify the name of an existing locale which shall be used as the definition of |
4949 this category. If this keyword is specified, no other keyword shall be specified. |

4950 abday Define the abbreviated weekday names, corresponding to the %aconversion
4951 specification (conversion specification in the strftime(), wcsftime(), and
4952 strptime() functions). The operand shall consist of seven semicolon-separated
4953 strings, each surrounded by double-quotes. The first string shall be the
4954 abbreviated name of the day corresponding to Sunday, the second the
4955 abbreviated name of the day corresponding to Monday, and so on.

4956 day Define the full weekday names, corresponding to the %A conversion
4957 specification. The operand shall consist of seven semicolon-separated strings,
4958 each surrounded by double-quotes. The first string is the full name of the day
4959 corresponding to Sunday, the second the full name of the day corresponding
4960 to Monday, and so on.

4961 abmon Define the abbreviated month names, corresponding to the %b conversion
4962 specification. The operand shall consist of twelve semicolon-separated strings,
4963 each surrounded by double-quotes. The first string shall be the abbreviated
4964 name of the first month of the year (January), the second the abbreviated
4965 name of the second month, and so on.

4966 mon Define the full month names, corresponding to the %B conversion
4967 specification. The operand shall consist of twelve semicolon-separated strings,
4968 each surrounded by double-quotes. The first string shall be the full name of
4969 the first month of the year (January), the second the full name of the second
4970 month, and so on.

4971 d_t_fmt Define the appropriate date and time representation, corresponding to the %c
4972 conversion specification. The operand shall consist of a string containing any
4973 combination of characters and conversion specifications. In addition, the
4974 string can contain escape sequences defined in the table in Table 5-1 (on page
4975 108) (’\\’ , ’\a’ , ’\b’ , ’\f’ , ’\n’ , ’\r’ , ’\t’ , ’\v’).

142 Technical Standard (2001) (Draft April 13, 2001)

Locale Locale Definition

4976 d_fmt Define the appropriate date representation, corresponding to the %x
4977 conversion specification. The operand shall consist of a string containing any
4978 combination of characters and conversion specifications. In addition, the
4979 string can contain escape sequences defined in the table in Table 5-1 (on page
4980 108).

4981 t_fmt Define the appropriate time representation, corresponding to the %X
4982 conversion specification. The operand shall consist of a string containing any
4983 combination of characters and conversion specifications. In addition, the
4984 string can contain escape sequences defined in the table in Table 5-1 (on page
4985 108).

4986 am_pm Define the appropriate representation of the ante meridiem and post meridiem
4987 strings, corresponding to the %p conversion specification. The operand shall
4988 consist of two strings, separated by a semicolon, each surrounded by double-
4989 quotes. The first string shall represent the ante meridiem designation, the last
4990 string the post meridiem designation.

4991 t_fmt_ampm Define the appropriate time representation in the 12-hour clock format with
4992 am_pm, corresponding to the %r conversion specification. The operand shall
4993 consist of a string and can contain any combination of characters and
4994 conversion specifications. If the string is empty, the 12-hour format is not
4995 supported in the locale.

4996 era Define how years are counted and displayed for each era in a locale. The
4997 operand shall consist of semicolon-separated strings. Each string shall be an
4998 era description segment with the format:

4999 direction : offset : start_date : end_date : era_name : era_format

5000 according to the definitions below. There can be as many era description
5001 segments as are necessary to describe the different eras.

5002 Note: The start of an era might not be the earliest point in the era—it may be the
5003 latest. For example, the Christian era BC starts on the day before January 1,
5004 AD 1, and increases with earlier time.

5005 direction Either a ’+’ or a ’ −’ character. The ’+’ character shall indicate
5006 that years closer to the start_date have lower numbers than those
5007 closer to the end_date . The ’ −’ character shall indicate that
5008 years closer to the start_date have higher numbers than those
5009 closer to the end_date .

5010 offset The number of the year closest to the start_date in the era,
5011 corresponding to the %Eyconversion specification.

5012 start_date A date in the form yyyy/mm/dd , where yyyy , mm, and dd are the
5013 year, month, and day numbers respectively of the start of the
5014 era. Years prior to AD 1 shall be represented as negative
5015 numbers.

5016 end_date The ending date of the era, in the same format as the start_date ,
5017 or one of the two special values " −*" or "+*" . The value " −*"
5018 shall indicate that the ending date is the beginning of time. The
5019 value "+*" shall indicate that the ending date is the end of time.

5020 era_name A string representing the name of the era, corresponding to the
5021 %ECconversion specification.

Base Definitions, Issue 6 143

Locale Definition Locale

5022 era_format A string for formatting the year in the era, corresponding to the
5023 %EYconversion specification.

5024 era_d_fmt Define the format of the date in alternative era notation, corresponding to the
5025 %Exconversion specification.

5026 era_t_fmt Define the locale’s appropriate alternative time format, corresponding to the
5027 %EXconversion specification.

5028 era_d_t_fmt Define the locale’s appropriate alternative date and time format,
5029 corresponding to the %Ecconversion specification.

5030 alt_digits Define alternative symbols for digits, corresponding to the %O modified
5031 conversion specification. The operand shall consist of semicolon-separated
5032 strings, each surrounded by double-quotes. The first string shall be the
5033 alternative symbol corresponding with zero, the second string the symbol
5034 corresponding with one, and so on. Up to 100 alternative symbol strings can
5035 be specified. The %Omodifier shall indicate that the string corresponding to
5036 the value specified via the conversion specification shall be used instead of the
5037 value.

5038 7.3.5.2 LC_TIME C-Language Access

5039 XSI This section describes extensions to access information in the LC_TIME category using the
5040 nl_langinfo () function. This functionality is dependent on support of the XSI extension (and the
5041 rest of this section is not further shaded for this option).

5042 The following constants used to identify items of langinfo data can be used as arguments to the
5043 nl_langinfo () function to access information in the LC_TIME category. These constants are
5044 defined in the <langinfo.h> header.

5045 ABDAY_x The abbreviated weekday names (for example Sun), where x is a number from
5046 1 to 7.

5047 DAY_x The full weekday names (for example Sunday), where x is a number from 1 to
5048 7.

5049 ABMON_x The abbreviated month names (for example Jan), where x is a number from 1
5050 to 12.

5051 MON_x The full month names (for example January), where x is a number from 1 to
5052 12.

5053 D_T_FMT The appropriate date and time representation.

5054 D_FMT The appropriate date representation.

5055 T_FMT The appropriate time representation.

5056 AM_STR The appropriate ante-meridiem affix.

5057 PM_STR The appropriate post-meridiem affix.

5058 T_FMT_AMPM The appropriate time representation in the 12-hour clock format with
5059 AM_STR and PM_STR.

5060 ERA The era description segments, which describe how years are counted and
5061 displayed for each era in a locale. Each era description segment shall have the
5062 format:

144 Technical Standard (2001) (Draft April 13, 2001)

Locale Locale Definition

5063 direction : offset : start_date : end_date : era_name : era_format

5064 according to the definitions below. There can be as many era description
5065 segments as are necessary to describe the different eras. Era description
5066 segments are separated by semicolons.

5067 direction Either a ’+’ or a ’ −’ character. The ’+’ character shall indicate
5068 that years closer to the start_date have lower numbers than those
5069 closer to the end_date . The ’ −’ character shall indicate that
5070 years closer to the start_date have higher numbers than those
5071 closer to the end_date .

5072 offset The number of the year closest to the start_date in the era.

5073 start_date A date in the form yyyy/mm/dd , where yyyy , mm, and dd are the
5074 year, month, and day numbers respectively of the start of the
5075 era. Years prior to AD 1 shall be represented as negative
5076 numbers.

5077 end_date The ending date of the era, in the same format as the start_date ,
5078 or one of the two special values " −*" or "+*" . The value " −*"
5079 shall indicate that the ending date is the beginning of time. The
5080 value "+*" shall indicate that the ending date is the end of time.

5081 era_name The era, corresponding to the %ECconversion specification.

5082 era_format The format of the year in the era, corresponding to the %EY
5083 conversion specification.

5084 ERA_D_FMT The era date format.

5085 ERA_T_FMT The locale’s appropriate alternative time format, corresponding to the %EX
5086 conversion specification.

5087 ERA_D_T_FMT The locale’s appropriate alternative date and time format, corresponding to
5088 the %Ecconversion specification.

5089 ALT_DIGITS The alternative symbols for digits, corresponding to the %O conversion
5090 specification modifier. The value consists of semicolon-separated symbols.
5091 The first is the alternative symbol corresponding to zero, the second is the
5092 symbol corresponding to one, and so on. Up to 100 alternative symbols may
5093 be specified.

5094 7.3.5.3 LC_TIME Category in the POSIX Locale

5095 The LC_TIME category definition of the POSIX locale follows; the code listing depicts the
5096 localedef input; the table represents the same information with the addition of localedef keywords,
5097 conversion specifiers used by the date utility and the strftime(), wcsftime(), and strptime()
5098 XSI functions, and nl_langinfo () constants.

5099 LC_TIME
5100 # This is the POSIX locale definition for
5101 # the LC_TIME category.
5102 #
5103 # Abbreviated weekday names (%a)
5104 abday "<S><u><n>";"<M><o><n>";"<T><u><e>";"<W><e><d>";\
5105 "<T><h><u>";"<F><r><i>";"<S><a><t>"
5106 #
5107 # Full weekday names (%A)

Base Definitions, Issue 6 145

Locale Definition Locale

5108 day "<S><u><n><d><a><y>";"<M><o><n><d><a><y>";\
5109 "<T><u><e><s><d><a><y>";"<W><e><d><n><e><s><d><a><y>";\
5110 "<T><h><u><r><s><d><a><y>";"<F><r><i><d><a><y>";\
5111 "<S><a><t><u><r><d><a><y>"
5112 #
5113 # Abbreviated month names (%b)
5114 abmon "<J><a><n>";"<F><e>";"<M><a><r>";\
5115 "<A><p><r>";"<M><a><y>";"<J><u><n>";\
5116 "<J><u><l>";"<A><u><g>";"<S><e><p>";\
5117 "<O><c><t>";"<N><o><v>";"<D><e><c>"
5118 #
5119 # Full month names (%B)
5120 mon "<J><a><n><u><a><r><y>";"<F><e><r><u><a><r><y>";\
5121 "<M><a><r><c><h>";"<A><p><r><i><l>";\
5122 "<M><a><y>";"<J><u><n><e>";\
5123 "<J><u><l><y>";"<A><u><g><u><s><t>";\
5124 "<S><e><p><t><e><m><e><r>";"<O><c><t><o><e><r>";\
5125 "<N><o><v><e><m><e><r>";"<D><e><c><e><m><e><r>"
5126 #
5127 # Equivalent of AM/PM (%p) "AM";"PM"
5128 am_pm "<A><M>";"<P><M>"
5129 #
5130 # Appropriate date and time representation (%c)
5131 # "%a %b %e %H:%M:%S %Y"
5132 d_t_fmt "<percent-sign><a><space><percent-sign>\
5133 <space><percent-sign><e><space><percent-sign><H>\
5134 <colon><percent-sign><M><colon><percent-sign><S>\
5135 <space><percent-sign><Y>"
5136 #
5137 # Appropriate date representation (%x) "%m/%d/%y"
5138 d_fmt "<percent-sign><m><slash><percent-sign><d>\
5139 <slash><percent-sign><y>"
5140 #
5141 # Appropriate time representation (%X) "%H:%M:%S"
5142 t_fmt "<percent-sign><H><colon><percent-sign><M>\
5143 <colon><percent-sign><S>"
5144 #
5145 # Appropriate 12-hour time representation (%r) "%I:%M:%S %p"
5146 t_fmt_ampm "<percent-sign><I><colon><percent-sign><M><colon>\
5147 <percent-sign><S><space><percent_sign><p>"
5148 #
5149 END LC_TIME

5150 ___
5151 localedef langinfo Conversion POSIX
5152 Keyword Constant Specification Locale Value___LL

L

LL
L

LL
L

LL
L

LL
L

5153 d_t_fmt D_T_FMT %c "%a %b %e %H:%M:%S %Y"
5154 d_fmt D_FMT %x "%m/%d/%y"
5155 t_fmt T_FMT %X "%H:%M:%S"___L

L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

146 Technical Standard (2001) (Draft April 13, 2001)

Locale Locale Definition

5156 ___
5157 localedef langinfo Conversion POSIX
5158 Keyword Constant Specification Locale Value___LL

L

LL
L

LL
L

LL
L

LL
L

5159 am_pm AM_STR %p "AM"
5160 am_pm PM_STR %p "PM"
5161 t_fmt_ampm T_FMT_AMPM %r "%I:%M:%S %p"
5162 day DAY_1 %A "Sunday"
5163 day DAY_2 %A "Monday"
5164 day DAY_3 %A "Tuesday"
5165 day DAY_4 %A "Wednesday"
5166 day DAY_5 %A "Thursday"
5167 day DAY_6 %A "Friday"
5168 day DAY_7 %A "Saturday"
5169 abday ABDAY_1 %a "Sun"
5170 abday ABDAY_2 %a "Mon"
5171 abday ABDAY_3 %a "Tue"
5172 abday ABDAY_4 %a "Wed"
5173 abday ABDAY_5 %a "Thu"
5174 abday ABDAY_6 %a "Fri"
5175 abday ABDAY_7 %a "Sat"
5176 mon MON_1 %B "January"
5177 mon MON_2 %B "February"
5178 mon MON_3 %B "March"
5179 mon MON_4 %B "April"
5180 mon MON_5 %B "May"
5181 mon MON_6 %B "June"
5182 mon MON_7 %B "July"
5183 mon MON_8 %B "August"
5184 mon MON_9 %B "September"
5185 mon MON_10 %B "October"
5186 mon MON_11 %B "November"
5187 mon MON_12 %B "December"
5188 abmon ABMON_1 %b "Jan"
5189 abmon ABMON_2 %b "Feb"
5190 abmon ABMON_3 %b "Mar"
5191 abmon ABMON_4 %b "Apr"
5192 abmon ABMON_5 %b "May"
5193 abmon ABMON_6 %b "Jun"
5194 abmon ABMON_7 %b "Jul"
5195 abmon ABMON_8 %b "Aug"
5196 abmon ABMON_9 %b "Sep"
5197 abmon ABMON_10 %b "Oct"
5198 abmon ABMON_11 %b "Nov"
5199 abmon ABMON_12 %b "Dec"
5200 era ERA %EC, %Ey, %EY N/A
5201 era_d_fmt ERA_D_FMT %Ex N/A
5202 era_t_fmt ERA_T_FMT %EX N/A
5203 era_d_t_fmt ERA_D_T_FMT %Ec N/A
5204 alt_digits ALT_DIGITS %O N/A___L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

5205 XSI In the preceding table, the langinfo Constant column represents an XSI-conformant extension.

Base Definitions, Issue 6 147

Locale Definition Locale

5206 The entry ‘‘N/A’’ indicates the value is not available in the POSIX locale.

5207 7.3.6 LC_MESSAGES

5208 The LC_MESSAGES category shall define the format and values used by various utilities for
5209 XSI affirmative and negative responses. This information is available through the nl_langinfo ()
5210 function.

5211 XSI The message catalog used by the standard utilities and selected by the catopen() function shall be
5212 determined by the setting of NLSPATH; see Chapter 8 (on page 157). The LC_MESSAGES
5213 category can be specified as part of an NLSPATH substitution field.

5214 The following keywords shall be recognized as part of the locale definition file.

5215 copy Specify the name of an existing locale which shall be used as the definition of this |
5216 category. If this keyword is specified, no other keyword shall be specified. |
5217 Note: This is a localedef keyword, unavailable through nl_langinfo ().

5218 yesexpr The operand consists of an extended regular expression (see Section 9.4 (on page
5219 171)) that describes the acceptable affirmative response to a question expecting an
5220 affirmative or negative response.

5221 noexpr The operand consists of an extended regular expression that describes the
5222 acceptable negative response to a question expecting an affirmative or negative
5223 response.

5224 7.3.6.1 LC_MESSAGES Category for the POSIX Locale

5225 The format and values for affirmative and negative responses of the POSIX locale follow; the
5226 XSI code listing depicting the localedef input, the table representing the same information with the
5227 addition of nl_langinfo () constants.

5228 LC_MESSAGES
5229 # This is the POSIX locale definition for
5230 # the LC_MESSAGES category.
5231 #
5232 yesexpr "<circumflex><left-square-bracket><y><Y><right-square-bracket>"
5233 #
5234 noexpr "<circumflex><left-square-bracket><n><N><right-square-bracket>"
5235 #
5236 END LC_MESSAGES

__
5237 localedef Keyword langinfo Constant POSIX Locale Value__
5238 yesexpr YESEXPR "ˆ[yY]"
5239 noexpr NOEXPR "ˆ[nN]"__L

L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

5240 XSI In the preceding table, the langinfo Constant column represents an XSI-conformant extension.

148 Technical Standard (2001) (Draft April 13, 2001)

Locale Locale Definition Grammar

5241 7.4 Locale Definition Grammar
5242 The grammar and lexical conventions in this section shall together describe the syntax for the
5243 locale definition source. The general conventions for this style of grammar are described in the
5244 Shell and Utilities volume of IEEE Std 1003.1-200x, Section 1.10, Grammar Conventions. The
5245 grammar shall take precedence over the text in this chapter.

5246 7.4.1 Locale Lexical Conventions

5247 The lexical conventions for the locale definition grammar are described in this section.

5248 The following tokens shall be processed (in addition to those string constants shown in the
5249 grammar):

5250 LOC_NAME A string of characters representing the name of a locale.

5251 CHAR Any single character.

5252 NUMBER A decimal number, represented by one or more decimal digits.

5253 COLLSYMBOL A symbolic name, enclosed between angle brackets. The string
5254 cannot duplicate any charmap symbol defined in the current
5255 charmap (if any), or a COLLELEMENT symbol.

5256 COLLELEMENT A symbolic name, enclosed between angle brackets, which cannot
5257 duplicate either any charmap symbol or a COLLSYMBOL symbol.

5258 CHARCLASS A string of alphanumeric characters from the portable character set,
5259 the first of which is not a digit, consisting of at least one and at most
5260 {CHARCLASS_NAME_MAX} bytes, and optionally surrounded by
5261 double-quotes.

5262 CHARSYMBOL A symbolic name, enclosed between angle brackets, from the current
5263 charmap (if any).

5264 OCTAL_CHAR One or more octal representations of the encoding of each byte in a
5265 single character. The octal representation consists of an escape
5266 character (normally a backslash) followed by two or more octal
5267 digits.

5268 HEX_CHAR One or more hexadecimal representations of the encoding of each
5269 byte in a single character. The hexadecimal representation consists of
5270 an escape character followed by the constant x and two or more
5271 hexadecimal digits.

5272 DECIMAL_CHAR One or more decimal representations of the encoding of each byte in
5273 a single character. The decimal representation consists of an escape
5274 character followed by a character ’d’ and two or more decimal
5275 digits.

5276 ELLIPSIS The string "..." .

5277 EXTENDED_REG_EXP An extended regular expression as defined in the grammar in Section
5278 9.5 (on page 175).

5279 EOL The line termination character newline.

Base Definitions, Issue 6 149

Locale Definition Grammar Locale

5280 7.4.2 Locale Grammar

5281 This section presents the grammar for the locale definition.

5282 %token LOC_NAME
5283 %token CHAR
5284 %token NUMBER
5285 %token COLLSYMBOL COLLELEMENT
5286 %token CHARSYMBOL OCTAL_CHAR HEX_CHAR DECIMAL_CHAR
5287 %token ELLIPSIS
5288 %token EXTENDED_REG_EXP
5289 %token EOL

5290 %start locale_definition

5291 %%

5292 locale_definition : global_statements locale_categories
5293 | locale_categories
5294 ;

5295 global_statements : global_statements symbol_redefine
5296 | symbol_redefine
5297 ;

5298 symbol_redefine : ’escape_char’ CHAR EOL
5299 | ’comment_char’ CHAR EOL
5300 ;

5301 locale_categories : locale_categories locale_category
5302 | locale_category
5303 ;

5304 locale_category : lc_ctype | lc_collate | lc_messages
5305 | lc_monetary | lc_numeric | lc_time
5306 ;

5307 /* The following grammar rules are common to all categories */

5308 char_list : char_list char_symbol
5309 | char_symbol
5310 ;

5311 char_symbol : CHAR | CHARSYMBOL
5312 | OCTAL_CHAR | HEX_CHAR | DECIMAL_CHAR
5313 ;

5314 elem_list : elem_list char_symbol
5315 | elem_list COLLSYMBOL
5316 | elem_list COLLELEMENT
5317 | char_symbol
5318 | COLLSYMBOL
5319 | COLLELEMENT
5320 ;

5321 symb_list : symb_list COLLSYMBOL
5322 | COLLSYMBOL
5323 ;

150 Technical Standard (2001) (Draft April 13, 2001)

Locale Locale Definition Grammar

5324 locale_name : LOC_NAME
5325 | ’"’ LOC_NAME ’"’
5326 ;

5327 /* The following is the LC_CTYPE category grammar */

5328 lc_ctype : ctype_hdr ctype_keywords ctype_tlr
5329 | ctype_hdr ’copy’ locale_name EOL ctype_tlr
5330 ;

5331 ctype_hdr : ’LC_CTYPE’ EOL
5332 ;

5333 ctype_keywords : ctype_keywords ctype_keyword
5334 | ctype_keyword
5335 ;

5336 ctype_keyword : charclass_keyword charclass_list EOL
5337 | charconv_keyword charconv_list EOL
5338 | ’charclass’ charclass_namelist EOL
5339 ;

5340 charclass_namelist : charclass_namelist ’;’ CHARCLASS
5341 | CHARCLASS
5342 ;

5343 charclass_keyword : ’upper’ | ’lower’ | ’alpha’ | ’digit’
5344 | ’punct’ | ’xdigit’ | ’space’ | ’print’
5345 | ’graph’ | ’blank’ | ’cntrl’ | ’alnum’
5346 | CHARCLASS
5347 ;

5348 charclass_list : charclass_list ’;’ char_symbol
5349 | charclass_list ’;’ ELLIPSIS ’;’ char_symbol
5350 | char_symbol
5351 ;

5352 charconv_keyword : ’toupper’
5353 | ’tolower’
5354 ;

5355 charconv_list : charconv_list ’;’ charconv_entry
5356 | charconv_entry
5357 ;

5358 charconv_entry : ’(’ char_symbol ’,’ char_symbol ’)’
5359 ;

5360 ctype_tlr : ’END’ ’LC_CTYPE’ EOL
5361 ;

5362 /* The following is the LC_COLLATE category grammar */

5363 lc_collate : collate_hdr collate_keywords collate_tlr
5364 | collate_hdr ’copy’ locale_name EOL collate_tlr
5365 ;

5366 collate_hdr : ’LC_COLLATE’ EOL
5367 ;

Base Definitions, Issue 6 151

Locale Definition Grammar Locale

5368 collate_keywords : order_statements
5369 | opt_statements order_statements
5370 ;

5371 opt_statements : opt_statements collating_symbols
5372 | opt_statements collating_elements
5373 | collating_symbols
5374 | collating_elements
5375 ;

5376 collating_symbols : ’collating-symbol’ COLLSYMBOL EOL
5377 ;

5378 collating_elements : ’collating-element’ COLLELEMENT
5379 | ’from’ ’"’ elem_list ’"’ EOL
5380 ;

5381 order_statements : order_start collation_order order_end
5382 ;

5383 order_start : ’order_start’ EOL
5384 | ’order_start’ order_opts EOL
5385 ;

5386 order_opts : order_opts ’;’ order_opt
5387 | order_opt
5388 ;

5389 order_opt : order_opt ’,’ opt_word
5390 | opt_word
5391 ;

5392 opt_word : ’forward’ | ’backward’ | ’position’
5393 ;

5394 collation_order : collation_order collation_entry
5395 | collation_entry
5396 ;

5397 collation_entry : COLLSYMBOL EOL
5398 | collation_element weight_list EOL
5399 | collation_element EOL
5400 ;

5401 collation_element : char_symbol
5402 | COLLELEMENT
5403 | ELLIPSIS
5404 | ’UNDEFINED’
5405 ;

5406 weight_list : weight_list ’;’ weight_symbol
5407 | weight_list ’;’
5408 | weight_symbol
5409 ;

5410 weight_symbol : /* empty */
5411 | char_symbol
5412 | COLLSYMBOL
5413 | ’"’ elem_list ’"’

152 Technical Standard (2001) (Draft April 13, 2001)

Locale Locale Definition Grammar

5414 | ’"’ symb_list ’"’
5415 | ELLIPSIS
5416 | ’IGNORE’
5417 ;

5418 order_end : ’order_end’ EOL
5419 ;

5420 collate_tlr : ’END’ ’LC_COLLATE’ EOL
5421 ;

5422 /* The following is the LC_MESSAGES category grammar */

5423 lc_messages : messages_hdr messages_keywords messages_tlr
5424 | messages_hdr ’copy’ locale_name EOL messages_tlr
5425 ;

5426 messages_hdr : ’LC_MESSAGES’ EOL
5427 ;

5428 messages_keywords : messages_keywords messages_keyword
5429 | messages_keyword
5430 ;

5431 messages_keyword : ’yesexpr’ ’"’ EXTENDED_REG_EXP ’"’ EOL
5432 | ’noexpr’ ’"’ EXTENDED_REG_EXP ’"’ EOL
5433 ; |

5434 messages_tlr : ’END’ ’LC_MESSAGES’ EOL
5435 ;

5436 /* The following is the LC_MONETARY category grammar */

5437 lc_monetary : monetary_hdr monetary_keywords monetary_tlr
5438 | monetary_hdr ’copy’ locale_name EOL monetary_tlr
5439 ;

5440 monetary_hdr : ’LC_MONETARY’ EOL
5441 ;

5442 monetary_keywords : monetary_keywords monetary_keyword
5443 | monetary_keyword
5444 ;

5445 monetary_keyword : mon_keyword_string mon_string EOL
5446 | mon_keyword_char NUMBER EOL
5447 | mon_keyword_char ’-1’ EOL
5448 | mon_keyword_grouping mon_group_list EOL
5449 ;

5450 mon_keyword_string : ’int_curr_symbol’ | ’currency_symbol’
5451 | ’mon_decimal_point’ | ’mon_thousands_sep’
5452 | ’positive_sign’ | ’negative_sign’
5453 ;

5454 mon_string : ’"’ char_list ’"’
5455 | ’""’
5456 ;

Base Definitions, Issue 6 153

Locale Definition Grammar Locale

5457 mon_keyword_char : ’int_frac_digits’ | ’frac_digits’
5458 | ’p_cs_precedes’ | ’p_sep_by_space’
5459 | ’n_cs_precedes’ | ’n_sep_by_space’
5460 | ’p_sign_posn’ | ’n_sign_posn’
5461 ;

5462 mon_keyword_grouping : ’mon_grouping’
5463 ;

5464 mon_group_list : NUMBER
5465 | mon_group_list ’;’ NUMBER
5466 ;

5467 monetary_tlr : ’END’ ’LC_MONETARY’ EOL
5468 ;

5469 /* The following is the LC_NUMERIC category grammar */

5470 lc_numeric : numeric_hdr numeric_keywords numeric_tlr
5471 | numeric_hdr ’copy’ locale_name EOL numeric_tlr
5472 ;

5473 numeric_hdr : ’LC_NUMERIC’ EOL
5474 ;

5475 numeric_keywords : numeric_keywords numeric_keyword
5476 | numeric_keyword
5477 ;

5478 numeric_keyword : num_keyword_string num_string EOL
5479 | num_keyword_grouping num_group_list EOL
5480 ;

5481 num_keyword_string : ’decimal_point’
5482 | ’thousands_sep’
5483 ;

5484 num_string : ’"’ char_list ’"’
5485 | ’""’
5486 ;

5487 num_keyword_grouping: ’grouping’
5488 ;

5489 num_group_list : NUMBER
5490 | num_group_list ’;’ NUMBER
5491 ;

5492 numeric_tlr : ’END’ ’LC_NUMERIC’ EOL
5493 ;

5494 /* The following is the LC_TIME category grammar */

5495 lc_time : time_hdr time_keywords time_tlr
5496 | time_hdr ’copy’ locale_name EOL time_tlr
5497 ;

5498 time_hdr : ’LC_TIME’ EOL
5499 ;

154 Technical Standard (2001) (Draft April 13, 2001)

Locale Locale Definition Grammar

5500 time_keywords : time_keywords time_keyword
5501 | time_keyword
5502 ;

5503 time_keyword : time_keyword_name time_list EOL
5504 | time_keyword_fmt time_string EOL
5505 | time_keyword_opt time_list EOL
5506 ;

5507 time_keyword_name : ’abday’ | ’day’ | ’abmon’ | ’mon’
5508 ;

5509 time_keyword_fmt : ’d_t_fmt’ | ’d_fmt’ | ’t_fmt’
5510 | ’am_pm’ | ’t_fmt_ampm’
5511 ;

5512 time_keyword_opt : ’era’ | ’era_d_fmt’ | ’era_t_fmt’
5513 | ’era_d_t_fmt’ | ’alt_digits’
5514 ;

5515 time_list : time_list ’;’ time_string
5516 | time_string
5517 ;

5518 time_string : ’"’ char_list ’"’
5519 ;

5520 time_tlr : ’END’ ’LC_TIME’ EOL
5521 ;

Base Definitions, Issue 6 155

Locale

5522 |

156 Technical Standard (2001) (Draft April 13, 2001)

5523

Chapter 8

Environment Variables

5524 8.1 Environment Variable Definition
5525 Environment variables defined in this chapter affect the operation of multiple utilities, functions,
5526 and applications. There are other environment variables that are of interest only to specific
5527 utilities. Environment variables that apply to a single utility only are defined as part of the
5528 utility description. See the ENVIRONMENT VARIABLES section of the utility descriptions in
5529 the Shell and Utilities volume of IEEE Std 1003.1-200x for information on environment variable
5530 usage.

5531 The value of an environment variable is a string of characters. For a C-language program, an
5532 array of strings called the environment shall be made available when a process begins. The array
5533 is pointed to by the external variable environ , which is defined as:

5534 extern char **environ;

5535 These strings have the form name=value; names shall not contain the character ’=’ . For values to |
5536 be portable across systems conforming to IEEE Std 1003.1-200x, the value shall be composed of
5537 characters from the portable character set (except NUL and as indicated below). There is no
5538 meaning associated with the order of strings in the environment. If more than one string in a
5539 process’ environment has the same name, the consequences are undefined.

5540 Environment variable names used by the utilities in the Shell and Utilities volume of |
5541 IEEE Std 1003.1-200x consist solely of uppercase letters, digits, and the ’_’ (underscore) from |
5542 the characters defined in Table 6-1 (on page 111) and do not begin with a digit. Other characters |
5543 may be permitted by an implementation; applications shall tolerate the presence of such names. |
5544 Uppercase and lowercase letters shall retain their unique identities and shall not be folded |
5545 together. The name space of environment variable names containing lowercase letters is |
5546 reserved for applications. Applications can define any environment variables with names from |
5547 this name space without modifying the behavior of the standard utilities. |
5548 Note: Other applications may have difficulty dealing with environment variable names that start |
5549 with a digit. For this reason, use of such names is not recommended anywhere.

5550 The values that the environment variables may be assigned are not restricted except that they are
5551 considered to end with a null byte and the total space used to store the environment and the
5552 arguments to the process is limited to {ARG_MAX} bytes.

5553 Other name=value pairs may be placed in the environment by, for example, calling any of the
5554 XSI setenv(), unsetenv(), or putenv() functions, manipulating the environ variable, or by using envp
5555 arguments when creating a process; see exec in the System Interfaces volume of
5556 IEEE Std 1003.1-200x.

5557 It is unwise to conflict with certain variables that are frequently exported by widely used
5558 command interpreters and applications:

Base Definitions, Issue 6 157

Environment Variable Definition Environment Variables

5559 __
5560 ARFLAGS IFS MAILPATH PS1
5561 CC LANG MAILRC PS2
5562 CDPATH LC_ALL MAKEFLAGS PS3
5563 CFLAGS LC_COLLATE MAKESHELL PS4
5564 CHARSET LC_CTYPE MANPATH PWD
5565 COLUMNS LC_MESSAGES MBOX RANDOM
5566 DATEMSK LC_MONETARY MORE SECONDS
5567 DEAD LC_NUMERIC MSGVERB SHELL
5568 EDITOR LC_TIME NLSPATH TERM
5569 ENV LDFLAGS NPROC TERMCAP
5570 EXINIT LEX OLDPWD TERMINFO
5571 FC LFLAGS OPTARG TMPDIR
5572 FCEDIT LINENO OPTERR TZ
5573 FFLAGS LINES OPTIND USER
5574 GET LISTER PAGER VISUAL
5575 GFLAGS LOGNAME PATH YACC
5576 HISTFILE LPDEST PPID YFLAGS
5577 HISTORY MAIL PRINTER
5578 HISTSIZE MAILCHECK PROCLANG
5579 HOME MAILER PROJECTDIR__LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

5580 If the variables in the following two sections are present in the environment during the |
5581 execution of an application or utility, they shall be given the meaning described below. Some are |
5582 placed into the environment by the implementation at the time the user logs in; all can be added |
5583 or changed by the user or any ancestor of the current process. The implementation adds or |
5584 changes environment variables named in IEEE Std 1003.1-200x only as specified in |
5585 IEEE Std 1003.1-200x. If they are defined in the application’s environment, the utilities in the
5586 Shell and Utilities volume of IEEE Std 1003.1-200x and the functions in the System Interfaces
5587 volume of IEEE Std 1003.1-200x assume they have the specified meaning. Conforming
5588 applications shall not set these environment variables to have meanings other than as described.
5589 See getenv() and the Shell and Utilities volume of IEEE Std 1003.1-200x, Section 2.12, Shell
5590 Execution Environment for methods of accessing these variables.

5591 8.2 Internationalization Variables
5592 This section describes environment variables that are relevant to the operation of
5593 internationalized interfaces described in IEEE Std 1003.1-200x.

5594 Users may use the following environment variables to announce specific localization
5595 requirements to applications. Applications can retrieve this information using the setlocale ()
5596 function to initialize the correct behavior of the internationalized interfaces. The descriptions of
5597 the internationalization environment variables describe the resulting behavior only when the
5598 application locale is initialized in this way. The use of the internationalization variables by
5599 utilities described in the Shell and Utilities volume of IEEE Std 1003.1-200x are described in the
5600 ENVIRONMENT VARIABLES section for those utilities in addition to the global effects
5601 described in this section.

5602 LANG This variable shall determine the locale category for native language, local
5603 customs, and coded character set in the absence of the LC_ALL and other LC_*
5604 (LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_MONETARY, LC_NUMERIC,
5605 LC_TIME) environment variables. This can be used by applications to
5606 determine the language to use for error messages and instructions, collating
5607 sequences, date formats, and so on.

158 Technical Standard (2001) (Draft April 13, 2001)

Environment Variables Internationalization Variables

5608 LC_ALL This variable shall determine the values for all locale categories. The value of
5609 the LC_ALL environment variable has precedence over any of the other
5610 environment variables starting with LC_(LC_COLLATE, LC_CTYPE,
5611 LC_MESSAGES, LC_MONETARY, LC_NUMERIC, LC_TIME) and the LANG
5612 environment variable.

5613 LC_COLLATE This variable shall determine the locale category for character collation. It
5614 determines collation information for regular expressions and sorting,
5615 including equivalence classes and multi-character collating elements, in
5616 various utilities and the strcoll() and strxfrm() functions. Additional semantics
5617 of this variable, if any, are implementation-defined.

5618 LC_CTYPE This variable shall determine the locale category for character handling
5619 functions, such as tolower(), toupper(), and isalpha (). This environment
5620 variable determines the interpretation of sequences of bytes of text data as
5621 characters (for example, single as opposed to multi-byte characters), the
5622 classification of characters (for example, alpha, digit, graph), and the behavior
5623 of character classes. Additional semantics of this variable, if any, are
5624 implementation-defined.

5625 LC_MESSAGES This variable shall determine the locale category for processing affirmative
5626 and negative responses and the language and cultural conventions in which
5627 XSI messages should be written. It also affects the behavior of the catopen()
5628 function in determining the message catalog. Additional semantics of this
5629 variable, if any, are implementation-defined. The language and cultural
5630 conventions of diagnostic and informative messages whose format is
5631 unspecified by IEEE Std 1003.1-200x should be affected by the setting of
5632 LC_MESSAGES.

5633 LC_MONETARY This variable shall determine the locale category for monetary-related numeric
5634 formatting information. Additional semantics of this variable, if any, are
5635 implementation-defined.

5636 LC_NUMERIC This variable shall determine the locale category for numeric formatting (for
5637 example, thousands separator and radix character) information in various
5638 utilities as well as the formatted I/O operations in printf() and scanf() and the
5639 string conversion functions in strtod(). Additional semantics of this variable,
5640 if any, are implementation-defined.

5641 LC_TIME This variable shall determine the locale category for date and time formatting
5642 information. It affects the behavior of the time functions in strftime().
5643 Additional semantics of this variable, if any, are implementation-defined.

5644 XSI NLSPATH This variable shall contain a sequence of templates that the catopen() function
5645 uses when attempting to locate message catalogs. Each template consists of an
5646 optional prefix, one or more conversion specifications, a filename, and an
5647 optional suffix.

5648 For example:

5649 NLSPATH="/system/nlslib/%N.cat"

5650 defines that catopen() should look for all message catalogs in the directory
5651 /system/nlslib, where the catalog name should be constructed from the name
5652 parameter passed to catopen() (%N), with the suffix .cat.

5653 Conversion specifications consist of a ’%’ symbol, followed by a single-letter
5654 keyword. The following keywords are currently defined:

Base Definitions, Issue 6 159

Internationalization Variables Environment Variables

5655 %N The value of the name parameter passed to catopen().

5656 %L The value of the LC_MESSAGES category.

5657 %l The language element from the LC_MESSAGES category.

5658 %t The territory element from the LC_MESSAGES category.

5659 %c The codeset element from the LC_MESSAGES category.

5660 %% A single ’%’ character.

5661 An empty string is substituted if the specified value is not currently defined.
5662 The separators underscore (’_’) and period (’.’) are not included in the %t
5663 and %cconversion specifications.

5664 Templates defined in NLSPATH are separated by colons (’:’). A leading or
5665 two adjacent colons "::" is equivalent to specifying %N. For example:

5666 NLSPATH=":%N.cat:/nlslib/%L/%N.cat"

5667 indicates to catopen() that it should look for the requested message catalog in
5668 name, name.cat, and /nlslib/category/name.cat, where category is the value of the
5669 LC_MESSAGES category of the current locale.

5670 Users should not set the NLSPATH variable unless they have a specific reason
5671 to override the default system path. Setting NLSPATH to override the default
5672 system path produces undefined results in the standard utilities and in
5673 applications with appropriate privileges.

5674 The environment variables LANG, LC_ALL, LC_COLLATE, LC_CTYPE, LC_MESSAGES,
5675 XSI LC_MONETARY, LC_NUMERIC, LC_TIME, and NLSPATH provide for the support of
5676 internationalized applications. The standard utilities shall make use of these environment
5677 variables as described in this section and the individual ENVIRONMENT VARIABLES sections
5678 for the utilities. If these variables specify locale categories that are not based upon the same
5679 underlying codeset, the results are unspecified.

5680 The values of locale categories shall be determined by a precedence order; the first condition met
5681 below determines the value:

5682 1. If the LC_ALL environment variable is defined and is not null, the value of LC_ALL shall be
5683 used.

5684 2. If the LC_* environment variable (LC_COLLATE, LC_CTYPE, LC_MESSAGES,
5685 LC_MONETARY, LC_NUMERIC, LC_TIME) is defined and is not null, the value of the
5686 environment variable shall be used to initialize the category that corresponds to the
5687 environment variable.

5688 3. If the LANG environment variable is defined and is not null, the value of the LANG
5689 environment variable shall be used.

5690 4. If the LANG environment variable is not set or is set to the empty string, the
5691 implementation-defined default locale shall be used.

5692 If the locale value is "C" or "POSIX" , the POSIX locale shall be used and the standard utilities
5693 behave in accordance with the rules in Section 7.2 (on page 120) for the associated category.

5694 If the locale value begins with a slash, it shall be interpreted as the pathname of a file that was
5695 created in the output format used by the localedef utility; see OUTPUT FILES under localedef.
5696 Referencing such a pathname shall result in that locale being used for the indicated category.

160 Technical Standard (2001) (Draft April 13, 2001)

Environment Variables Internationalization Variables

5697 XSI If the locale value has the form:

5698 language [_territory][.codeset]

5699 it refers to an implementation-provided locale, where settings of language, territory, and codeset
5700 are implementation-defined.

5701 LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_MONETARY, LC_NUMERIC, and LC_TIME are
5702 defined to accept an additional field @modifier , which allows the user to select a specific instance
5703 of localization data within a single category (for example, for selecting the dictionary as opposed
5704 to the character ordering of data). The syntax for these environment variables is thus defined as:

5705 [language [_territory][.codeset][@modifier]]

5706 For example, if a user wanted to interact with the system in French, but required to sort German
5707 text files, LANG and LC_COLLATE could be defined as:

5708 LANG=Fr_FR
5709 LC_COLLATE=De_DE

5710 This could be extended to select dictionary collation (say) by use of the @modifier field; for
5711 example:

5712 LC_COLLATE=De_DE@dict

5713

5714 An implementation may support other formats.

5715 If the locale value is not recognized by the implementation, the behavior is unspecified.

5716 At runtime, these values are bound to a program’s locale by calling the setlocale () function.

5717 Additional criteria for determining a valid locale name are implementation-defined.

5718 8.3 Other Environment Variables
5719 COLUMNS This variable shall represent a decimal integer >0 used to indicate the user’s
5720 preferred width in column positions for the terminal screen or window; see
5721 Section 3.103 (on page 47). If this variable is unset or null, the implementation
5722 determines the number of columns, appropriate for the terminal or window,
5723 in an unspecified manner. When COLUMNS is set, any terminal-width
5724 information implied by TERM is overridden. Users and conforming |
5725 applications should not set COLUMNS unless they wish to override the |
5726 system selection and produce output unrelated to the terminal characteristics.

5727 Users should not need to set this variable in the environment unless there is a
5728 specific reason to override the implementation’s default behavior, such as to
5729 display data in an area arbitrarily smaller than the terminal or window.

5730 XSI DATEMSK Indicates the pathname of the template file used by getdate().

5731 HOME The system shall initialize this variable at the time of login to be a pathname of
5732 the user’s home directory. See <pwd.h>.

5733 LINES This variable shall represent a decimal integer >0 used to indicate the user’s
5734 preferred number of lines on a page or the vertical screen or window size in
5735 lines. A line in this case is a vertical measure large enough to hold the tallest
5736 character in the character set being displayed. If this variable is unset or null,
5737 the implementation determines the number of lines, appropriate for the

Base Definitions, Issue 6 161

Other Environment Variables Environment Variables

5738 terminal or window (size, terminal baud rate, and so on), in an unspecified
5739 manner. When LINES is set, any terminal-height information implied by
5740 TERM is overridden. Users and conforming applications should not set LINES |
5741 unless they wish to override the system selection and produce output
5742 unrelated to the terminal characteristics.

5743 Users should not need to set this variable in the environment unless there is a
5744 specific reason to override the implementation’s default behavior, such as to
5745 display data in an area arbitrarily smaller than the terminal or window.

5746 LOGNAME The system shall initialize this variable at the time of login to be the user’s
5747 login name. See <pwd.h>. For a value of LOGNAME to be portable across
5748 implementations of IEEE Std 1003.1-200x, the value should be composed of
5749 characters from the portable filename character set.

5750 XSI MSGVERB Describes which message components shall be used in writing messages by
5751 fmtmsg().

5752 PATH This variable shall represent the sequence of path prefixes that certain
5753 functions and utilities apply in searching for an executable file known only by |
5754 a filename. The prefixes shall be separated by a colon (’:’). When a non- |
5755 zero-length prefix is applied to this filename, a slash shall be inserted between |
5756 the prefix and the filename. A zero-length prefix is a legacy feature that |
5757 indicates the current working directory. It appears as two adjacent colons |
5758 ("::"), as an initial colon preceding the rest of the list, or as a trailing colon
5759 following the rest of the list. A strictly conforming application shall use an
5760 actual pathname (such as .) to represent the current working directory in
5761 PATH. The list shall be searched from beginning to end, applying the filename |
5762 to each prefix, until an executable file with the specified name and appropriate |
5763 execution permissions is found. If the pathname being sought contains a slash, |
5764 the search through the path prefixes shall not be performed. If the pathname |
5765 begins with a slash, the specified path is resolved (see Section 4.11 (on page |
5766 98)). If PATH is unset or is set to null, the path search is implementation-
5767 defined.

5768 PWD This variable shall represent an absolute pathname of the current working
5769 directory. It shall not contain any filename components of dot or dot-dot. The
5770 value is set by the cd utility.

5771 SHELL This variable shall represent a pathname of the user’s preferred command
5772 language interpreter. If this interpreter does not conform to the Shell
5773 Command Language in the Shell and Utilities volume of IEEE Std 1003.1-200x,
5774 Chapter 2, Shell Command Language, utilities may behave differently from
5775 those described in IEEE Std 1003.1-200x.

5776 TMPDIR This variable shall represent a pathname of a directory made available for
5777 programs that need a place to create temporary files.

5778 TERM This variable shall represent the terminal type for which output is to be
5779 prepared. This information is used by utilities and application programs
5780 wishing to exploit special capabilities specific to a terminal. The format and
5781 allowable values of this environment variable are unspecified.

5782 TZ This variable shall represent timezone information. The contents of the
5783 environment variable named TZ shall be used by the ctime(), localtime (),
5784 strftime(), and mktime() functions, and by various utilities, to override the
5785 default timezone. The value of TZ has one of the two forms (spaces inserted

162 Technical Standard (2001) (Draft April 13, 2001)

Environment Variables Other Environment Variables

5786 for clarity):

5787 : characters

5788 or:

5789 std offset dst offset , rule

5790 If TZ is of the first format (that is, if the first character is a colon), the
5791 characters following the colon are handled in an implementation-defined
5792 manner.

5793 The expanded format (for all TZs whose value does not have a colon as the
5794 first character) is as follows:

5795 stdoffset [dst [offset][, start [/ time] , end [/ time]]]

5796 Where:

5797 std and dst Indicate no less than three, nor more than {TZNAME_MAX},
5798 bytes that are the designation for the standard (std) or the
5799 alternative (dst—such as Daylight Savings Time) timezone. Only
5800 std is required; if dst is missing, then the alternative time does
5801 not apply in this locale.

5802 Each of these fields may occur in either of two formats quoted or
5803 unquoted:

5804 — In the quoted form, the first character shall be the less-than
5805 (’<’) character and the last character shall be the greater-
5806 than (’>’) character. All characters between these quoting
5807 characters shall be alphanumeric characters in the current
5808 locale, the plus-sign (’+’) character, or the minus-sign (’ −’)
5809 character. The std and dst fields in this case shall not include |
5810 the quoting characters. |

5811 — In the unquoted form, all characters in these fields shall be
5812 alphabetic characters in the current locale.

5813 The interpretation of these fields is unspecified if either field is
5814 less than three bytes (except for the case when dst is missing),
5815 more than {TZNAME_MAX} bytes, or if they contain characters
5816 other than those specified.

5817 offset Indicates the value added to the local time to arrive at
5818 Coordinated Universal Time. The offset has the form:

5819 hh [: mm[: ss]]

5820 The minutes (mm) and seconds (ss) are optional. The hour (hh)
5821 shall be required and may be a single digit. The offset following
5822 std shall be required. If no offset follows dst, the alternative time
5823 is assumed to be one hour ahead of standard time. One or more
5824 digits may be used; the value is always interpreted as a decimal
5825 number. The hour shall be between zero and 24, and the minutes
5826 (and seconds)—if present—between zero and 59. The result of
5827 using values outside of this range is unspecified. If preceded by
5828 a ’ −’ , the timezone shall be east of the Prime Meridian;
5829 otherwise, it shall be west (which may be indicated by an
5830 optional preceding ’+’).

Base Definitions, Issue 6 163

Other Environment Variables Environment Variables

5831 rule Indicates when to change to and back from the alternative time.
5832 The rule has the form:

5833 date [/ time] , date [/ time]

5834 where the first date describes when the change from standard to
5835 alternative time occurs and the second date describes when the
5836 change back happens. Each time field describes when, in current
5837 local time, the change to the other time is made.

5838 The format of date is one of the following:

5839 Jn The Julian day n (1 ≤ n ≤ 365). Leap days shall not be
5840 counted. That is, in all years—including leap years—
5841 February 28 is day 59 and March 1 is day 60. It is
5842 impossible to refer explicitly to the occasional February
5843 29.

5844 n The zero-based Julian day (0 ≤ n ≤ 365). Leap days shall
5845 be counted, and it is possible to refer to February 29.

5846 Mm.n.d The d’th day (0 ≤ d ≤ 6) of week n of month m of the
5847 year (1 ≤ n ≤ 5, 1 ≤ m ≤ 12, where week 5 means ‘‘the
5848 last d day in month m’’ which may occur in either the
5849 fourth or the fifth week). Week 1 is the first week in
5850 which the d’th day occurs. Day zero is Sunday.

5851 The time has the same format as offset except that no leading sign
5852 (’ −’ or ’+’) is allowed. The default, if time is not given, shall be
5853 02:00:00. |

164 Technical Standard (2001) (Draft April 13, 2001)

5854

Chapter 9

Regular Expressions

5855 Regular Expressions (REs) provide a mechanism to select specific strings from a set of character
5856 strings.

5857 Regular expressions are a context-independent syntax that can represent a wide variety of
5858 character sets and character set orderings, where these character sets are interpreted according
5859 to the current locale. While many regular expressions can be interpreted differently depending
5860 on the current locale, many features, such as character class expressions, provide for contextual
5861 invariance across locales.

5862 The Basic Regular Expression (BRE) notation and construction rules in Section 9.3 (on page 167)
5863 shall apply to most utilities supporting regular expressions. Some utilities, instead, support the
5864 Extended Regular Expressions (ERE) described in Section 9.4 (on page 171); any exceptions for
5865 both cases are noted in the descriptions of the specific utilities using regular expressions. Both
5866 BREs and EREs are supported by the Regular Expression Matching interface in the System
5867 Interfaces volume of IEEE Std 1003.1-200x under regcomp(), regexec(), and related functions.

5868 9.1 Regular Expression Definitions
5869 For the purposes of this section, the following definitions shall apply:

5870 entire regular expression
5871 The concatenated set of one or more BREs or EREs that make up the pattern specified for
5872 string selection.

5873 matched
5874 A sequence of zero or more characters shall be said to be matched by a BRE or ERE when
5875 the characters in the sequence correspond to a sequence of characters defined by the
5876 pattern.

5877 Matching shall be based on the bit pattern used for encoding the character, not on the
5878 graphic representation of the character. This means that if a character set contains two or
5879 more encodings for a graphic symbol, or if the strings searched contain text encoded in
5880 more than one codeset, no attempt is made to search for any other representation of the
5881 encoded symbol. If that is required, the user can specify equivalence classes containing all
5882 variations of the desired graphic symbol.

5883 The search for a matching sequence starts at the beginning of a string and stops when the
5884 first sequence matching the expression is found, where first is defined to mean ‘‘begins
5885 earliest in the string’’. If the pattern permits a variable number of matching characters and
5886 thus there is more than one such sequence starting at that point, the longest such sequence
5887 is matched. For example: the BRE "bb*" matches the second to fourth characters of abbbc,
5888 and the ERE (wee|week)(knights|night) matches all ten characters of weeknights.

5889 Consistent with the whole match being the longest of the leftmost matches, each subpattern,
5890 from left to right, shall match the longest possible string. For this purpose, a null string shall
5891 be considered to be longer than no match at all. For example, matching the BRE
5892 "\(.*\).*" against "abcdef" , the subexpression "(\1)" is "abcdef" , and matching
5893 the BRE "\(a*\)*" against "bc" , the subexpression "(\1)" is the null string.

5894 When a multi-character collating element in a bracket expression (see Section 9.3.5 (on page
5895 168)) is involved, the longest sequence shall be measured in characters consumed from the

Base Definitions, Issue 6 165

Regular Expression Definitions Regular Expressions

5896 string to be matched; that is, the collating element counts not as one element, but as the
5897 number of characters it matches.

5898 BRE (ERE) matching a single character
5899 A BRE or ERE that shall match either a single character or a single collating element.

5900 Only a BRE or ERE of this type that includes a bracket expression (see Section 9.3.5 (on page
5901 168)) can match a collating element.

5902 BRE (ERE) matching multiple characters
5903 A BRE or ERE that shall match a concatenation of single characters or collating elements.

5904 Such a BRE or ERE is made up from a BRE (ERE) matching a single character and BRE (ERE)
5905 special characters.

5906 invalid
5907 This section uses the term invalid for certain constructs or conditions. Invalid REs shall
5908 cause the utility or function using the RE to generate an error condition. When invalid is not
5909 used, violations of the specified syntax or semantics for REs produce undefined results: this
5910 may entail an error, enabling an extended syntax for that RE, or using the construct in error
5911 as literal characters to be matched. For example, the BRE construct "\{1,2,3\}" does not |
5912 comply with the grammar. A conforming application cannot rely on it producing an error |
5913 nor matching the literal characters "\{1,2,3\}" .

5914 9.2 Regular Expression General Requirements
5915 The requirements in this section shall apply to both basic and extended regular expressions.

5916 The use of regular expressions is generally associated with text processing. REs (BREs and EREs)
5917 operate on text strings; that is, zero or more characters followed by an end-of-string delimiter
5918 (typically NUL). Some utilities employing regular expressions limit the processing to lines; that
5919 is, zero or more characters followed by a <newline>. In the regular expression processing
5920 described in IEEE Std 1003.1-200x, the <newline> is regarded as an ordinary character and both a
5921 period and a non-matching list can match one. The Shell and Utilities volume of
5922 IEEE Std 1003.1-200x specifies within the individual descriptions of those standard utilities
5923 employing regular expressions whether they permit matching of <newline>s; if not stated
5924 otherwise, the use of literal <newline>s or any escape sequence equivalent produces undefined
5925 results. Those utilities (like grep) that do not allow <newline>s to match are responsible for
5926 eliminating any <newline> from strings before matching against the RE. The regcomp() function
5927 in the System Interfaces volume of IEEE Std 1003.1-200x, however, can provide support for such
5928 processing without violating the rules of this section.

5929 The interfaces specified in IEEE Std 1003.1-200x do not permit the inclusion of a NUL character
5930 in an RE or in the string to be matched. If during the operation of a standard utility a NUL is
5931 included in the text designated to be matched, that NUL may designate the end of the text string
5932 for the purposes of matching.

5933 When a standard utility or function that uses regular expressions specifies that pattern matching
5934 shall be performed without regard to the case (uppercase or lowercase) of either data or
5935 patterns, then when each character in the string is matched against the pattern, not only the
5936 character, but also its case counterpart (if any), shall be matched. This definition of case-
5937 insensitive processing is intended to allow matching of multi-character collating elements as
5938 well as characters, as each character in the string is matched using both its cases. For example, in
5939 a locale where "Ch" is a multi-character collating element and where a matching list expression
5940 matches such elements, the RE "[[.Ch.]]" when matched against the string "char" , is in

166 Technical Standard (2001) (Draft April 13, 2001)

Regular Expressions Regular Expression General Requirements

5941 reality matched against "ch" , "Ch" , "cH" , and "CH" .

5942 The implementation shall support any regular expression that does not exceed 256 bytes in
5943 length.

5944 9.3 Basic Regular Expressions

5945 9.3.1 BREs Matching a Single Character or Collating Element

5946 A BRE ordinary character, a special character preceded by a backslash or a period, shall match a
5947 single character. A bracket expression shall match a single character or a single collating
5948 element.

5949 9.3.2 BRE Ordinary Characters

5950 An ordinary character is a BRE that matches itself: any character in the supported character set,
5951 except for the BRE special characters listed in Section 9.3.3.

5952 The interpretation of an ordinary character preceded by a backslash (’\’) is undefined, except
5953 for:

5954 • The characters ’)’ , ’(’ , ’{’ , and ’}’

5955 • The digits 1 to 9 inclusive (see Section 9.3.6 (on page 170))

5956 • A character inside a bracket expression

5957 9.3.3 BRE Special Characters

5958 A BRE special character has special properties in certain contexts. Outside those contexts, or when
5959 preceded by a backslash, such a character is a BRE that matches the special character itself. The
5960 BRE special characters and the contexts in which they have their special meaning are as follows:

5961 . [\ The period, left-bracket, and backslash shall be special except when used in a bracket
5962 expression (see Section 9.3.5 (on page 168)). An expression containing a ’[’ that is not
5963 preceded by a backslash and is not part of a bracket expression produces undefined
5964 results.

5965 * The asterisk shall be special except when used:

5966 • In a bracket expression

5967 • As the first character of an entire BRE (after an initial ’ˆ’ , if any)

5968 • As the first character of a subexpression (after an initial ’ˆ’ , if any); see Section
5969 9.3.6 (on page 170)

5970 ^ The circumflex shall be special when used as:

5971 • An anchor (see Section 9.3.8 (on page 171))

5972 • The first character of a bracket expression (see Section 9.3.5 (on page 168))

5973 $ The dollar sign shall be special when used as an anchor.

Base Definitions, Issue 6 167

Basic Regular Expressions Regular Expressions

5974 9.3.4 Periods in BREs

5975 A period (’.’), when used outside a bracket expression, is a BRE that shall match any character
5976 in the supported character set except NUL.

5977 9.3.5 RE Bracket Expression

5978 A bracket expression (an expression enclosed in square brackets, "[]") is an RE that shall match |
5979 a single collating element contained in the non-empty set of collating elements represented by |
5980 the bracket expression.

5981 The following rules and definitions apply to bracket expressions:

5982 1. A bracket expression is either a matching list expression or a non-matching list expression. It
5983 consists of one or more expressions: collating elements, collating symbols, equivalence
5984 classes, character classes, or range expressions. The right-bracket (’]’) shall lose its special
5985 meaning and represents itself in a bracket expression if it occurs first in the list (after an
5986 initial circumflex (’ˆ’), if any). Otherwise, it shall terminate the bracket expression, unless
5987 it appears in a collating symbol (such as "[.].]") or is the ending right-bracket for a
5988 collating symbol, equivalence class, or character class. The special characters ’.’ , ’*’ ,
5989 ’[’ , and ’\’ (period, asterisk, left-bracket, and backslash, respectively) shall lose their
5990 special meaning within a bracket expression.

5991 The character sequences "[." , "[=" , and "[:" (left-bracket followed by a period, equals-
5992 sign, or colon) shall be special inside a bracket expression and are used to delimit collating
5993 symbols, equivalence class expressions, and character class expressions. These symbols
5994 shall be followed by a valid expression and the matching terminating sequence ".]" ,
5995 "=]" , or ":]" , as described in the following items.

5996 2. A matching list expression specifies a list that shall match any single-character collating |
5997 element in any of the expressions represented in the list. The first character in the list shall |
5998 not be the circumflex; for example, "[abc]" is an RE that matches any of the characters |
5999 ’a’ , ’b’ , or ’c’ . It is unspecified whether a matching list expression matches a multi-
6000 character collating element that is matched by one of the expressions.

6001 3. A non-matching list expression begins with a circumflex (’ˆ’), and specifies a list that shall |
6002 match any single-character collating element except for the expressions represented in the |
6003 list after the leading circumflex. For example, "[ˆabc]" is an RE that matches any |
6004 character except the characters ’a’ , ’b’ , or ’c’ . It is unspecified whether a non-matching
6005 list expression matches a multi-character collating element that is not matched by any of
6006 the expressions. The circumflex shall have this special meaning only when it occurs first in
6007 the list, immediately following the left-bracket.

6008 4. A collating symbol is a collating element enclosed within bracket-period ("[." and ".]")
6009 delimiters. Collating elements are defined as described in Section 7.3.2.4 (on page 133). |
6010 Conforming applications shall represent multi-character collating elements as collating |
6011 symbols when it is necessary to distinguish them from a list of the individual characters
6012 that make up the multi-character collating element. For example, if the string "ch" is a
6013 collating element defined using the line:

6014 collating-element <ch-digraph> from "<c><h>"

6015 in the locale definition, the expression "[[.ch.]]" shall be treated as an RE containing
6016 the collating symbol ’ch’ , while "[ch]" shall be treated as an RE matching ’c’ or ’h’ .
6017 Collating symbols are recognized only inside bracket expressions. If the string is not a
6018 collating element in the current locale, the expression is invalid.

168 Technical Standard (2001) (Draft April 13, 2001)

Regular Expressions Basic Regular Expressions

6019 5. An equivalence class expression shall represent the set of collating elements belonging to an
6020 equivalence class, as described in Section 7.3.2.4 (on page 133). Only primary equivalence
6021 classes shall be recognized. The class shall be expressed by enclosing any one of the
6022 collating elements in the equivalence class within bracket-equal ("[=" and "=]")
6023 delimiters. For example, if ’a’ , ’à’ , and ’â’ belong to the same equivalence class, then
6024 "[[=a=]b]" , "[[=à=]b]" , and "[[=â=]b]" are each equivalent to "[aàâb]" . If the
6025 collating element does not belong to an equivalence class, the equivalence class expression
6026 shall be treated as a collating symbol .

6027 6. A character class expression shall represent the union of two sets: |

6028 a. The set of single-character collating elements whose characters belong to the |
6029 character class, as defined in the LC_CTYPE category in the current locale. |

6030 b. An unspecified set of multi-character collating elements. |

6031 All character classes specified in the current locale shall be recognized. A character class |
6032 expression is expressed as a character class name enclosed within bracket-colon ("[:" and |
6033 ":]") delimiters.

6034 The following character class expressions shall be supported in all locales:

6035 [:alnum:] [:cntrl:] [:lower:] [:space:]
6036 [:alpha:] [:digit:] [:print:] [:upper:]
6037 [:blank:] [:graph:] [:punct:] [:xdigit:]

6038 XSI In addition, character class expressions of the form:

6039 [: name:]

6040 are recognized in those locales where the name keyword has been given a charclass
6041 definition in the LC_CTYPE category.

6042 7. In the POSIX locale, a range expression represents the set of collating elements that fall
6043 between two elements in the collation sequence, inclusive. In other locales, a range
6044 expression has unspecified behavior: strictly conforming applications shall not rely on
6045 whether the range expression is valid, or on the set of collating elements matched. A range
6046 expression shall be expressed as the starting point and the ending point separated by a
6047 hyphen (’ −’).

6048 In the following, all examples assume the POSIX locale.

6049 The starting range point and the ending range point shall be a collating element or
6050 collating symbol. An equivalence class expression used as a starting or ending point of a
6051 range expression produces unspecified results. An equivalence class can be used portably
6052 within a bracket expression, but only outside the range. If the represented set of collating
6053 elements is empty, it is unspecified whether the expression matches nothing, or is treated
6054 as invalid.

6055 The interpretation of range expressions where the ending range point is also the starting
6056 range point of a subsequent range expression (for example, "[a −m−o]") is undefined.

6057 The hyphen character shall be treated as itself if it occurs first (after an initial ’ˆ’ , if any)
6058 or last in the list, or as an ending range point in a range expression. As examples, the
6059 expressions "[−ac]" and "[ac −]" are equivalent and match any of the characters ’a’ ,
6060 ’c’ , or ’ −’ ; "[ˆ −ac]" and "[ˆac −]" are equivalent and match any characters except
6061 ’a’ , ’c’ , or ’ −’ ; the expression "[% − −]" matches any of the characters between ’%’ and
6062 ’ −’ inclusive; the expression "[− −@]" matches any of the characters between ’ −’ and
6063 ’@’ inclusive; and the expression "[a − −@]" is either invalid or equivalent to ’@’ ,

Base Definitions, Issue 6 169

Basic Regular Expressions Regular Expressions

6064 because the letter ’a’ follows the symbol ’ −’ in the POSIX locale. To use a hyphen as the
6065 starting range point, it shall either come first in the bracket expression or be specified as a
6066 collating symbol; for example, "[][. −.] −0]" , which matches either a right bracket or
6067 any character or collating element that collates between hyphen and 0, inclusive.

6068 If a bracket expression specifies both ’ −’ and ’]’ , the ’]’ shall be placed first (after the
6069 ’ˆ’ , if any) and the ’ −’ last within the bracket expression.

6070 9.3.6 BREs Matching Multiple Characters

6071 The following rules can be used to construct BREs matching multiple characters from BREs
6072 matching a single character:

6073 1. The concatenation of BREs shall match the concatenation of the strings matched by each
6074 component of the BRE.

6075 2. A subexpression can be defined within a BRE by enclosing it between the character pairs
6076 "\(" and "\)" . Such a subexpression shall match whatever it would have matched
6077 without the "\(" and "\)" , except that anchoring within subexpressions is optional
6078 behavior; see Section 9.3.8 (on page 171). Subexpressions can be arbitrarily nested.

6079 3. The back-reference expression ’\n’ shall match the same (possibly empty) string of |
6080 characters as was matched by a subexpression enclosed between "\(" and "\)"
6081 preceding the ’\n’ . The character ’n’ shall be a digit from 1 through 9, specifying the
6082 nth subexpression (the one that begins with the nth "\(" from the beginning of the
6083 pattern and ends with the corresponding paired "\)"). The expression is invalid if less
6084 than n subexpressions precede the ’\n’ . For example, the expression "\(.*\)\1$"
6085 matches a line consisting of two adjacent appearances of the same string, and the
6086 expression "\(a\)*\1" fails to match ’a’ . When the referenced subexpression matched
6087 more than one string, the back-referenced expression shall refer to the last matched string.
6088 If the subexpression referenced by the back-reference matches more than one string
6089 because of an asterisk (’*’) or an interval expression (see item (5)), the back-reference
6090 shall match the last (rightmost) of these strings.

6091 4. When a BRE matching a single character, a subexpression, or a back-reference is followed
6092 by the special character asterisk (’*’), together with that asterisk it shall match what zero
6093 or more consecutive occurrences of the BRE would match. For example, "[ab]*" and
6094 "[ab][ab]" are equivalent when matching the string "ab" .

6095 5. When a BRE matching a single character, a subexpression, or a back-reference is followed
6096 by an interval expression of the format "\{m\}" , "\{m,\}" , or "\{m,n\}" , together with
6097 that interval expression it shall match what repeated consecutive occurrences of the BRE
6098 would match. The values of m and n are decimal integers in the range 0
6099 ≤m≤n≤{RE_DUP_MAX}, where m specifies the exact or minimum number of occurrences
6100 and n specifies the maximum number of occurrences. The expression "\{m\}" shall match
6101 exactly m occurrences of the preceding BRE, "\{m,\}" shall match at least m occurrences,
6102 and "\{m,n\}" shall match any number of occurrences between m and n, inclusive.

6103 For example, in the string "abababccccccd" the BRE "c\{3\}" is matched by
6104 characters ’7’ to ’9’ , the BRE "\(ab\)\{4,\}" is not matched at all, and the BRE
6105 "c\{1,3\}d" is matched by characters ten to thirteen.

6106 The behavior of multiple adjacent duplication symbols (’*’ and intervals) produces undefined
6107 results.

6108 A subexpression repeated by an asterisk (’*’) or an interval expression shall not match a null
6109 expression unless this is the only match for the repetition or it is necessary to satisfy the exact or

170 Technical Standard (2001) (Draft April 13, 2001)

Regular Expressions Basic Regular Expressions

6110 minimum number of occurrences for the interval expression.

6111 9.3.7 BRE Precedence

6112 The order of precedence shall be as shown in the following table:

6113 BRE Precedence (from high to low)___
6114 Collation-related bracket symbols [==] [::] [..]
6115 Escaped characters \<special character>
6116 Bracket expression []
6117 Subexpressions/back-references \(\) \n
6118 Single-character-BRE duplication * \{m,n\}
6119 Concatenation
6120 Anchoring ^ $___L

L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

6121 9.3.8 BRE Expression Anchoring

6122 A BRE can be limited to matching strings that begin or end a line; this is called anchoring . The
6123 circumflex and dollar sign special characters shall be considered BRE anchors in the following
6124 contexts:

6125 1. A circumflex (’ˆ’) shall be an anchor when used as the first character of an entire BRE.
6126 The implementation may treat the circumflex as an anchor when used as the first character
6127 of a subexpression. The circumflex shall anchor the expression (or optionally
6128 subexpression) to the beginning of a string; only sequences starting at the first character of
6129 a string shall be matched by the BRE. For example, the BRE "ˆab" matches "ab" in the
6130 string "abcdef" , but fails to match in the string "cdefab" . The BRE "\(ˆab\)" may
6131 match the former string. A portable BRE shall escape a leading circumflex in a
6132 subexpression to match a literal circumflex.

6133 2. A dollar sign (’$’) shall be an anchor when used as the last character of an entire BRE.
6134 The implementation may treat a dollar sign as an anchor when used as the last character of
6135 a subexpression. The dollar sign shall anchor the expression (or optionally subexpression)
6136 to the end of the string being matched; the dollar sign can be said to match the end-of-
6137 string following the last character.

6138 3. A BRE anchored by both ’ˆ’ and ’$’ shall match only an entire string. For example, the
6139 BRE "ˆabcdef$" matches strings consisting only of "abcdef" .

6140 9.4 Extended Regular Expressions
6141 The extended regular expression (ERE) notation and construction rules shall apply to utilities
6142 defined as using extended regular expressions; any exceptions to the following rules are noted in
6143 the descriptions of the specific utilities using EREs.

Base Definitions, Issue 6 171

Extended Regular Expressions Regular Expressions

6144 9.4.1 EREs Matching a Single Character or Collating Element

6145 An ERE ordinary character, a special character preceded by a backslash, or a period shall match
6146 a single character. A bracket expression shall match a single character or a single collating
6147 element. An ERE matching a single character enclosed in parentheses shall match the same as the
6148 ERE without parentheses would have matched.

6149 9.4.2 ERE Ordinary Characters

6150 An ordinary character is an ERE that matches itself. An ordinary character is any character in the
6151 supported character set, except for the ERE special characters listed in Section 9.4.3. The
6152 interpretation of an ordinary character preceded by a backslash (’\’) is undefined.

6153 9.4.3 ERE Special Characters

6154 An ERE special character has special properties in certain contexts. Outside those contexts, or
6155 when preceded by a backslash, such a character shall be an ERE that matches the special
6156 character itself. The extended regular expression special characters and the contexts in which
6157 they shall have their special meaning are as follows:

6158 . [\ (The period, left-bracket, backslash, and left-parenthesis shall be special except when
6159 used in a bracket expression (see Section 9.3.5 (on page 168)). Outside a bracket
6160 expression, a left-parenthesis immediately followed by a right-parenthesis produces
6161 undefined results.

6162) The right-parenthesis shall be special when matched with a preceding left-parenthesis,
6163 both outside a bracket expression.

6164 * + ? { The asterisk, plus-sign, question-mark, and left-brace shall be special except when used
6165 in a bracket expression (see Section 9.3.5 (on page 168)). Any of the following uses
6166 produce undefined results:

6167 • If these characters appear first in an ERE, or immediately following a vertical-line,
6168 circumflex, or left-parenthesis

6169 • If a left-brace is not part of a valid interval expression (see Section 9.4.6 (on page
6170 173))

6171 | The vertical-line is special except when used in a bracket expression (see Section 9.3.5
6172 (on page 168)). A vertical-line appearing first or last in an ERE, or immediately
6173 following a vertical-line or a left-parenthesis, or immediately preceding a right-
6174 parenthesis, produces undefined results.

6175 ^ The circumflex shall be special when used as:

6176 • An anchor (see Section 9.4.9 (on page 174))

6177 • The first character of a bracket expression (see Section 9.3.5 (on page 168))

6178 $ The dollar sign shall be special when used as an anchor.

172 Technical Standard (2001) (Draft April 13, 2001)

Regular Expressions Extended Regular Expressions

6179 9.4.4 Periods in EREs

6180 A period (’.’), when used outside a bracket expression, is an ERE that shall match any
6181 character in the supported character set except NUL.

6182 9.4.5 ERE Bracket Expression

6183 The rules for ERE Bracket Expressions are the same as for Basic Regular Expressions; see Section
6184 9.3.5 (on page 168).

6185 9.4.6 EREs Matching Multiple Characters

6186 The following rules shall be used to construct EREs matching multiple characters from EREs
6187 matching a single character:

6188 1. A concatenation of EREs shall match the concatenation of the character sequences matched
6189 by each component of the ERE. A concatenation of EREs enclosed in parentheses shall
6190 match whatever the concatenation without the parentheses matches. For example, both the
6191 ERE "cd" and the ERE "(cd)" are matched by the third and fourth character of the string
6192 "abcdefabcdef" .

6193 2. When an ERE matching a single character or an ERE enclosed in parentheses is followed by
6194 the special character plus-sign (’+’), together with that plus-sign it shall match what one
6195 or more consecutive occurrences of the ERE would match. For example, the ERE
6196 "b+(bc)" matches the fourth to seventh characters in the string "acabbbcde" . And,
6197 "[ab]+" and "[ab][ab]*" are equivalent.

6198 3. When an ERE matching a single character or an ERE enclosed in parentheses is followed by
6199 the special character asterisk (’*’), together with that asterisk it shall match what zero or
6200 more consecutive occurrences of the ERE would match. For example, the ERE "b*c"
6201 matches the first character in the string "cabbbcde" , and the ERE "b*cd" matches the
6202 third to seventh characters in the string "cabbbcdebbbbbbcdbc" . And, "[ab]*" and
6203 [ab][ab] are equivalent when matching the string "ab" .

6204 4. When an ERE matching a single character or an ERE enclosed in parentheses is followed by
6205 the special character question-mark (’?’), together with that question-mark it shall match
6206 what zero or one consecutive occurrences of the ERE would match. For example, the ERE
6207 "b?c" matches the second character in the string "acabbbcde" .

6208 5. When an ERE matching a single character or an ERE enclosed in parentheses is followed by
6209 an interval expression of the format "{m}" , "{m,}" , or "{m,n}" , together with that
6210 interval expression it shall match what repeated consecutive occurrences of the ERE would
6211 match. The values of m and n are decimal integers in the range 0 ≤m≤n≤{RE_DUP_MAX},
6212 where m specifies the exact or minimum number of occurrences and n specifies the
6213 maximum number of occurrences. The expression "{m}" matches exactly m occurrences
6214 of the preceding ERE, "{m,}" matches at least m occurrences, and "{m,n}" matches any
6215 number of occurrences between m and n, inclusive.

6216 For example, in the string "abababccccccd" the ERE "c{3}" is matched by characters
6217 ’7’ to ’9’ and the ERE "(ab){2,}" is matched by characters one to six.

6218 The behavior of multiple adjacent duplication symbols (’+’ , ’*’ , ’?’ , and intervals) produces
6219 undefined results.

6220 An ERE matching a single character repeated by an ’*’ , ’?’ , or an interval expression shall not
6221 match a null expression unless this is the only match for the repetition or it is necessary to satisfy
6222 the exact or minimum number of occurrences for the interval expression.

Base Definitions, Issue 6 173

Extended Regular Expressions Regular Expressions

6223 9.4.7 ERE Alternation

6224 Two EREs separated by the special character vertical-line (’|’) shall match a string that is
6225 matched by either. For example, the ERE "a((bc)|d)" matches the string "abc" and the string
6226 "ad" . Single characters, or expressions matching single characters, separated by the vertical bar
6227 and enclosed in parentheses, shall be treated as an ERE matching a single character.

6228 9.4.8 ERE Precedence

6229 The order of precedence shall be as shown in the following table:

6230 ERE Precedence (from high to low)___
6231 Collation-related bracket symbols [==] [::] [..]
6232 Escaped characters \<special character>
6233 Bracket expression []
6234 Grouping ()
6235 Single-character-ERE duplication * + ? {m,n}
6236 Concatenation
6237 Anchoring ^ $
6238 Alternation |___LL

L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

6239 For example, the ERE "abba|cde" matches either the string "abba" or the string "cde"
6240 (rather than the string "abbade" or "abbcde" , because concatenation has a higher order of
6241 precedence than alternation).

6242 9.4.9 ERE Expression Anchoring

6243 An ERE can be limited to matching strings that begin or end a line; this is called anchoring . The
6244 circumflex and dollar sign special characters shall be considered ERE anchors when used
6245 anywhere outside a bracket expression. This shall have the following effects:

6246 1. A circumflex (’ˆ’) outside a bracket expression shall anchor the expression or
6247 subexpression it begins to the beginning of a string; such an expression or subexpression
6248 can match only a sequence starting at the first character of a string. For example, the EREs
6249 "ˆab" and "(ˆab)" match "ab" in the string "abcdef" , but fail to match in the string
6250 "cdefab" , and the ERE "aˆb" is valid, but can never match because the ’a’ prevents the
6251 expression "ˆb" from matching starting at the first character.

6252 2. A dollar sign (’$’) outside a bracket expression shall anchor the expression or
6253 subexpression it ends to the end of a string; such an expression or subexpression can
6254 match only a sequence ending at the last character of a string. For example, the EREs
6255 "ef$" and "(ef$)" match "ef" in the string "abcdef" , but fail to match in the string
6256 "cdefab" , and the ERE "e$f" is valid, but can never match because the ’f’ prevents the
6257 expression "e$" from matching ending at the last character.

174 Technical Standard (2001) (Draft April 13, 2001)

Regular Expressions Regular Expression Grammar

6258 9.5 Regular Expression Grammar
6259 Grammars describing the syntax of both basic and extended regular expressions are presented in
6260 this section. The grammar takes precedence over the text. See the Shell and Utilities volume of
6261 IEEE Std 1003.1-200x, Section 1.10, Grammar Conventions.

6262 9.5.1 BRE/ERE Grammar Lexical Conventions

6263 The lexical conventions for regular expressions are as described in this section.

6264 Except as noted, the longest possible token or delimiter beginning at a given point is recognized.

6265 The following tokens are processed (in addition to those string constants shown in the
6266 grammar):

6267 COLL_ELEM_SINGLE |
6268 Any single-character collating element, unless it is a META_CHAR. |

6269 COLL_ELEM_MULTI Any multi-character collating element.

6270 BACKREF Applicable only to basic regular expressions. The character string
6271 consisting of ’\’ followed by a single-digit numeral, ’1’ to ’9’ .

6272 DUP_COUNT Represents a numeric constant. It shall be an integer in the range 0
6273 ≤DUP_COUNT ≤{RE_DUP_MAX}. This token is only recognized when
6274 the context of the grammar requires it. At all other times, digits not
6275 preceded by ’\’ are treated as ORD_CHAR.

6276 META_CHAR One of the characters:

6277 ^ When found first in a bracket expression

6278 − When found anywhere but first (after an initial ’ˆ’ , if any) or
6279 last in a bracket expression, or as the ending range point in a
6280 range expression

6281] When found anywhere but first (after an initial ’ˆ’ , if any) in a
6282 bracket expression

6283 L_ANCHOR Applicable only to basic regular expressions. The character ’ˆ’ when it
6284 appears as the first character of a basic regular expression and when not
6285 QUOTED_CHAR. The ’ˆ’ may be recognized as an anchor elsewhere;
6286 see Section 9.3.8 (on page 171).

6287 ORD_CHAR A character, other than one of the special characters in SPEC_CHAR.

6288 QUOTED_CHAR In a BRE, one of the character sequences:

6289 \ˆ \. * \[\$ \\

6290 In an ERE, one of the character sequences:

6291 \ˆ \. \[\$ \(\) \|
6292 * \+ \? \{ \\

6293 R_ANCHOR (Applicable only to basic regular expressions.) The character ’$’ when it
6294 appears as the last character of a basic regular expression and when not
6295 QUOTED_CHAR. The ’$’ may be recognized as an anchor elsewhere;
6296 see Section 9.3.8 (on page 171).

6297 SPEC_CHAR For basic regular expressions, one of the following special characters:

Base Definitions, Issue 6 175

Regular Expression Grammar Regular Expressions

6298 . Anywhere outside bracket expressions

6299 \ Anywhere outside bracket expressions

6300 [Anywhere outside bracket expressions

6301 ^ When used as an anchor (see Section 9.3.8 (on page 171)) or
6302 when first in a bracket expression

6303 $ When used as an anchor

6304 * Anywhere except first in an entire RE, anywhere in a bracket
6305 expression, directly following "\(" , directly following an
6306 anchoring ’ˆ’

6307 For extended regular expressions, shall be one of the following special
6308 characters found anywhere outside bracket expressions:

6309 ^ . [$ () |
6310 * + ? { \

6311 (The close-parenthesis shall be considered special in this context only if
6312 matched with a preceding open-parenthesis.)

6313 9.5.2 RE and Bracket Expression Grammar

6314 This section presents the grammar for basic regular expressions, including the bracket
6315 expression grammar that is common to both BREs and EREs.

6316 %token ORD_CHAR QUOTED_CHAR DUP_COUNT

6317 %token BACKREF L_ANCHOR R_ANCHOR

6318 %token Back_open_paren Back_close_paren
6319 /* ’\(’ ’\)’ */

6320 %token Back_open_brace Back_close_brace
6321 /* ’\{’ ’\}’ */

6322 /* The following tokens are for the Bracket Expression
6323 grammar common to both REs and EREs. */

6324 %token COLL_ELEM_SINGLE COLL_ELEM_MULTI META_CHAR

6325 %token Open_equal Equal_close Open_dot Dot_close Open_colon Colon_close
6326 /* ’[=’ ’=]’ ’[.’ ’.]’ ’[:’ ’:]’ */

6327 %token class_name
6328 /* class_name is a keyword to the LC_CTYPE locale category */
6329 /* (representing a character class) in the current locale */
6330 /* and is only recognized between [: and :] */

6331 %start basic_reg_exp
6332 %%

6333 /* --
6334 Basic Regular Expression
6335 --
6336 */
6337 basic_reg_exp : RE_expression
6338 | L_ANCHOR
6339 | R_ANCHOR

176 Technical Standard (2001) (Draft April 13, 2001)

Regular Expressions Regular Expression Grammar

6340 | L_ANCHOR R_ANCHOR
6341 | L_ANCHOR RE_expression
6342 | RE_expression R_ANCHOR
6343 | L_ANCHOR RE_expression R_ANCHOR
6344 ;
6345 RE_expression : simple_RE
6346 | RE_expression simple_RE
6347 ;
6348 simple_RE : nondupl_RE
6349 | nondupl_RE RE_dupl_symbol
6350 ;
6351 nondupl_RE : one_char_or_coll_elem_RE
6352 | Back_open_paren RE_expression Back_close_paren
6353 | BACKREF
6354 ;
6355 one_char_or_coll_elem_RE : ORD_CHAR
6356 | QUOTED_CHAR
6357 | ’.’
6358 | bracket_expression
6359 ;
6360 RE_dupl_symbol : ’*’
6361 | Back_open_brace DUP_COUNT Back_close_brace
6362 | Back_open_brace DUP_COUNT ’,’ Back_close_brace
6363 | Back_open_brace DUP_COUNT ’,’ DUP_COUNT Back_close_brace
6364 ;

6365 /* --
6366 Bracket Expression
6367 ---
6368 */
6369 bracket_expression : ’[’ matching_list ’]’
6370 | ’[’ nonmatching_list ’]’
6371 ;
6372 matching_list : bracket_list
6373 ;
6374 nonmatching_list : ’ˆ’ bracket_list
6375 ;
6376 bracket_list : follow_list
6377 | follow_list ’-’
6378 ;
6379 follow_list : expression_term
6380 | follow_list expression_term
6381 ;
6382 expression_term : single_expression
6383 | range_expression
6384 ;
6385 single_expression : end_range
6386 | character_class
6387 | equivalence_class
6388 ;
6389 range_expression : start_range end_range
6390 | start_range ’-’
6391 ;

Base Definitions, Issue 6 177

Regular Expression Grammar Regular Expressions

6392 start_range : end_range ’-’
6393 ;
6394 end_range : COLL_ELEM_SINGLE
6395 | collating_symbol
6396 ;
6397 collating_symbol : Open_dot COLL_ELEM_SINGLE Dot_close
6398 | Open_dot COLL_ELEM_MULTI Dot_close
6399 | Open_dot META_CHAR Dot_close
6400 ;
6401 equivalence_class : Open_equal COLL_ELEM_SINGLE Equal_close
6402 | Open_equal COLL_ELEM_MULTI Equal_close
6403 ;
6404 character_class : Open_colon class_name Colon_close
6405 ;

6406 The BRE grammar does not permit L_ANCHOR or R_ANCHOR inside "\(" and "\)" (which
6407 implies that ’ˆ’ and ’$’ are ordinary characters). This reflects the semantic limits on the
6408 application, as noted in Section 9.3.8 (on page 171). Implementations are permitted to extend the
6409 language to interpret ’ˆ’ and ’$’ as anchors in these locations, and as such, conforming |
6410 applications cannot use unescaped ’ˆ’ and ’$’ in positions inside "\(" and "\)" that might |
6411 be interpreted as anchors.

6412 9.5.3 ERE Grammar

6413 This section presents the grammar for extended regular expressions, excluding the bracket
6414 expression grammar.

6415 Note: The bracket expression grammar and the associated %token lines are identical between BREs
6416 and EREs. It has been omitted from the ERE section to avoid unnecessary editorial duplication.

6417 %token ORD_CHAR QUOTED_CHAR DUP_COUNT
6418 %start extended_reg_exp
6419 %%

6420 /* --
6421 Extended Regular Expression
6422 --
6423 */
6424 extended_reg_exp : ERE_branch
6425 | extended_reg_exp ’|’ ERE_branch
6426 ;
6427 ERE_branch : ERE_expression
6428 | ERE_branch ERE_expression
6429 ;
6430 ERE_expression : one_char_or_coll_elem_ERE
6431 | ’ˆ’
6432 | ’$’
6433 | ’(’ extended_reg_exp ’)’
6434 | ERE_expression ERE_dupl_symbol
6435 ;
6436 one_char_or_coll_elem_ERE : ORD_CHAR
6437 | QUOTED_CHAR
6438 | ’.’
6439 | bracket_expression
6440 ;

178 Technical Standard (2001) (Draft April 13, 2001)

Regular Expressions Regular Expression Grammar

6441 ERE_dupl_symbol : ’*’
6442 | ’+’
6443 | ’?’
6444 | ’{’ DUP_COUNT ’}’
6445 | ’{’ DUP_COUNT ’,’ ’}’
6446 | ’{’ DUP_COUNT ’,’ DUP_COUNT ’}’
6447 ;

6448 The ERE grammar does not permit several constructs that previous sections specify as having
6449 undefined results:

6450 • ORD_CHAR preceded by ’\’

6451 • One or more ERE_dupl_symbols appearing first in an ERE, or immediately following ’|’ ,
6452 ’ˆ’ , or ’(’

6453 • ’{’ not part of a valid ERE_dupl_symbol

6454 • ’|’ appearing first or last in an ERE, or immediately following ’|’ or ’(’ , or immediately
6455 preceding ’)’

6456 Implementations are permitted to extend the language to allow these. Conforming applications |
6457 cannot use such constructs. |

Base Definitions, Issue 6 179

Regular Expressions

6458 |

180 Technical Standard (2001) (Draft April 13, 2001)

6459

Chapter 10

Directory Structure and Devices

6460 10.1 Directory Structure and Files
6461 The following directories shall exist on conforming systems and conforming applications shall |
6462 make use of them only as described. Strictly conforming applications shall not assume the |
6463 ability to create files in any of these directories, unless specified below.

6464 / The root directory.

6465 /dev Contains /dev/console, /dev/null, and /dev/tty, described below.

6466 The following directory shall exist on conforming systems and shall be used as described.

6467 /tmp A directory made available for programs that need a place to create temporary |
6468 files. Applications shall be allowed to create files in this directory, but shall not |
6469 assume that such files are preserved between invocations of the application.

6470 The following files shall exist on conforming systems and shall be both readable and writable.

6471 /dev/null An infinite data source and data sink. Data written to /dev/null shall be discarded.
6472 Reads from /dev/null shall always return end-of-file (EOF).

6473 /dev/tty In each process, a synonym for the controlling terminal associated with the process
6474 group of that process, if any. It is useful for programs or shell procedures that wish
6475 to be sure of writing messages to or reading data from the terminal no matter how
6476 output has been redirected. It can also be used for programs that demand the name
6477 of a file for output, when typed output is desired and it is tiresome to find out
6478 what terminal is currently in use.

6479 The following file shall exist on conforming systems and need not be readable or writable:

6480 /dev/console The /dev/console file is a generic name given to the system console (see Section |
6481 3.382 (on page 85)). It is usually linked to an implementation-defined special file. It |
6482 shall provide an interface to the system console conforming to the requirements of |
6483 the Base Definitions volume of IEEE Std 1003.1-200x, Chapter 11, General Terminal |
6484 Interface. |

6485 10.2 Output Devices and Terminal Types
6486 The utilities in the Shell and Utilities volume of IEEE Std 1003.1-200x historically have been
6487 implemented on a wide range of terminal types, but a conforming implementation need not
6488 support all features of all utilities on every conceivable terminal. IEEE Std 1003.1-200x states
6489 which features are optional for certain classes of terminals in the individual utility description
6490 sections. The implementation shall document which terminal types it supports and which of
6491 these features and utilities are not supported by each terminal.

6492 When a feature or utility is not supported on a specific terminal type, as allowed by
6493 IEEE Std 1003.1-200x, and the implementation considers such a condition to be an error
6494 preventing use of the feature or utility, the implementation shall indicate such conditions
6495 through diagnostic messages or exit status values or both (as appropriate to the specific utility
6496 description) that inform the user that the terminal type lacks the appropriate capability.

Base Definitions, Issue 6 181

Output Devices and Terminal Types Directory Structure and Devices

6497 IEEE Std 1003.1-200x uses a notational convention based on historical practice that identifies
6498 some of the control characters defined in Section 7.3.1 (on page 122) in a manner easily
6499 remembered by users on many terminals. The correspondence between this ‘‘<control>-char ’’
6500 notation and the actual control characters is shown in the following table. When
6501 IEEE Std 1003.1-200x refers to a character by its <control>- name, it is referring to the actual
6502 control character shown in the Value column of the table, which is not necessarily the exact
6503 control key sequence on all terminals. Some terminals have keyboards that do not allow the
6504 direct transmission of all the non-alphanumeric characters shown. In such cases, the system
6505 documentation shall describe which data sequences transmitted by the terminal are interpreted
6506 by the system as representing the special characters.

6507 Table 10-1 Control Character Names
__

6508 Name Value Symbolic Name Name Value Symbolic Name__
6509 <control>-A <SOH> <SOH> <control>-Q <DC1> <DC1>
6510 <control>-B <STX> <STX> <control>-R <DC2> <DC2>
6511 <control>-C <ETX> <ETX> <control>-S <DC3> <DC3>
6512 <control>-D <EOT> <EOT> <control>-T <DC4> <DC4>
6513 <control>-E <ENQ> <ENQ> <control>-U <NAK> <NAK>
6514 <control>-F <ACK> <ACK> <control>-V <SYN> <SYN>
6515 <control>-G <BEL> <alert> <control>-W <ETB> <ETB>
6516 <control>-H <BS> <backspace> <control>-X <CAN> <CAN>
6517 <control>-I <HT> <tab> <control>-Y
6518 <control>-J <LF> <linefeed> <control>-Z <SUB> <SUB>
6519 <control>-K <VT> <vertical-tab> <control>-[<ESC> <ESC>
6520 <control>-L <FF> <form-feed> <control>-\ <FS> <FS>
6521 <control>-M <CR> <carriage-return> <control>-] <GS> <GS>
6522 <control>-N <SO> <SO> <control>-ˆ <RS> <RS>
6523 <control>-O <SI> <SI> <control>-_ <US> <US>
6524 <control>-P <DLE> <DLE> <control>-? __L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

6525 Note: The notation uses uppercase letters for arbitrary editorial reasons. There is no implication that
6526 the keystrokes represent control-shift-letter sequences. |

182 Technical Standard (2001) (Draft April 13, 2001)

6527

Chapter 11

General Terminal Interface

6528 This chapter describes a general terminal interface that shall be provided. It shall be supported
6529 on any asynchronous communications ports if the implementation provides them. It is
6530 implementation-defined whether it supports network connections or synchronous ports, or
6531 both.

6532 11.1 Interface Characteristics

6533 11.1.1 Opening a Terminal Device File

6534 When a terminal device file is opened, it normally causes the thread to wait until a connection is
6535 established. In practice, application programs seldom open these files; they are opened by
6536 special programs and become an application’s standard input, output, and error files.

6537 As described in open(), opening a terminal device file with the O_NONBLOCK flag clear shall
6538 cause the thread to block until the terminal device is ready and available. If CLOCAL mode is
6539 not set, this means blocking until a connection is established. If CLOCAL mode is set in the
6540 terminal, or the O_NONBLOCK flag is specified in the open(), the open() function shall return a
6541 file descriptor without waiting for a connection to be established.

6542 11.1.2 Process Groups

6543 A terminal may have a foreground process group associated with it. This foreground process
6544 group plays a special role in handling signal-generating input characters, as discussed in Section
6545 11.1.9 (on page 187).

6546 A command interpreter process supporting job control can allocate the terminal to different jobs,
6547 or process groups, by placing related processes in a single process group and associating this
6548 process group with the terminal. A terminal’s foreground process group may be set or examined
6549 by a process, assuming the permission requirements are met; see tcgetpgrp() and tcsetpgrp(). The
6550 terminal interface aids in this allocation by restricting access to the terminal by processes that are
6551 not in the current process group; see Section 11.1.4 (on page 184).

6552 When there is no longer any process whose process ID or process group ID matches the process
6553 group ID of the foreground process group, the terminal shall have no foreground process group.
6554 It is unspecified whether the terminal has a foreground process group when there is a process
6555 whose process ID matches the foreground process ID, but whose process group ID does not. No
6556 actions defined in IEEE Std 1003.1-200x, other than allocation of a controlling terminal or a
6557 successful call to tcsetpgrp(), cause a process group to become the foreground process group of
6558 the terminal.

Base Definitions, Issue 6 183

Interface Characteristics General Terminal Interface

6559 11.1.3 The Controlling Terminal

6560 A terminal may belong to a process as its controlling terminal. Each process of a session that has
6561 a controlling terminal has the same controlling terminal. A terminal may be the controlling
6562 terminal for at most one session. The controlling terminal for a session is allocated by the session
6563 leader in an implementation-defined manner. If a session leader has no controlling terminal, and
6564 opens a terminal device file that is not already associated with a session without using the
6565 O_NOCTTY option (see open()), it is implementation-defined whether the terminal becomes the
6566 controlling terminal of the session leader. If a process which is not a session leader opens a
6567 terminal file, or the O_NOCTTY option is used on open(), then that terminal shall not become
6568 the controlling terminal of the calling process. When a controlling terminal becomes associated
6569 with a session, its foreground process group shall be set to the process group of the session
6570 leader.

6571 The controlling terminal is inherited by a child process during a fork () function call. A process
6572 relinquishes its controlling terminal when it creates a new session with the setsid() function;
6573 other processes remaining in the old session that had this terminal as their controlling terminal
6574 continue to have it. Upon the close of the last file descriptor in the system (whether or not it is in
6575 the current session) associated with the controlling terminal, it is unspecified whether all
6576 processes that had that terminal as their controlling terminal cease to have any controlling
6577 terminal. Whether and how a session leader can reacquire a controlling terminal after the
6578 controlling terminal has been relinquished in this fashion is unspecified. A process does not
6579 relinquish its controlling terminal simply by closing all of its file descriptors associated with the
6580 controlling terminal if other processes continue to have it open.

6581 When a controlling process terminates, the controlling terminal is dissociated from the current
6582 session, allowing it to be acquired by a new session leader. Subsequent access to the terminal by
6583 other processes in the earlier session may be denied, with attempts to access the terminal treated
6584 as if a modem disconnect had been sensed.

6585 11.1.4 Terminal Access Control

6586 If a process is in the foreground process group of its controlling terminal, read operations shall
6587 be allowed, as described in Section 11.1.5 (on page 185). Any attempts by a process in a
6588 background process group to read from its controlling terminal cause its process group to be
6589 sent a SIGTTIN signal unless one of the following special cases applies: if the reading process is
6590 ignoring or blocking the SIGTTIN signal, or if the process group of the reading process is
6591 orphaned, the read() shall return −1, with errno set to [EIO] and no signal shall be sent. The
6592 default action of the SIGTTIN signal shall be to stop the process to which it is sent. See
6593 <signal.h>.

6594 If a process is in the foreground process group of its controlling terminal, write operations shall
6595 be allowed as described in Section 11.1.8 (on page 187). Attempts by a process in a background
6596 process group to write to its controlling terminal shall cause the process group to be sent a
6597 SIGTTOU signal unless one of the following special cases applies: if TOSTOP is not set, or if
6598 TOSTOP is set and the process is ignoring or blocking the SIGTTOU signal, the process is
6599 allowed to write to the terminal and the SIGTTOU signal is not sent. If TOSTOP is set, and the
6600 process group of the writing process is orphaned, and the writing process is not ignoring or
6601 blocking the SIGTTOU signal, the write() shall return −1, with errno set to [EIO] and no signal
6602 shall be sent.

6603 Certain calls that set terminal parameters are treated in the same fashion as write(), except that
6604 TOSTOP is ignored; that is, the effect is identical to that of terminal writes when TOSTOP is set
6605 (see Section 11.2.5 (on page 193), tcdrain(), tcflow (), tcflush(), tcsendbreak(), tcsetattr(), and
6606 tcsetpgrp()).

184 Technical Standard (2001) (Draft April 13, 2001)

General Terminal Interface Interface Characteristics

6607 11.1.5 Input Processing and Reading Data

6608 A terminal device associated with a terminal device file may operate in full-duplex mode, so that
6609 data may arrive even while output is occurring. Each terminal device file has an input queue,
6610 associated with it, into which incoming data is stored by the system before being read by a
6611 process. The system may impose a limit, {MAX_INPUT}, on the number of bytes that may be
6612 stored in the input queue. The behavior of the system when this limit is exceeded is
6613 implementation-defined.

6614 Two general kinds of input processing are available, determined by whether the terminal device
6615 file is in canonical mode or non-canonical mode. These modes are described in Section 11.1.6 and
6616 Section 11.1.7 (on page 186). Additionally, input characters are processed according to the
6617 c_iflag (see Section 11.2.2 (on page 189)) and c_lflag (see Section 11.2.5 (on page 193)) fields.
6618 Such processing can include echoing , which in general means transmitting input characters
6619 immediately back to the terminal when they are received from the terminal. This is useful for
6620 terminals that can operate in full-duplex mode.

6621 The manner in which data is provided to a process reading from a terminal device file is
6622 dependent on whether the terminal file is in canonical or non-canonical mode, and on whether
6623 or not the O_NONBLOCK flag is set by open() or fcntl().

6624 If the O_NONBLOCK flag is clear, then the read request shall be blocked until data is available
6625 or a signal has been received. If the O_NONBLOCK flag is set, then the read request shall be
6626 completed, without blocking, in one of three ways:

6627 1. If there is enough data available to satisfy the entire request, the read() shall complete
6628 successfully and shall return the number of bytes read.

6629 2. If there is not enough data available to satisfy the entire request, the read() shall complete
6630 successfully, having read as much data as possible, and shall return the number of bytes it
6631 was able to read.

6632 3. If there is no data available, the read() shall return −1, with errno set to [EAGAIN].

6633 When data is available depends on whether the input processing mode is canonical or non-
6634 canonical. The following sections, Section 11.1.6 and Section 11.1.7 (on page 186), describe each
6635 of these input processing modes.

6636 11.1.6 Canonical Mode Input Processing

6637 In canonical mode input processing, terminal input is processed in units of lines. A line is
6638 delimited by a newline character (NL), an end-of-file character (EOF), or an end-of-line (EOL)
6639 character. See Section 11.1.9 (on page 187) for more information on EOF and EOL. This means
6640 that a read request shall not return until an entire line has been typed or a signal has been
6641 received. Also, no matter how many bytes are requested in the read() call, at most one line shall
6642 be returned. It is not, however, necessary to read a whole line at once; any number of bytes, even
6643 one, may be requested in a read() without losing information.

6644 If {MAX_CANON} is defined for this terminal device, it shall be a limit on the number of bytes |
6645 in a line. The behavior of the system when this limit is exceeded is implementation-defined. If |
6646 {MAX_CANON} is not defined, there shall be no such limit; see pathconf (). |

6647 Erase and kill processing occur when either of two special characters, the ERASE and KILL
6648 characters (see Section 11.1.9 (on page 187)), is received. This processing shall affect data in the |
6649 input queue that has not yet been delimited by a newline (NL), EOF, or EOL character. This un- |
6650 delimited data makes up the current line. The ERASE character shall delete the last character in |
6651 the current line, if there is one. The KILL character shall delete all data in the current line, if there |
6652 are any. The ERASE and KILL characters shall have no effect if there is no data in the current |

Base Definitions, Issue 6 185

Interface Characteristics General Terminal Interface

6653 line. The ERASE and KILL characters themselves shall not be placed in the input queue. |

6654 11.1.7 Non-Canonical Mode Input Processing

6655 In non-canonical mode input processing, input bytes are not assembled into lines, and erase and |
6656 kill processing shall not occur. The values of the MIN and TIME members of the c_cc array are |
6657 used to determine how to process the bytes received. The IEEE Std 1003.1-200x does not specify
6658 whether the setting of O_NONBLOCK takes precedence over MIN or TIME settings. Therefore,
6659 if O_NONBLOCK is set, read() may return immediately, regardless of the setting of MIN or
6660 TIME. Also, if no data is available, read() may either return 0, or return −1 with errno set to
6661 [EAGAIN].

6662 MIN represents the minimum number of bytes that should be received when the read() function
6663 returns successfully. TIME is a timer of 0.1 second granularity that is used to time out bursty and
6664 short-term data transmissions. If MIN is greater than {MAX_INPUT}, the response to the request
6665 is undefined. The four possible values for MIN and TIME and their interactions are described
6666 below.

6667 Case A: MIN>0, TIME>0

6668 In case A, TIME serves as an inter-byte timer which shall be activated after the first byte is |
6669 received. Since it is an inter-byte timer, it shall be reset after a byte is received. The interaction |
6670 between MIN and TIME is as follows. As soon as one byte is received, the inter-byte timer shall |
6671 be started. If MIN bytes are received before the inter-byte timer expires (remember that the timer |
6672 is reset upon receipt of each byte), the read shall be satisfied. If the timer expires before MIN |
6673 bytes are received, the characters received to that point shall be returned to the user. Note that if |
6674 TIME expires at least one byte shall be returned because the timer would not have been enabled |
6675 unless a byte was received. In this case (MIN>0, TIME>0) the read shall block until the MIN and |
6676 TIME mechanisms are activated by the receipt of the first byte, or a signal is received. If data is in |
6677 the buffer at the time of the read(), the result shall be as if data has been received immediately |
6678 after the read(). |

6679 Case B: MIN>0, TIME=0

6680 In case B, since the value of TIME is zero, the timer plays no role and only MIN is significant. A |
6681 pending read shall not be satisfied until MIN bytes are received (that is, the pending read shall |
6682 block until MIN bytes are received), or a signal is received. A program that uses case B to read |
6683 record-based terminal I/O may block indefinitely in the read operation.

6684 Case C: MIN=0, TIME>0

6685 In case C, since MIN=0, TIME no longer represents an inter-byte timer. It now serves as a read |
6686 timer that shall be activated as soon as the read() function is processed. A read shall be satisfied |
6687 as soon as a single byte is received or the read timer expires. Note that in case C if the timer |
6688 expires, no bytes shall be returned. If the timer does not expire, the only way the read can be |
6689 satisfied is if a byte is received. If bytes are not received, the read shall not block indefinitely |
6690 waiting for a byte; if no byte is received within TIME*0.1 seconds after the read is initiated, the |
6691 read() shall return a value of zero, having read no data. If data is in the buffer at the time of the |
6692 read(), the timer shall be started as if data has been received immediately after the read(). |

186 Technical Standard (2001) (Draft April 13, 2001)

General Terminal Interface Interface Characteristics

6693 Case D: MIN=0, TIME=0

6694 The minimum of either the number of bytes requested or the number of bytes currently available
6695 shall be returned without waiting for more bytes to be input. If no characters are available, read()
6696 shall return a value of zero, having read no data.

6697 11.1.8 Writing Data and Output Processing

6698 When a process writes one or more bytes to a terminal device file, they are processed according
6699 to the c_oflag field (see Section 11.2.3 (on page 190)). The implementation may provide a
6700 buffering mechanism; as such, when a call to write() completes, all of the bytes written have
6701 been scheduled for transmission to the device, but the transmission has not necessarily
6702 completed. See write() for the effects of O_NONBLOCK on write().

6703 11.1.9 Special Characters

6704 Certain characters have special functions on input or output or both. These functions are
6705 summarized as follows:

6706 INTR Special character on input, which is recognized if the ISIG flag is set. Generates a
6707 SIGINT signal which is sent to all processes in the foreground process group for which
6708 the terminal is the controlling terminal. If ISIG is set, the INTR character shall be |
6709 discarded when processed. |

6710 QUIT Special character on input, which is recognized if the ISIG flag is set. Generates a
6711 SIGQUIT signal which is sent to all processes in the foreground process group for
6712 which the terminal is the controlling terminal. If ISIG is set, the QUIT character shall be |
6713 discarded when processed. |

6714 ERASE Special character on input, which is recognized if the ICANON flag is set. Erases the
6715 last character in the current line; see Section 11.1.6 (on page 185). It shall not erase
6716 beyond the start of a line, as delimited by an NL, EOF, or EOL character. If ICANON is |
6717 set, the ERASE character shall be discarded when processed. |

6718 KILL Special character on input, which is recognized if the ICANON flag is set. Deletes the
6719 entire line, as delimited by an NL, EOF, or EOL character. If ICANON is set, the KILL |
6720 character shall be discarded when processed. |

6721 EOF Special character on input, which is recognized if the ICANON flag is set. When
6722 received, all the bytes waiting to be read are immediately passed to the process without
6723 waiting for a newline, and the EOF is discarded. Thus, if there are no bytes waiting
6724 (that is, the EOF occurred at the beginning of a line), a byte count of zero shall be
6725 returned from the read(), representing an end-of-file indication. If ICANON is set, the
6726 EOF character shall be discarded when processed. |

6727 NL Special character on input, which is recognized if the ICANON flag is set. It is the line
6728 delimiter newline. It cannot be changed.

6729 EOL Special character on input, which is recognized if the ICANON flag is set. It is an
6730 additional line delimiter, like NL.

6731 SUSP If the ISIG flag is set, receipt of the SUSP character shall cause a SIGTSTP signal to be |
6732 sent to all processes in the foreground process group for which the terminal is the |
6733 controlling terminal, and the SUSP character shall be discarded when processed. |

6734 STOP Special character on both input and output, which is recognized if the IXON (output
6735 control) or IXOFF (input control) flag is set. Can be used to suspend output
6736 temporarily. It is useful with CRT terminals to prevent output from disappearing

Base Definitions, Issue 6 187

Interface Characteristics General Terminal Interface

6737 before it can be read. If IXON is set, the STOP character shall be discarded when |
6738 processed. |

6739 START Special character on both input and output, which is recognized if the IXON (output
6740 control) or IXOFF (input control) flag is set. Can be used to resume output that has
6741 been suspended by a STOP character. If IXON is set, the START character shall be |
6742 discarded when processed. |

6743 CR Special character on input, which is recognized if the ICANON flag is set; it is the |
6744 carriage-return character. When ICANON and ICRNL are set and IGNCR is not set, |
6745 this character shall be translated into an NL, and shall have the same effect as an NL |
6746 character. |

6747 The NL and CR characters cannot be changed. It is implementation-defined whether the START
6748 and STOP characters can be changed. The values for INTR, QUIT, ERASE, KILL, EOF, EOL, and
6749 SUSP shall be changeable to suit individual tastes. Special character functions associated with
6750 changeable special control characters can be disabled individually.

6751 If two or more special characters have the same value, the function performed when that
6752 character is received is undefined.

6753 A special character is recognized not only by its value, but also by its context; for example, an
6754 implementation may support multi-byte sequences that have a meaning different from the
6755 meaning of the bytes when considered individually. Implementations may also support
6756 additional single-byte functions. These implementation-defined multi-byte or single-byte |
6757 functions shall be recognized only if the IEXTEN flag is set; otherwise, data is received without |
6758 interpretation, except as required to recognize the special characters defined in this section. |

6759 XSI If IEXTEN is set, the ERASE, KILL, and EOF characters can be escaped by a preceding ’\’ |
6760 character, in which case no special function shall occur. |

6761 11.1.10 Modem Disconnect

6762 If a modem disconnect is detected by the terminal interface for a controlling terminal, and if
6763 CLOCAL is not set in the c_cflag field for the terminal (see Section 11.2.4 (on page 192)), the |
6764 SIGHUP signal shall be sent to the controlling process for which the terminal is the controlling |
6765 terminal. Unless other arrangements have been made, this shall cause the controlling process to |
6766 terminate (see exit()). Any subsequent read from the terminal device shall return the value of |
6767 zero, indicating end-of-file; see read(). Thus, processes that read a terminal file and test for end-
6768 of-file can terminate appropriately after a disconnect. If the EIO condition as specified in read()
6769 also exists, it is unspecified whether on EOF condition or the [EIO] is returned. Any subsequent
6770 write() to the terminal device shall return −1, with errno set to [EIO], until the device is closed.

6771 11.1.11 Closing a Terminal Device File

6772 The last process to close a terminal device file shall cause any output to be sent to the device and
6773 any input to be discarded. If HUPCL is set in the control modes and the communications port
6774 supports a disconnect function, the terminal device shall perform a disconnect.

188 Technical Standard (2001) (Draft April 13, 2001)

General Terminal Interface Parameters that Can be Set

6775 11.2 Parameters that Can be Set

6776 11.2.1 The termios Structure

6777 Routines that need to control certain terminal I/O characteristics shall do so by using the
6778 termios structure as defined in the <termios.h> header. The members of this structure include
6779 (but are not limited to):

6780 Member Array Member
6781 Type Size Name Description___
6782 tcflag_t c_iflag Input modes.
6783 tcflag_t c_oflag Output modes.
6784 tcflag_t c_cflag Control modes.
6785 tcflag_t c_lflag Local modes.
6786 cc_t NCCS c_cc[] Control characters.___L

L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

6787 The types tcflag_t and cc_t are defined in the <termios.h> header. They shall be unsigned
6788 integer types.

6789 11.2.2 Input Modes

6790 Values of the c_iflag field describe the basic terminal input control, and are composed of the
6791 bitwise-inclusive OR of the masks shown, which shall be bitwise-distinct. The mask name |
6792 symbols in this table are defined in <termios.h>: |
6793 ___
6794 Mask Name Description___
6795 BRKINT Signal interrupt on break.
6796 ICRNL Map CR to NL on input.
6797 IGNBRK Ignore break condition.
6798 IGNCR Ignore CR.
6799 IGNPAR Ignore characters with parity errors.
6800 INLCR Map NL to CR on input.
6801 INPCK Enable input parity check.
6802 ISTRIP Strip character.
6803 XSI IXANY Enable any character to restart output.
6804 IXOFF Enable start/stop input control.
6805 IXON Enable start/stop output control.
6806 PARMRK Mark parity errors.___L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

6807 In the context of asynchronous serial data transmission, a break condition shall be defined as a
6808 sequence of zero-valued bits that continues for more than the time to send one byte. The entire
6809 sequence of zero-valued bits is interpreted as a single break condition, even if it continues for a
6810 time equivalent to more than one byte. In contexts other than asynchronous serial data
6811 transmission, the definition of a break condition is implementation-defined.

6812 If IGNBRK is set, a break condition detected on input shall be ignored; that is, not put on the
6813 input queue and therefore not read by any process. If IGNBRK is not set and BRKINT is set, the
6814 break condition shall flush the input and output queues, and if the terminal is the controlling
6815 terminal of a foreground process group, the break condition shall generate a single SIGINT
6816 signal to that foreground process group. If neither IGNBRK nor BRKINT is set, a break
6817 condition shall be read as a single 0x00, or if PARMRK is set, as 0xff 0x00 0x00.

6818 If IGNPAR is set, a byte with a framing or parity error (other than break) shall be ignored.

Base Definitions, Issue 6 189

Parameters that Can be Set General Terminal Interface

6819 If PARMRK is set, and IGNPAR is not set, a byte with a framing or parity error (other than |
6820 break) shall be given to the application as the three-byte sequence 0xff 0x00 X, where 0xff 0x00 is |
6821 a two-byte flag preceding each sequence and X is the data of the byte received in error. To avoid |
6822 ambiguity in this case, if ISTRIP is not set, a valid byte of 0xff is given to the application as 0xff
6823 0xff. If neither PARMRK nor IGNPAR is set, a framing or parity error (other than break) shall be |
6824 given to the application as a single byte 0x00. |

6825 If INPCK is set, input parity checking shall be enabled. If INPCK is not set, input parity checking
6826 shall be disabled, allowing output parity generation without input parity errors. Note that
6827 whether input parity checking is enabled or disabled is independent of whether parity detection
6828 is enabled or disabled (see Section 11.2.4 (on page 192)). If parity detection is enabled but input
6829 parity checking is disabled, the hardware to which the terminal is connected shall recognize the
6830 parity bit, but the terminal special file shall not check whether or not this bit is correctly set.

6831 If ISTRIP is set, valid input bytes shall first be stripped to seven bits; otherwise, all eight bits
6832 shall be processed.

6833 If INLCR is set, a received NL character shall be translated into a CR character. If IGNCR is set, a
6834 received CR character shall be ignored (not read). If IGNCR is not set and ICRNL is set, a
6835 received CR character shall be translated into an NL character.

6836 XSI If IXANY is set, any input character shall restart output that has been suspended.

6837 If IXON is set, start/stop output control shall be enabled. A received STOP character shall
6838 suspend output and a received START character shall restart output. When IXON is set, START
6839 and STOP characters are not read, but merely perform flow control functions. When IXON is not
6840 set, the START and STOP characters shall be read.

6841 If IXOFF is set, start/stop input control shall be enabled. The system shall transmit STOP
6842 characters, which are intended to cause the terminal device to stop transmitting data, as needed
6843 to prevent the input queue from overflowing and causing implementation-defined behavior, and
6844 shall transmit START characters, which are intended to cause the terminal device to resume
6845 transmitting data, as soon as the device can continue transmitting data without risk of
6846 overflowing the input queue. The precise conditions under which STOP and START characters
6847 are transmitted are implementation-defined.

6848 The initial input control value after open() is implementation-defined.

6849 11.2.3 Output Modes

6850 The c_oflag field specifies the terminal interface’s treatment of output, and is composed of the
6851 bitwise-inclusive OR of the masks shown, which shall be bitwise-distinct. The mask name
6852 symbols in this table are defined in <termios.h>:

190 Technical Standard (2001) (Draft April 13, 2001)

General Terminal Interface Parameters that Can be Set

6853 __
6854 Mask Name Description__
6855 OPOST Perform output processing.
6856 XSI ONLCR Map NL to CR-NL on output.
6857 OCRNL Map CR to NL on output.
6858 ONOCR No CR output at column 0.
6859 ONLRET NL performs CR function.
6860 OFILL Use fill characters for delay.
6861 OFDEL Fill is DEL, else NUL.
6862 NLDLY Select newline delays:
6863 NL0 Newline character type 0.
6864 NL1 Newline character type 1.
6865 CRDLY Select carriage-return delays:
6866 CR0 Carriage-return delay type 0.
6867 CR1 Carriage-return delay type 1.
6868 CR2 Carriage-return delay type 2.
6869 CR3 Carriage-return delay type 3.
6870 TABDLY Select horizontal-tab delays:
6871 TAB0 Horizontal-tab delay type 0.
6872 TAB1 Horizontal-tab delay type 1.
6873 TAB2 Horizontal-tab delay type 2.
6874 TAB3 Expand tabs to spaces.
6875 BSDLY Select backspace delays:
6876 BS0 Backspace-delay type 0.
6877 BS1 Backspace-delay type 1.
6878 VTDLY Select vertical-tab delays:
6879 VT0 Vertical-tab delay type 0.
6880 VT1 Vertical-tab delay type 1.
6881 FFDLY Select form-feed delays:
6882 FF0 Form-feed delay type 0.
6883 FF1 Form-feed delay type 1.__LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

6884 If OPOST is set, output data shall be post-processed as described below, so that lines of text are
6885 modified to appear appropriately on the terminal device; otherwise, characters shall be
6886 transmitted without change.

6887 XSI If ONLCR is set, the NL character shall be transmitted as the CR-NL character pair. If OCRNL is
6888 set, the CR character shall be transmitted as the NL character. If ONOCR is set, no CR character
6889 shall be transmitted when at column 0 (first position). If ONLRET is set, the NL character is
6890 assumed to do the carriage-return function; the column pointer shall be set to 0 and the delays
6891 specified for CR shall be used. Otherwise, the NL character is assumed to do just the line-feed
6892 function; the column pointer remains unchanged. The column pointer shall also be set to 0 if the
6893 CR character is actually transmitted.

6894 The delay bits specify how long transmission stops to allow for mechanical or other movement
6895 when certain characters are sent to the terminal. In all cases a value of 0 shall indicate no delay. If |
6896 OFILL is set, fill characters shall be transmitted for delay instead of a timed delay. This is useful |
6897 for high baud rate terminals which need only a minimal delay. If OFDEL is set, the fill character |
6898 shall be DEL; otherwise, NUL. |

6899 If a form-feed or vertical-tab delay is specified, it shall last for about 2 seconds. |

6900 New-line delay shall last about 0.10 seconds. If ONLRET is set, the carriage-return delays shall |
6901 be used instead of the newline delays. If OFILL is set, two fill characters shall be transmitted. |

Base Definitions, Issue 6 191

Parameters that Can be Set General Terminal Interface

6902 Carriage-return delay type 1 shall be dependent on the current column position, type 2 shall be |
6903 about 0.10 seconds, and type 3 shall be about 0.15 seconds. If OFILL is set, delay type 1 shall |
6904 transmit two fill characters, and type 2, four fill characters. |

6905 Horizontal-tab delay type 1 shall be dependent on the current column position. Type 2 shall be |
6906 about 0.10 seconds. Type 3 specifies that tabs shall be expanded into spaces. If OFILL is set, two |
6907 fill characters shall be transmitted for any delay. |

6908 Backspace delay shall last about 0.05 seconds. If OFILL is set, one fill character shall be |
6909 transmitted. |

6910 The actual delays depend on line speed and system load.

6911 The initial output control value after open() is implementation-defined.

6912 11.2.4 Control Modes

6913 The c_cflag field describes the hardware control of the terminal, and is composed of the
6914 bitwise-inclusive OR of the masks shown, which shall be bitwise-distinct. The mask name |
6915 symbols in this table are defined in <termios.h>; not all values specified are required to be |
6916 supported by the underlying hardware:

6917 Mask Name Description___
6918 CLOCAL Ignore modem status lines.
6919 CREAD Enable receiver.
6920 CSIZE Number of bits transmitted or received per byte:
6921 CS5 5 bits
6922 CS6 6 bits
6923 CS7 7 bits
6924 CS8 8 bits.
6925 CSTOPB Send two stop bits, else one.
6926 HUPCL Hang up on last close.
6927 PARENB Parity enable.
6928 PARODD Odd parity, else even.___L

L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

6929 In addition, the input and output baud rates are stored in the termios structure. The symbols in |
6930 the following table are defined in <termios.h>. Not all values specified are required to be |
6931 supported by the underlying hardware. |

__
6932 Name Description Name Description__
6933 B0 Hang up B600 600 baud
6934 B50 50 baud B1200 1200 baud
6935 B75 75 baud B1800 1800 baud
6936 B110 110 baud B2400 2400 baud
6937 B134 134.5 baud B4800 4800 baud
6938 B150 150 baud B9600 9600 baud
6939 B200 200 baud B19200 19200 baud
6940 B300 300 baud B38400 38400 baud__LL

L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

6941 The following functions are provided for getting and setting the values of the input and output
6942 baud rates in the termios structure: cfgetispeed(), cfgetospeed(), cfsetispeed(), and cfsetospeed(). |
6943 The effects on the terminal device shall not become effective and not all errors need be detected |
6944 until the tcsetattr() function is successfully called. |

6945 The CSIZE bits shall specify the number of transmitted or received bits per byte. If ISTRIP is not |
6946 set, the value of all the other bits is unspecified. If ISTRIP is set, the value of all but the 7 low-

192 Technical Standard (2001) (Draft April 13, 2001)

General Terminal Interface Parameters that Can be Set

6947 order bits shall be zero, but the value of any other bits beyond CSIZE is unspecified when read. |
6948 CSIZE shall not include the parity bit, if any. If CSTOPB is set, two stop bits shall be used; |
6949 otherwise, one stop bit. For example, at 110 baud, two stop bits are normally used.

6950 If CREAD is set, the receiver shall be enabled; otherwise, no characters shall be received.

6951 If PARENB is set, parity generation and detection shall be enabled and a parity bit is added to
6952 each byte. If parity is enabled, PARODD shall specify odd parity if set; otherwise, even parity |
6953 shall be used. |

6954 If HUPCL is set, the modem control lines for the port shall be lowered when the last process
6955 with the port open closes the port or the process terminates. The modem connection shall be
6956 broken.

6957 If CLOCAL is set, a connection shall not depend on the state of the modem status lines. If |
6958 CLOCAL is clear, the modem status lines shall be monitored.

6959 Under normal circumstances, a call to the open() function shall wait for the modem connection
6960 to complete. However, if the O_NONBLOCK flag is set (see open()) or if CLOCAL has been set,
6961 the open() function shall return immediately without waiting for the connection.

6962 If the object for which the control modes are set is not an asynchronous serial connection, some
6963 of the modes may be ignored; for example, if an attempt is made to set the baud rate on a
6964 network connection to a terminal on another host, the baud rate need not be set on the |
6965 connection between that terminal and the machine to which it is directly connected. |

6966 The initial hardware control value after open() is implementation-defined.

6967 11.2.5 Local Modes

6968 The c_lflag field of the argument structure is used to control various functions. It is composed
6969 of the bitwise-inclusive OR of the masks shown, which shall be bitwise-distinct. The mask name |
6970 symbols in this table are defined in <termios.h>; not all values specified are required to be |
6971 supported by the underlying hardware:
6972 ___
6973 Mask Name Description___
6974 ECHO Enable echo.
6975 ECHOE Echo ERASE as an error correcting backspace.
6976 ECHOK Echo KILL.
6977 ECHONL Echo <newline>.
6978 ICANON Canonical input (erase and kill processing).
6979 IEXTEN Enable extended (implementation-defined) functions.
6980 ISIG Enable signals.
6981 NOFLSH Disable flush after interrupt, quit or suspend.
6982 TOSTOP Send SIGTTOU for background output.___LL

L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

6983 If ECHO is set, input characters shall be echoed back to the terminal. If ECHO is clear, input
6984 characters shall not be echoed.

6985 If ECHOE and ICANON are set, the ERASE character shall cause the terminal to erase, if
6986 possible, the last character in the current line from the display. If there is no character to erase, an |
6987 implementation may echo an indication that this was the case, or do nothing. |

6988 If ECHOK and ICANON are set, the KILL character shall either cause the terminal to erase the
6989 line from the display or shall echo the newline character after the KILL character.

Base Definitions, Issue 6 193

Parameters that Can be Set General Terminal Interface

6990 If ECHONL and ICANON are set, the newline character shall be echoed even if ECHO is not set.

6991 If ICANON is set, canonical processing shall be enabled. This enables the erase and kill edit
6992 functions, and the assembly of input characters into lines delimited by NL, EOF, and EOL, as
6993 described in Section 11.1.6 (on page 185).

6994 If ICANON is not set, read requests shall be satisfied directly from the input queue. A read shall
6995 not be satisfied until at least MIN bytes have been received or the timeout value TIME expired
6996 between bytes. The time value represents tenths of a second. See Section 11.1.7 (on page 186) for
6997 more details.

6998 If IEXTEN is set, implementation-defined functions shall be recognized from the input data. It is |
6999 implementation-defined how IEXTEN being set interacts with ICANON, ISIG, IXON, or IXOFF.
7000 If IEXTEN is not set, implementation-defined functions shall not be recognized and the
7001 corresponding input characters are processed as described for ICANON, ISIG, IXON, and
7002 IXOFF.

7003 If ISIG is set, each input character shall be checked against the special control characters INTR,
7004 QUIT, and SUSP. If an input character matches one of these control characters, the function
7005 associated with that character shall be performed. If ISIG is not set, no checking shall be done.
7006 Thus these special input functions are possible only if ISIG is set.

7007 If NOFLSH is set, the normal flush of the input and output queues associated with the INTR,
7008 QUIT, and SUSP characters shall not be done.

7009 If TOSTOP is set, the signal SIGTTOU shall be sent to the process group of a process that tries to
7010 write to its controlling terminal if it is not in the foreground process group for that terminal. This
7011 signal, by default, stops the members of the process group. Otherwise, the output generated by |
7012 that process shall be output to the current output stream. Processes that are blocking or ignoring |
7013 SIGTTOU signals are excepted and allowed to produce output, and the SIGTTOU signal shall |
7014 not be sent. |

7015 The initial local control value after open() is implementation-defined.

7016 11.2.6 Special Control Characters

7017 The special control character values shall be defined by the array c_cc. The subscript name and |
7018 description for each element in both canonical and non-canonical modes are as follows:

194 Technical Standard (2001) (Draft April 13, 2001)

General Terminal Interface Parameters that Can be Set

7019 __
7020 Subscript Usage_____________________________
7021 Canonical Non-Canonical
7022 Mode Mode Description__
7023 VEOF EOF character
7024 VEOL EOL character
7025 VERASE ERASE character
7026 VINTR VINTR INTR character
7027 VKILL KILL character
7028 VMIN MIN value
7029 VQUIT VQUIT QUIT character
7030 VSUSP VSUSP SUSP character
7031 VTIME TIME value
7032 VSTART VSTART START character
7033 VSTOP VSTOP STOP character__LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

7034 The subscript values are unique, except that the VMIN and VTIME subscripts may have the
7035 same values as the VEOF and VEOL subscripts, respectively.

7036 Implementations that do not support changing the START and STOP characters may ignore the
7037 character values in the c_cc array indexed by the VSTART and VSTOP subscripts when
7038 tcsetattr() is called, but shall return the value in use when tcgetattr() is called.

7039 The initial values of all control characters are implementation-defined.

7040 If the value of one of the changeable special control characters (see Section 11.1.9 (on page 187))
7041 is _POSIX_VDISABLE, that function shall be disabled; that is, no input data is recognized as the
7042 disabled special character. If ICANON is not set, the value of _POSIX_VDISABLE has no special
7043 meaning for the VMIN and VTIME entries of the c_cc array.

Base Definitions, Issue 6 195

General Terminal Interface

7044 |

196 Technical Standard (2001) (Draft April 13, 2001)

7045

Chapter 12

Utility Conventions

7046 12.1 Utility Argument Syntax
7047 This section describes the argument syntax of the standard utilities and introduces terminology
7048 used throughout IEEE Std 1003.1-200x for describing the arguments processed by the utilities.

7049 Within IEEE Std 1003.1-200x, a special notation is used for describing the syntax of a utility’s
7050 arguments. Unless otherwise noted, all utility descriptions use this notation, which is illustrated
7051 by this example (see the Shell and Utilities volume of IEEE Std 1003.1-200x, Section 2.9.1, Simple
7052 Commands):

7053 utility_name [−a][−b][−c option_argument]
7054 [−d| −e][−f option_argument][operand ...]

7055 The notation used for the SYNOPSIS sections imposes requirements on the implementors of the
7056 standard utilities and provides a simple reference for the application developer or system user.

7057 1. The utility in the example is named utility_name . It is followed by options , option-
7058 arguments, and operands . The arguments that consist of hyphens and single letters or
7059 digits, such as ’a’ , are known as options (or, historically, flags). Certain options are
7060 followed by an option-argument , as shown with [−c option_argument]. The arguments
7061 following the last options and option-arguments are named operands .

7062 2. Option-arguments are sometimes shown separated from their options by <blank>s,
7063 sometimes directly adjacent. This reflects the situation that in some cases an option-
7064 argument is included within the same argument string as the option; in most cases it is the
7065 next argument. The Utility Syntax Guidelines in Section 12.2 (on page 199) require that the
7066 option be a separate argument from its option-argument, but there are some exceptions in
7067 IEEE Std 1003.1-200x to ensure continued operation of historical applications:

7068 a. If the SYNOPSIS of a standard utility shows a space character between an option and
7069 option-argument (as with [−c option_argument] in the example), a conforming |
7070 application shall use separate arguments for that option and its option-argument. |

7071 b. If a space character is not shown (as with [−foption_argument] in the example), a |
7072 conforming application shall place an option and its option-argument directly |
7073 adjacent in the same argument string, without intervening <blank>s.

7074 c. Notwithstanding the preceding requirements on conforming applications, a |
7075 conforming system shall permit, but shall not require, an application to specify
7076 options and option-arguments as separate arguments whether or not a space
7077 XSI character is shown on the synopsis line, except in those cases (marked with the XSI
7078 portability warning) where an option-argument is optional and no separation can be
7079 used.

7080 d. A standard utility may also be implemented to operate correctly when the required
7081 separation into multiple arguments is violated by a non-conforming application. |

7082 In summary, the following table shows allowable combinations:

Base Definitions, Issue 6 197

Utility Argument Syntax Utility Conventions

7083 __
7084 SYNOPSIS Shows:___________________________________
7085 −a arg −barg −c[arg]__
7086 Conforming application shall use: −a arg −barg N/A |__ |
7087 System shall support: −a arg −barg −carg or −c__
7088 System may support: −aarg −b arg__LL

L
L
L
L
L
L

LL
L
L
L
L
L
L

LL
L
L
L
L

LL
L
L
L
L

LL
L
L
L
L
L
L

7089 3. Options are usually listed in alphabetical order unless this would make the utility
7090 description more confusing. There are no implied relationships between the options based
7091 upon the order in which they appear, unless otherwise stated in the OPTIONS section, or
7092 unless the exception in Guideline 11 of Section 12.2 (on page 199) applies. If an option that
7093 does not have option-arguments is repeated, the results are undefined, unless otherwise
7094 stated.

7095 4. Frequently, names of parameters that require substitution by actual values are shown with
7096 embedded underscores. Alternatively, parameters are shown as follows:

7097 <parameter name >

7098 The angle brackets are used for the symbolic grouping of a phrase representing a single |
7099 parameter and conforming applications shall not include them in data submitted to the |
7100 utility.

7101 5. When a utility has only a few permissible options, they are sometimes shown individually,
7102 as in the example. Utilities with many flags generally show all of the individual flags (that
7103 do not take option-arguments) grouped, as in:

7104 utility_name [−abcDxyz][−p arg][operand]

7105 Utilities with very complex arguments may be shown as follows:

7106 utility_name [options][operands]

7107 6. Unless otherwise specified, whenever an operand or option-argument is, or contains, a
7108 numeric value:

7109 • The number is interpreted as a decimal integer.

7110 • Numerals in the range 0 to 2 147 483 647 are syntactically recognized as numeric values.

7111 • When the utility description states that it accepts negative numbers as operands or
7112 option-arguments, numerals in the range −2 147 483 647 to 2 147 483 647 are
7113 syntactically recognized as numeric values.

7114 • Ranges greater than those listed here are allowed.

7115 This does not mean that all numbers within the allowable range are necessarily
7116 semantically correct. A standard utility that accepts an option-argument or operand that is
7117 to be interpreted as a number, and for which a range of values smaller than that shown
7118 above is permitted by the IEEE Std 1003.1-200x, describes that smaller range along with the
7119 description of the option-argument or operand. If an error is generated, the utility’s
7120 diagnostic message shall indicate that the value is out of the supported range, not that it is
7121 syntactically incorrect.

7122 7. Arguments or option-arguments enclosed in the ’[’ and ’]’ notation are optional and |
7123 can be omitted. Conforming applications shall not include the ’[’ and ’]’ symbols in |
7124 data submitted to the utility.

7125 8. Arguments separated by the ’|’ vertical bar notation are mutually-exclusive. Conforming |
7126 applications shall not include the ’|’ symbol in data submitted to the utility. |

198 Technical Standard (2001) (Draft April 13, 2001)

Utility Conventions Utility Argument Syntax

7127 Alternatively, mutually-exclusive options and operands may be listed with multiple
7128 synopsis lines. For example:

7129 utility_name −d[−a][−c option_argument][operand ...]
7130 utility_name [−a][−b][operand ...]

7131 When multiple synopsis lines are given for a utility, it is an indication that the utility has
7132 mutually-exclusive arguments. These mutually-exclusive arguments alter the functionality
7133 of the utility so that only certain other arguments are valid in combination with one of the
7134 mutually-exclusive arguments. Only one of the mutually-exclusive arguments is allowed
7135 for invocation of the utility. Unless otherwise stated in an accompanying OPTIONS
7136 section, the relationships between arguments depicted in the SYNOPSIS sections are
7137 mandatory requirements placed on conforming applications. The use of conflicting |
7138 mutually-exclusive arguments produces undefined results, unless a utility description
7139 specifies otherwise. When an option is shown without the ’[’ and ’]’ brackets, it means
7140 that option is required for that version of the SYNOPSIS. However, it is not required to be
7141 the first argument, as shown in the example above, unless otherwise stated.

7142 9. Ellipses ("...") are used to denote that one or more occurrences of an option or operand
7143 are allowed. When an option or an operand followed by ellipses is enclosed in brackets,
7144 zero or more options or operands can be specified. The forms:

7145 utility_name −f option_argument ... [operand ...]
7146 utility_name [−g option_argument] ... [operand ...]

7147 indicate that multiple occurrences of the option and its option-argument preceding the
7148 ellipses are valid, with semantics as indicated in the OPTIONS section of the utility. (See
7149 also Guideline 11 in Section 12.2.) In the first example, each option-argument requires a
7150 preceding −f and at least one −f option_argument must be given.

7151 10. When the synopsis line is too long to be printed on a single line in the Shell and Utilities
7152 volume of IEEE Std 1003.1-200x, the indented lines following the initial line are
7153 continuation lines. An actual use of the command would appear on a single logical line.

7154 12.2 Utility Syntax Guidelines
7155 The following guidelines are established for the naming of utilities and for the specification of
7156 options, option-arguments, and operands. The getopt() function in the System Interfaces volume
7157 of IEEE Std 1003.1-200x assists utilities in handling options and operands that conform to these
7158 guidelines.

7159 Operands and option-arguments can contain characters not specified in the portable character
7160 set.

7161 The guidelines are intended to provide guidance to the authors of future utilities, such as those
7162 written specific to a local system or that are components of a larger application. Some of the
7163 standard utilities do not conform to all of these guidelines; in those cases, the OPTIONS sections
7164 describe the deviations.

7165 Guideline 1: Utility names should be between two and nine characters, inclusive.

7166 Guideline 2: Utility names should include lowercase letters (the lower character
7167 classification) and digits only from the portable character set.

7168 Guideline 3: Each option name should be a single alphanumeric character (the alnum
7169 character classification) from the portable character set. The −W (capital-W)
7170 option shall be reserved for vendor options.

Base Definitions, Issue 6 199

Utility Syntax Guidelines Utility Conventions

7171 Multi-digit options should not be allowed. |

7172 Guideline 4: All options should be preceded by the ’ −’ delimiter character.

7173 Guideline 5: Options without option-arguments should be accepted when grouped behind
7174 one ’ −’ delimiter.

7175 Guideline 6: Each option and option-argument should be a separate argument, except as
7176 noted in Section 12.1 (on page 197), item (2).

7177 Guideline 7: Option-arguments should not be optional.

7178 Guideline 8: When multiple option-arguments are specified to follow a single option, they
7179 should be presented as a single argument, using commas within that
7180 argument or <blank>s within that argument to separate them.

7181 Guideline 9: All options should precede operands on the command line.

7182 Guideline 10: The argument − − should be accepted as a delimiter indicating the end of
7183 options. Any following arguments should be treated as operands, even if they
7184 begin with the ’ −’ character. The − − argument should not be used as an
7185 option or as an operand.

7186 Guideline 11: The order of different options relative to one another should not matter,
7187 unless the options are documented as mutually-exclusive and such an option
7188 is documented to override any incompatible options preceding it. If an option
7189 that has option-arguments is repeated, the option and option-argument
7190 combinations should be interpreted in the order specified on the command
7191 line.

7192 Guideline 12: The order of operands may matter and position-related interpretations should
7193 be determined on a utility-specific basis.

7194 Guideline 13: For utilities that use operands to represent files to be opened for either reading
7195 or writing, the ’ −’ operand should be used only to mean standard input (or
7196 standard output when it is clear from context that an output file is being
7197 specified).

7198 The utilities in the Shell and Utilities volume of IEEE Std 1003.1-200x that claim conformance to
7199 these guidelines shall conform completely to these guidelines as if these guidelines contained the |
7200 term ‘‘shall’’ instead of ‘‘should’’. On some implementations, the utilities accept usage in |
7201 violation of these guidelines for backward compatibility as well as accepting the required form. |

7202 It is recommended that all future utilities and applications use these guidelines to enhance user
7203 portability. The fact that some historical utilities could not be changed (to avoid breaking
7204 existing applications) should not deter this future goal.

|

200 Technical Standard (2001) (Draft April 13, 2001)

7205

Chapter 13

Headers

7206 This chapter describes the contents of headers.

7207 Headers contain function prototypes, the definition of symbolic constants, common structures,
7208 preprocessor macros, and defined types. Each function in the System Interfaces volume of
7209 IEEE Std 1003.1-200x specifies the headers that an application shall include in order to use that
7210 function. In most cases, only one header is required. These headers are present on an application
7211 development system; they need not be present on the target execution system.

7212 13.1 Format of Entries
7213 The entries in this chapter are based on a common format as follows. The only sections relating
7214 to conformance are the SYNOPSIS and DESCRIPTION.

7215 NAME
7216 This section gives the name or names of the entry and briefly states its purpose.

7217 SYNOPSIS
7218 This section summarizes the use of the entry being described.

7219 DESCRIPTION
7220 This section describes the functionality of the header.

7221 APPLICATION USAGE
7222 This section is non-normative.

7223 This section gives warnings and advice to application writers about the entry. In the
7224 event of conflict between warnings and advice and a normative part of this volume of
7225 IEEE Std 1003.1-200x, the normative material is to be taken as correct.

7226 RATIONALE
7227 This section is non-normative.

7228 This section contains historical information concerning the contents of this volume of
7229 IEEE Std 1003.1-200x and why features were included or discarded by the standard
7230 developers.

7231 FUTURE DIRECTIONS
7232 This section is non-normative.

7233 This section provides comments which should be used as a guide to current thinking;
7234 there is not necessarily a commitment to adopt these future directions.

7235 SEE ALSO
7236 This section is non-normative.

7237 This section gives references to related information.

7238 CHANGE HISTORY
7239 This section is non-normative.

7240 This section shows the derivation of the entry and any significant changes that have
7241 been made to it.

Base Definitions, Issue 6 201

<aio.h> Headers

7242 NAME
7243 aio.h — asynchronous input and output (REALTIME)

7244 SYNOPSIS
7245 AIO #include <aio.h>
7246

7247 DESCRIPTION
7248 The <aio.h> header shall define the aiocb structure which shall include at least the following
7249 members:

7250 int aio_fildes File descriptor.
7251 off_t aio_offset File offset.
7252 volatile void *aio_buf Location of buffer.
7253 size_t aio_nbytes Length of transfer.
7254 int aio_reqprio Request priority offset.
7255 struct sigevent aio_sigevent Signal number and value.
7256 int aio_lio_opcode Operation to be performed.

7257 This header shall also include the following constants:

7258 AIO_CANCELED A return value indicating that all requested operations have been
7259 canceled.

7260 AIO_NOTCANCELED
7261 A return value indicating that some of the requested operations could not
7262 be canceled since they are in progress.

7263 AIO_ALLDONE A return value indicating that none of the requested operations could be
7264 canceled since they are already complete.

7265 LIO_WAIT A lio_listio () synchronization operation indicating that the calling thread
7266 is to suspend until the lio_listio () operation is complete.

7267 LIO_NOWAIT A lio_listio () synchronization operation indicating that the calling thread
7268 is to continue execution while the lio_listio () operation is being
7269 performed, and no notification is given when the operation is complete.

7270 LIO_READ A lio_listio () element operation option requesting a read.

7271 LIO_WRITE A lio_listio () element operation option requesting a write.

7272 LIO_NOP A lio_listio () element operation option indicating that no transfer is
7273 requested.

7274 The following shall be declared as functions and may also be defined as macros. Function |
7275 prototypes shall be provided. |

7276 int aio_cancel(int, struct aiocb *);
7277 int aio_error(const struct aiocb *);
7278 int aio_fsync(int, struct aiocb *);
7279 int aio_read(struct aiocb *);
7280 ssize_t aio_return(struct aiocb *);
7281 int aio_suspend(const struct aiocb *const[], int,
7282 const struct timespec *);
7283 int aio_write(struct aiocb *);
7284 int lio_listio(int, struct aiocb *restrict const[restrict], int,
7285 struct sigevent *restrict);

202 Technical Standard (2001) (Draft April 13, 2001)

Headers <aio.h>

7286 Inclusion of the <aio.h> header may make visible symbols defined in the headers <fcntl.h>,
7287 <signal.h>, <sys/types.h>, and <time.h>.

7288 APPLICATION USAGE
7289 None.

7290 RATIONALE
7291 None.

7292 FUTURE DIRECTIONS
7293 None.

7294 SEE ALSO
7295 <fcntl.h>, <signal.h>, <sys/types.h>, <time.h>, the System Interfaces volume of
7296 IEEE Std 1003.1-200x, fsync(), lseek(), read(), write()

7297 CHANGE HISTORY
7298 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

7299 Issue 6
7300 The <aio.h> header is marked as part of the Asynchronous Input and Output option.

7301 The description of the constants is expanded.

7302 The restrict keyword is added to the prototype for lio_listio ().

Base Definitions, Issue 6 203

<arpa/inet.h> Headers

7303 NAME
7304 arpa/inet.h — definitions for internet operations

7305 SYNOPSIS
7306 #include <arpa/inet.h>

7307 DESCRIPTION
7308 The in_port_t and in_addr_t types shall be defined as described in <netinet/in.h>.

7309 The in_addr structure shall be defined as described in <netinet/in.h>.

7310 IP6 The INET_ADDRSTRLEN and INET6_ADDRSTRLEN macros shall be defined as described in |
7311 <netinet/in.h>.

7312 The following shall either be declared as functions, defined as macros, or both. If functions are
7313 declared, function prototypes shall be provided. |

7314 uint32_t htonl(uint32_t);
7315 uint16_t htons(uint16_t);
7316 uint32_t ntohl(uint32_t);
7317 uint16_t ntohs(uint16_t);

7318 The uint32_t and uint16_t types shall be defined as described in <inttypes.h>.

7319 The following shall be declared as functions and may also be defined as macros. Function |
7320 prototypes shall be provided. |

7321 in_addr_t inet_addr(const char *);
7322 char *inet_ntoa(struct in_addr);
7323 const char *inet_ntop(int, const void *restrict, char *restrict,
7324 socklen_t);
7325 int inet_pton(int, const char *restrict, void *restrict);

7326 Inclusion of the <arpa/inet.h> header may also make visible all symbols from <netinet/in.h>
7327 and <inttypes.h>.

7328 APPLICATION USAGE
7329 None.

7330 RATIONALE
7331 None.

7332 FUTURE DIRECTIONS
7333 None.

7334 SEE ALSO
7335 <netinet/in.h>, <inttypes.h>, the System Interfaces volume of IEEE Std 1003.1-200x, htonl(),
7336 inet_addr()

7337 CHANGE HISTORY
7338 First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

7339 The restrict keyword is added to the prototypes for inet_ntop() and inet_pton().

204 Technical Standard (2001) (Draft April 13, 2001)

Headers <assert.h>

7340 NAME
7341 assert.h — verify program assertion

7342 SYNOPSIS
7343 #include <assert.h>

7344 DESCRIPTION
7345 CX The functionality described on this reference page is aligned with the ISO C standard. Any
7346 conflict between the requirements described here and the ISO C standard is unintentional. This
7347 volume of IEEE Std 1003.1-200x defers to the ISO C standard.

7348 The <assert.h> header shall define the assert() macro. It refers to the macro NDEBUG which is
7349 not defined in the header. If NDEBUG is defined as a macro name before the inclusion of this
7350 header, the assert() macro shall be defined simply as:

7351 #define assert(ignore)((void) 0)

7352 Otherwise, the macro behaves as described in assert().

7353 The assert() macro shall be redefined according to the current state of NDEBUG each time
7354 <assert.h> is included.

7355 The assert() macro shall be implemented as a macro, not as a function. If the macro definition is
7356 suppressed in order to access an actual function, the behavior is undefined.

7357 APPLICATION USAGE
7358 None.

7359 RATIONALE
7360 None.

7361 FUTURE DIRECTIONS
7362 None.

7363 SEE ALSO
7364 The System Interfaces volume of IEEE Std 1003.1-200x, assert()

7365 CHANGE HISTORY
7366 First released in Issue 1. Derived from Issue 1 of the SVID.

7367 Issue 6
7368 The definition of the assert() macro is changed for alignment with the ISO/IEC 9899: 1999
7369 standard.

Base Definitions, Issue 6 205

<complex.h> Headers

7370 NAME
7371 complex.h — complex arithmetic

7372 SYNOPSIS
7373 #include <complex.h>

7374 DESCRIPTION
7375 CX The functionality described on this reference page is aligned with the ISO C standard. Any
7376 conflict between the requirements described here and the ISO C standard is unintentional. This
7377 volume of IEEE Std 1003.1-200x defers to the ISO C standard.

7378 The <complex.h> header shall define the following macros:

7379 complex Expands to _Complex.

7380 _Complex_I Expands to a constant expression of type const float _Complex, with the
7381 value of the imaginary unit (that is, a number such that i2=−1).

7382 imaginary Expands to _Imaginary.

7383 _Imaginary_I Expands to a constant expression of type const float _Imaginary with the
7384 value of the imaginary unit.

7385 I Expands to either _Imaginary_I or _Complex_I. If _Imaginary_I is not defined,
7386 I expands to _Complex_I.

7387 The macros imaginary and _Imaginary_I shall be defined if and only if the implementation
7388 supports imaginary types.

7389 An application may undefine and then, perhaps, redefine the complex, imaginary, and I macros.

7390 The following shall be declared as functions and may also be defined as macros. Function |
7391 prototypes shall be provided. |

7392 double cabs(double complex);
7393 float cabsf(float complex);
7394 long double cabsl(long double complex);
7395 double complex cacos(double complex);
7396 float complex cacosf(float complex);
7397 double complex cacosh(double complex);
7398 float complex cacoshf(float complex);
7399 long double complex cacoshl(long double complex);
7400 long double complex cacosl(long double complex);
7401 double carg(double complex);
7402 float cargf(float complex);
7403 long double cargl(long double complex);
7404 double complex casin(double complex);
7405 float complex casinf(float complex);
7406 double complex casinh(double complex);
7407 float complex casinhf(float complex);
7408 long double complex casinhl(long double complex);
7409 long double complex casinl(long double complex);
7410 double complex catan(double complex);
7411 float complex catanf(float complex);
7412 double complex catanh(double complex);
7413 float complex catanhf(float complex);
7414 long double complex catanhl(long double complex);
7415 long double complex catanl(long double complex);

206 Technical Standard (2001) (Draft April 13, 2001)

Headers <complex.h>

7416 double complex ccos(double complex);
7417 float complex ccosf(float complex);
7418 double complex ccosh(double complex);
7419 float complex ccoshf(float complex);
7420 long double complex ccoshl(long double complex);
7421 long double complex ccosl(long double complex);
7422 double complex cexp(double complex);
7423 float complex cexpf(float complex);
7424 long double complex cexpl(long double complex);
7425 double cimag(double complex);
7426 float cimagf(float complex);
7427 long double cimagl(long double complex);
7428 double complex clog(double complex);
7429 float complex clogf(float complex);
7430 long double complex clogl(long double complex);
7431 double complex conj(double complex);
7432 float complex conjf(float complex);
7433 long double complex conjl(long double complex);
7434 double complex cpow(double complex, double complex);
7435 float complex cpowf(float complex, float complex);
7436 long double complex cpowl(long double complex, long double complex);
7437 double complex cproj(double complex);
7438 float complex cprojf(float complex);
7439 long double complex cprojl(long double complex);
7440 double creal(double complex);
7441 float crealf(float complex);
7442 long double creall(long double complex);
7443 double complex csin(double complex);
7444 float complex csinf(float complex);
7445 double complex csinh(double complex);
7446 float complex csinhf(float complex);
7447 long double complex csinhl(long double complex);
7448 long double complex csinl(long double complex);
7449 double complex csqrt(double complex);
7450 float complex csqrtf(float complex);
7451 long double complex csqrtl(long double complex);
7452 double complex ctan(double complex);
7453 float complex ctanf(float complex);
7454 double complex ctanh(double complex);
7455 float complex ctanhf(float complex);
7456 long double complex ctanhl(long double complex);
7457 long double complex ctanl(long double complex);

7458 APPLICATION USAGE
7459 Values are interpreted as radians, not degrees.

7460 RATIONALE
7461 The choice of I instead of i for the imaginary unit concedes to the widespread use of the
7462 identifier i for other purposes. The application can use a different identifier, say j , for the
7463 imaginary unit by following the inclusion of the <complex.h> header with:

7464 #undef I
7465 #define j _Imaginary_I

Base Definitions, Issue 6 207

<complex.h> Headers

7466 An I suffix to designate imaginary constants is not required, as multiplication by I provides a
7467 sufficiently convenient and more generally useful notation for imaginary terms. The
7468 corresponding real type for the imaginary unit is float, so that use of I for algorithmic or
7469 notational convenience will not result in widening types.

7470 On systems with imaginary types, the application has the ability to control whether use of the
7471 macro I introduces an imaginary type, by explicitly defining I to be _Imaginary_I or _Complex_I.
7472 Disallowing imaginary types is useful for some applications intended to run on implementations
7473 without support for such types.

7474 The macro _Imaginary_I provides a test for whether imaginary types are supported.

7475 The cis() function (cos(x) + I*sin(x)) was considered but rejected because its implementation is
7476 easy and straightforward, even though some implementations could compute sine and cosine
7477 more efficiently in tandem.

7478 FUTURE DIRECTIONS
7479 The following function names and the same names suffixed with f or l are reserved for future
7480 use, and may be added to the declarations in the <complex.h> header.

7481 cerf()
7482 cerfc()
7483 cexp2()

cexpm1()
clog10()
clog1p()

clog2()
clgamma()
ctgamma()

7484 SEE ALSO
7485 The System Interfaces volume of IEEE Std 1003.1-200x, cabs(), cacos(), cacosh(), carg(), casin(),
7486 casinh(), catan(), catanh (), ccos(), ccosh(), cexp(), cimag(), clog(), conj(), cpow(), cproj(), creal(),
7487 csin(), csinh(), csqrt(), ctan(), ctanh()

7488 CHANGE HISTORY
7489 First released in Issue 6. Included for alignment with the ISO/IEC 9899: 1999 standard.

208 Technical Standard (2001) (Draft April 13, 2001)

Headers <cpio.h>

7490 NAME
7491 cpio.h — cpio archive values

7492 SYNOPSIS
7493 XSI #include <cpio.h>
7494

7495 DESCRIPTION
7496 Values needed by the c_mode field of the cpio archive format are described as follows:
7497 __
7498 Name Description Value (Octal)__
7499 C_IRUSR Read by owner. 0000400
7500 C_IWUSR Write by owner. 0000200
7501 C_IXUSR Execute by owner. 0000100
7502 C_IRGRP Read by group. 0000040
7503 C_IWGRP Write by group. 0000020
7504 C_IXGRP Execute by group. 0000010
7505 C_IROTH Read by others. 0000004
7506 C_IWOTH Write by others. 0000002
7507 C_IXOTH Execute by others. 0000001
7508 C_ISUID Set user ID. 0004000
7509 C_ISGID Set group ID. 0002000
7510 C_ISVTX On directories, restricted deletion flag. 0001000
7511 C_ISDIR Directory. 0040000
7512 C_ISFIFO FIFO. 0010000
7513 C_ISREG Regular file. 0100000
7514 C_ISBLK Block special. 0060000
7515 C_ISCHR Character special. 0020000
7516 C_ISCTG Reserved. 0110000
7517 C_ISLNK Symbolic link. 0120000
7518 C_ISSOCK Socket. 0140000__LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

7519 The header shall define the symbolic constant:

7520 MAGIC "070707"

7521 APPLICATION USAGE
7522 None.

7523 RATIONALE
7524 None.

7525 FUTURE DIRECTIONS
7526 None.

7527 SEE ALSO
7528 The Shell and Utilities volume of IEEE Std 1003.1-200x, pax

7529 CHANGE HISTORY
7530 First released in Issue 3 of the Headers Interface, Issue 3 specification. Derived from the
7531 POSIX.1-1988 standard.

7532 Issue 6
7533 The SEE ALSO is updated to refer to pax, since the cpio utility is not included in the Shell and
7534 Utilities volume of IEEE Std 1003.1-200x.

Base Definitions, Issue 6 209

<ctype.h> Headers

7535 NAME
7536 ctype.h — character types

7537 SYNOPSIS
7538 #include <ctype.h>

7539 DESCRIPTION
7540 CX Some of the functionality described on this reference page extends the ISO C standard.
7541 Applications shall define the appropriate feature test macro (see the System Interfaces volume of
7542 IEEE Std 1003.1-200x, Section 2.2, The Compilation Environment) to enable the visibility of these
7543 symbols in this header.

7544 The following shall be declared as functions and may also be defined as macros. Function |
7545 prototypes shall be provided. |

7546 int isalnum(int);
7547 int isalpha(int);
7548 XSI int isascii(int);
7549 int isblank(int);
7550 int iscntrl(int);
7551 int isdigit(int);
7552 int isgraph(int);
7553 int islower(int);
7554 int isprint(int);
7555 int ispunct(int);
7556 int isspace(int);
7557 int isupper(int);
7558 int isxdigit(int);
7559 XSI int toascii(int);
7560 int tolower(int);
7561 int toupper(int);

7562 The following are defined as macros:

7563 XSI int _toupper(int);
7564 int _tolower(int);
7565

7566 APPLICATION USAGE
7567 None.

7568 RATIONALE
7569 None.

7570 FUTURE DIRECTIONS
7571 None.

7572 SEE ALSO
7573 <locale.h>, the System Interfaces volume of IEEE Std 1003.1-200x, isalnum(), isalpha (), isascii (),
7574 iscntrl(), isdigit (), isgraph(), islower(), isprint(), ispunct(), isspace(), isupper(), isxdigit (), mblen(),
7575 mbstowcs(), mbtowc(), setlocale (), toascii (), tolower(), _tolower (), toupper(), _toupper(), wcstombs(),
7576 wctomb()

7577 CHANGE HISTORY
7578 First released in Issue 1. Derived from Issue 1 of the SVID.

210 Technical Standard (2001) (Draft April 13, 2001)

Headers <ctype.h>

7579 Issue 6
7580 Extensions beyond the ISO C standard are now marked.

Base Definitions, Issue 6 211

<dirent.h> Headers

7581 NAME
7582 dirent.h — format of directory entries

7583 SYNOPSIS
7584 #include <dirent.h>

7585 DESCRIPTION
7586 The internal format of directories is unspecified.

7587 The <dirent.h> header shall define the following type:

7588 DIR A type representing a directory stream.

7589 It shall also define the structure dirent which shall include the following members:

7590 XSI ino_t d_ino File serial number.
7591 char d_name[] Name of entry.

7592 XSI The type ino_t shall be defined as described in <sys/types.h>.

7593 The character array d_name is of unspecified size, but the number of bytes preceding the
7594 terminating null byte shall not exceed {NAME_MAX}.

7595 The following shall be declared as functions and may also be defined as macros. Function |
7596 prototypes shall be provided. |

7597 int closedir(DIR *);
7598 DIR *opendir(const char *);
7599 struct dirent *readdir(DIR *);
7600 TSF int readdir_r(DIR *restrict, struct dirent *restrict,
7601 struct dirent **restrict);
7602 void rewinddir(DIR *);
7603 XSI void seekdir(DIR *, long);
7604 long telldir(DIR *);
7605

7606 APPLICATION USAGE
7607 None.

7608 RATIONALE
7609 Information similar to that in the <dirent.h> header is contained in a file <sys/dir.h> in 4.2 BSD
7610 and 4.3 BSD. The equivalent in these implementations of struct dirent from this volume of
7611 IEEE Std 1003.1-200x is struct direct. The filename was changed because the name <sys/dir.h>
7612 was also used in earlier implementations to refer to definitions related to the older access
7613 method; this produced name conflicts. The name of the structure was changed because this
7614 volume of IEEE Std 1003.1-200x does not completely define what is in the structure, so it could
7615 be different on some implementations from struct direct.

7616 The name of an array of char of an unspecified size should not be used as an lvalue. Use of: |

7617 sizeof(d_name)

7618 is incorrect; use:

7619 strlen(d_name)

7620 instead.

7621 The array of char d_name is not a fixed size. Implementations may need to declare struct dirent
7622 with an array size for d_name of 1, but the actual number of characters provided matches (or
7623 only slightly exceeds) the length of the filename.

212 Technical Standard (2001) (Draft April 13, 2001)

Headers <dirent.h>

7624 FUTURE DIRECTIONS
7625 None.

7626 SEE ALSO
7627 <sys/types.h>, the System Interfaces volume of IEEE Std 1003.1-200x, closedir(), opendir(),
7628 readdir(), readdir_r(), rewinddir(), seekdir(), telldir()

7629 CHANGE HISTORY
7630 First released in Issue 2.

7631 Issue 5
7632 The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

7633 Issue 6
7634 The Open Group Corrigendum U026/7 is applied, correcting the prototype for readdir_r().

7635 The restrict keyword is added to the prototype for readdir_r().

Base Definitions, Issue 6 213

<dlfcn.h> Headers

7636 NAME
7637 dlfcn.h — dynamic linking

7638 SYNOPSIS
7639 XSI #include <dlfcn.h>
7640

7641 DESCRIPTION
7642 The <dlfcn.h> header shall define at least the following macros for use in the construction of a
7643 dlopen() mode argument:

7644 RTLD_LAZY Relocations are performed at an implementation-defined time.

7645 RTLD_NOW Relocations are performed when the object is loaded.

7646 RTLD_GLOBAL All symbols are available for relocation processing of other modules.

7647 RTLD_LOCAL All symbols are not made available for relocation processing by other
7648 modules.

7649 The following shall be declared as functions and may also be defined as macros. Function |
7650 prototypes shall be provided. |

7651 int dlclose(void *);
7652 char *dlerror(void);
7653 void *dlopen(const char *, int);
7654 void *dlsym(void *restrict, const char *restrict);

7655 APPLICATION USAGE
7656 None.

7657 RATIONALE
7658 None.

7659 FUTURE DIRECTIONS
7660 None.

7661 SEE ALSO
7662 The System Interfaces volume of IEEE Std 1003.1-200x, dlopen(), dlclose(), dlsym(), dlerror()

7663 CHANGE HISTORY
7664 First released in Issue 5.

7665 Issue 6
7666 The restrict keyword is added to the prototype for dlsym().

214 Technical Standard (2001) (Draft April 13, 2001)

Headers <errno.h>

7667 NAME
7668 errno.h — system error numbers

7669 SYNOPSIS
7670 #include <errno.h>

7671 DESCRIPTION
7672 CX Some of the functionality described on this reference page extends the ISO C standard. Any
7673 conflict between the requirements described here and the ISO C standard is unintentional. This
7674 volume of IEEE Std 1003.1-200x defers to the ISO C standard.

7675 CX The ISO C standard only requires the symbols [EDOM], [EILSEQ], and [ERANGE] to be defined.

7676 The <errno.h> header shall provide a declaration for errno and give positive values for the
7677 following symbolic constants. Their values shall be unique except as noted below:

7678 [E2BIG] Argument list too long.

7679 [EACCES] Permission denied.

7680 [EADDRINUSE] Address in use.

7681 [EADDRNOTAVAIL] Address not available.

7682 [EAFNOSUPPORT] Address family not supported.

7683 [EAGAIN] Resource unavailable, try again (may be the same value as
7684 [EWOULDBLOCK]).

7685 [EALREADY] Connection already in progress.

7686 [EBADF] Bad file descriptor.

7687 [EBADMSG] Bad message.

7688 [EBUSY] Device or resource busy.

7689 [ECANCELED] Operation canceled.

7690 [ECHILD] No child processes.

7691 [ECONNABORTED] Connection aborted.

7692 [ECONNREFUSED] Connection refused.

7693 [ECONNRESET] Connection reset.

7694 [EDEADLK] Resource deadlock would occur.

7695 [EDESTADDRREQ] Destination address required.

7696 [EDOM] Mathematics argument out of domain of function.

7697 [EDQUOT] Reserved.

7698 [EEXIST] File exists.

7699 [EFAULT] Bad address.

7700 [EFBIG] File too large.

7701 [EHOSTUNREACH] Host is unreachable.

7702 [EIDRM] Identifier removed.

7703 [EILSEQ] Illegal byte sequence.

Base Definitions, Issue 6 215

<errno.h> Headers

7704 [EINPROGRESS] Operation in progress.

7705 [EINTR] Interrupted function.

7706 [EINVAL] Invalid argument.

7707 [EIO] I/O error.

7708 [EISCONN] Socket is connected.

7709 [EISDIR] Is a directory.

7710 [ELOOP] Too many levels of symbolic links.

7711 [EMFILE] Too many open files.

7712 [EMLINK] Too many links.

7713 [EMSGSIZE] Message too large.

7714 [EMULTIHOP] Reserved.

7715 [ENAMETOOLONG] Filename too long.

7716 [ENETDOWN] Network is down.

7717 [ENETUNREACH] Network unreachable.

7718 [ENFILE] Too many files open in system.

7719 [ENOBUFS] No buffer space available.

7720 XSR [ENODATA] No message is available on the STREAM head read queue.

7721 [ENODEV] No such device.

7722 [ENOENT] No such file or directory.

7723 [ENOEXEC] Executable file format error.

7724 [ENOLCK] No locks available.

7725 [ENOLINK] Reserved.

7726 [ENOMEM] Not enough space.

7727 [ENOMSG] No message of the desired type.

7728 [ENOPROTOOPT] Protocol not available.

7729 [ENOSPC] No space left on device.

7730 XSR [ENOSR] No STREAM resources.

7731 XSR [ENOSTR] Not a STREAM.

7732 [ENOSYS] Function not supported.

7733 [ENOTCONN] The socket is not connected.

7734 [ENOTDIR] Not a directory.

7735 [ENOTEMPTY] Directory not empty.

7736 [ENOTSOCK] Not a socket.

7737 [ENOTSUP] Not supported.

216 Technical Standard (2001) (Draft April 13, 2001)

Headers <errno.h>

7738 [ENOTTY] Inappropriate I/O control operation.

7739 [ENXIO] No such device or address.

7740 [EOPNOTSUPP] Operation not supported on socket.

7741 [EOVERFLOW] Value too large to be stored in data type.

7742 [EPERM] Operation not permitted.

7743 [EPIPE] Broken pipe.

7744 [EPROTO] Protocol error.

7745 [EPROTONOSUPPORT]
7746 Protocol not supported.

7747 [EPROTOTYPE] Protocol wrong type for socket.

7748 [ERANGE] Result too large.

7749 [EROFS] Read-only file system.

7750 [ESPIPE] Invalid seek.

7751 [ESRCH] No such process.

7752 [ESTALE] Reserved.

7753 XSR [ETIME] Stream ioctl () timeout.

7754 [ETIMEDOUT] Connection timed out.

7755 [ETXTBSY] Text file busy.

7756 [EWOULDBLOCK] Operation would block (may be the same value as [EAGAIN]).

7757 [EXDEV] Cross-device link.

7758 APPLICATION USAGE
7759 Additional error numbers may be defined on conforming systems; see the System Interfaces
7760 volume of IEEE Std 1003.1-200x.

7761 RATIONALE
7762 None.

7763 FUTURE DIRECTIONS
7764 None.

7765 SEE ALSO
7766 The System Interfaces volume of IEEE Std 1003.1-200x, Section 2.3, Error Numbers

7767 CHANGE HISTORY
7768 First released in Issue 1. Derived from Issue 1 of the SVID.

7769 Issue 5
7770 Updated for alignment with the POSIX Realtime Extension.

7771 Issue 6
7772 The following new requirements on POSIX implementations derive from alignment with the
7773 Single UNIX Specification:

7774 • The majority of the error conditions previously marked as extensions are now mandatory,
7775 except for the STREAMS-related error conditions.

Base Definitions, Issue 6 217

<errno.h> Headers

7776 Values for errno are now required to be distinct positive values rather than non-zero values. This
7777 change is for alignment with the ISO/IEC 9899: 1999 standard.

218 Technical Standard (2001) (Draft April 13, 2001)

Headers <fcntl.h>

7778 NAME
7779 fcntl.h — file control options

7780 SYNOPSIS
7781 #include <fcntl.h>

7782 DESCRIPTION
7783 The <fcntl.h> header shall define the following requests and arguments for use by the functions
7784 fcntl() and open().

7785 Values for cmd used by fcntl() (the following values are unique) are as follows:

7786 F_DUPFD Duplicate file descriptor.

7787 F_GETFD Get file descriptor flags.

7788 F_SETFD Set file descriptor flags.

7789 F_GETFL Get file status flags and file access modes.

7790 F_SETFL Set file status flags.

7791 F_GETLK Get record locking information.

7792 F_SETLK Set record locking information.

7793 F_SETLKW Set record locking information; wait if blocked.

7794 F_GETOWN Get process or process group ID to receive SIGURG signals.

7795 F_SETOWN Set process or process group ID to receive SIGURG signals.

7796 File descriptor flags used for fcntl() are as follows:

7797 FD_CLOEXEC Close the file descriptor upon execution of an exec family function.

7798 Values for l_type used for record locking with fcntl() (the following values are unique) are as
7799 follows:

7800 F_RDLCK Shared or read lock.

7801 F_UNLCK Unlock.

7802 F_WRLCK Exclusive or write lock.

7803 XSI The values used for l_whence, SEEK_SET, SEEK_CUR, and SEEK_END shall be defined as
7804 described in <unistd.h>.

7805 The following values are file creation flags and are used in the oflag value to open(). They shall |
7806 be bitwise-distinct. |

7807 O_CREAT Create file if it does not exist.

7808 O_EXCL Exclusive use flag.

7809 O_NOCTTY Do not assign controlling terminal.

7810 O_TRUNC Truncate flag.

7811 File status flags used for open() and fcntl() are as follows:

7812 O_APPEND Set append mode.

7813 SIO O_DSYNC Write according to synchronized I/O data integrity completion.

7814 O_NONBLOCK Non-blocking mode.

Base Definitions, Issue 6 219

<fcntl.h> Headers

7815 SIO O_RSYNC Synchronized read I/O operations.

7816 O_SYNC Write according to synchronized I/O file integrity completion.

7817 Mask for use with file access modes is as follows:

7818 O_ACCMODE Mask for file access modes.

7819 File access modes used for open() and fcntl() are as follows:

7820 O_RDONLY Open for reading only.

7821 O_RDWR Open for reading and writing.

7822 O_WRONLY Open for writing only.

7823 XSI The symbolic names for file modes for use as values of mode_t shall be defined as described in
7824 <sys/stat.h>.

7825 ADV Values for advice used by posix_fadvise() are as follows:

7826 POSIX_FADV_NORMAL
7827 The application has no advice to give on its behavior with respect to the specified data. It is
7828 the default characteristic if no advice is given for an open file.

7829 POSIX_FADV_SEQUENTIAL
7830 The application expects to access the specified data sequentially from lower offsets to
7831 higher offsets.

7832 POSIX_FADV_RANDOM
7833 The application expects to access the specified data in a random order.

7834 POSIX_FADV_WILLNEED
7835 The application expects to access the specified data in the near future.

7836 POSIX_FADV_DONTNEED
7837 The application expects that it will not access the specified data in the near future.

7838 POSIX_FADV_NOREUSE
7839 The application expects to access the specified data once and then not reuse it thereafter.
7840

7841 The structure flock describes a file lock. It shall include the following members:

7842 short l_type Type of lock; F_RDLCK, F_WRLCK, F_UNLCK.
7843 short l_whence Flag for starting offset.
7844 off_t l_start Relative offset in bytes.
7845 off_t l_len Size; if 0 then until EOF.
7846 pid_t l_pid Process ID of the process holding the lock; returned with F_GETLK.

7847 The mode_t, off_t, and pid_t types shall be defined as described in <sys/types.h>.

7848 The following shall be declared as functions and may also be defined as macros. Function |
7849 prototypes shall be provided. |

7850 int creat(const char *, mode_t);
7851 int fcntl(int, int, ...);
7852 int open(const char *, int, ...);
7853 ADV int posix_fadvise(int, off_t, size_t, int);
7854 int posix_fallocate(int, off_t, size_t);
7855

220 Technical Standard (2001) (Draft April 13, 2001)

Headers <fcntl.h>

7856 XSI Inclusion of the <fcntl.h> header may also make visible all symbols from <sys/stat.h> and
7857 <unistd.h>.

7858 APPLICATION USAGE
7859 None.

7860 RATIONALE
7861 None.

7862 FUTURE DIRECTIONS
7863 None.

7864 SEE ALSO
7865 <sys/stat.h>, <sys/types.h>, <unistd.h>, the System Interfaces volume of IEEE Std 1003.1-200x,
7866 creat(), exec(), fcntl(), open(), posix_fadvise(), posix_fallocate(), posix_madvise()

7867 CHANGE HISTORY
7868 First released in Issue 1. Derived from Issue 1 of the SVID.

7869 Issue 5
7870 The DESCRIPTION is updated for alignment with POSIX Realtime Extension.

7871 Issue 6
7872 The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

7873 • O_DSYNC and O_RSYNC are marked as part of the Synchronized Input and Output option.

7874 The following new requirements on POSIX implementations derive from alignment with the
7875 Single UNIX Specification:

7876 • The definition of the mode_t, off_t, and pid_t types is mandated.

7877 The F_GETOWN and F_SETOWN values are added for sockets.

7878 The posix_fadvise(), posix_fallocate(), and posix_madvise() functions are added for alignment with
7879 IEEE Std 1003.1d-1999.

7880 IEEE PASC Interpretation 1003.1 #102 is applied moving the prototype for posix_madvise() to |
7881 <sys/mman.h>. |

Base Definitions, Issue 6 221

<fenv.h> Headers

7882 NAME
7883 fenv.h — floating-point environment

7884 SYNOPSIS
7885 #include <fenv.h>

7886 DESCRIPTION
7887 CX The functionality described on this reference page is aligned with the ISO C standard. Any
7888 conflict between the requirements described here and the ISO C standard is unintentional. This
7889 volume of IEEE Std 1003.1-200x defers to the ISO C standard.

7890 The <fenv.h> header shall define the following data types through typedef:

7891 fenv_t Represents the entire floating-point environment. The floating-point environment
7892 refers collectively to any floating-point status flags and control modes supported
7893 by the implementation.

7894 fexcept_t Represents the floating-point status flags collectively, including any status the
7895 implementation associates with the flags. A floating-point status flag is a system
7896 variable whose value is set (but never cleared) when a floating-point exception is
7897 raised, which occurs as a side effect of exceptional floating-point arithmetic to
7898 provide auxiliary information. A floating-point control mode is a system variable
7899 whose value may be set by the user to affect the subsequent behavior of floating-
7900 point arithmetic.

7901 The <fenv.h> header shall define the following constants if and only if the implementation
7902 supports the floating-point exception by means of the floating-point functions fwclearexcept(),
7903 fegetexceptflag(), feraiseexcept(), fesetexceptflag(), and fetestexcept(). Each expands to an integer
7904 constant expression with values such that bitwise-inclusive ORs of all combinations of the
7905 constants result in distinct values.

7906 FE_DIVBYZERO
7907 FE_INEXACT
7908 FE_INVALID
7909 FE_OVERFLOW
7910 FE_UNDERFLOW

7911 The <fenv.h> header shall define the following constant, which is simply the bitwise-inclusive
7912 OR of all floating-point exception constants defined above:

7913 FE_ALL_EXCEPT

7914 The <fenv.h> header shall define the following constants if and only if the implementation
7915 supports getting and setting the represented rounding direction by means of the fegetround()
7916 and fesetround() functions. Each expands to an integer constant expression whose values are
7917 distinct non-negative vales.

7918 FE_DOWNWARD
7919 FE_TONEAREST
7920 FE_TOWARDZERO
7921 FE_UPWARD

7922 The <fenv.h> header shall define the following constant, which represents the default floating-
7923 point environment (that is, the one installed at program startup) and has type pointer to const-
7924 qualified fenv_t. It can be used as an argument to the functions within the <fenv.h> header that
7925 manage the floating-point environment.

7926 FE_DFL_ENV

222 Technical Standard (2001) (Draft April 13, 2001)

Headers <fenv.h>

7927 The following shall be declared as functions and may also be defined as macros. Function |
7928 prototypes shall be provided. |

7929 int feclearexcept(int);
7930 int fegetexceptflag(fexcept_t *, int);
7931 int feraiseexcept(int);
7932 int fesetexceptflag(const fexcept_t *, int);
7933 int fetestexcept(int);
7934 int fegetround(void);
7935 int fesetround(int);
7936 int fegetenv(fenv_t *);
7937 int feholdexcept(fenv_t *);
7938 int fesetenv(const fenv_t *);
7939 int feupdateenv(const fenv_t *);

7940 The FENV_ACCESS pragma provides a means to inform the implementation when an
7941 application might access the floating-point environment to test floating-point status flags or run
7942 under non-default floating-point control modes. The pragma shall occur either outside external
7943 declarations or preceding all explicit declarations and statements inside a compound statement.
7944 When outside external declarations, the pragma takes effect from its occurrence until another
7945 FENV_ACCESS pragma is encountered, or until the end of the translation unit. When inside a
7946 compound statement, the pragma takes effect from its occurrence until another FENV_ACCESS
7947 pragma is encountered (including within a nested compound statement), or until the end of the
7948 compound statement; at the end of a compound statement the state for the pragma is restored to
7949 its condition just before the compound statement. If this pragma is used in any other context, the
7950 behavior is undefined. If part of an application tests floating-point status flags, sets floating-
7951 point control modes, or runs under non-default mode settings, but was translated with the state
7952 for the FENV_ACCESS pragma off, the behavior is undefined. The default state (on or off) for
7953 the pragma is implementation-defined. (When execution passes from a part of the application
7954 translated with FENV_ACCESS off to a part translated with FENV_ACCESS on, the state of the
7955 floating-point status flags is unspecified and the floating-point control modes have their default
7956 settings.)

7957 APPLICATION USAGE
7958 This header is designed to support the floating-point exception status flags and directed-
7959 rounding control modes required by the IEC 60559: 1989 standard, and other similar floating-
7960 point state information. Also it is designed to facilitate code portability among all systems.

7961 Certain application programming conventions support the intended model of use for the
7962 floating-point environment:

7963 • A function call does not alter its caller’s floating-point control modes, clear its caller’s
7964 floating-point status flags, nor depend on the state of its caller’s floating-point status flags
7965 unless the function is so documented.

7966 • A function call is assumed to require default floating-point control modes, unless its
7967 documentation promises otherwise.

7968 • A function call is assumed to have the potential for raising floating-point exceptions, unless
7969 its documentation promises otherwise.

7970 With these conventions, an application can safely assume default floating-point control modes
7971 (or be unaware of them). The responsibilities associated with accessing the floating-point
7972 environment fall on the application that does so explicitly.

7973 Even though the rounding direction macros may expand to constants corresponding to the
7974 values of FLT_ROUNDS, they are not required to do so.

Base Definitions, Issue 6 223

<fenv.h> Headers

7975 For example:

7976 #include <fenv.h>
7977 void f(double x)
7978 {
7979 #pragma STDC FENV_ACCESS ON
7980 void g(double);
7981 void h(double);
7982 /* ... */
7983 g(x + 1);
7984 h(x + 1);
7985 /* ... */
7986 }

7987 If the function g() might depend on status flags set as a side effect of the first x+1, or if the
7988 second x+1 might depend on control modes set as a side effect of the call to function g(), then
7989 the application shall contain an appropriately placed invocation as follows:

7990 #pragma STDC FENV_ACCESS ON

7991 RATIONALE

7992 The fexcept_t Type

7993 fexcept_t does not have to be an integer type. Its values must be obtained by a call to
7994 fegetexceptflag(), and cannot be created by logical operations from the exception macros. An
7995 implementation might simply implement fexcept_t as an int and use the representations
7996 reflected by the exception macros, but is not required to; other representations might contain
7997 extra information about the exceptions. fexcept_t might be a struct with a member for each
7998 exception (that might hold the address of the first or last floating-point instruction that caused
7999 that exception). The ISO/IEC 9899: 1999 standard makes no claims about the internals of an
8000 fexcept_t, and so the user cannot inspect it.

8001 Exception and Rounding Macros

8002 Macros corresponding to unsupported modes and rounding directions are not defined by the |
8003 implementation and must not be defined by the application. An application might use #ifdef to |
8004 test for this. |

8005 FUTURE DIRECTIONS
8006 None.

8007 SEE ALSO
8008 The System Interfaces volume of IEEE Std 1003.1-200x, feclearexcept(), fegetenv(), fegetexceptflag(),
8009 fegetround(), feholdexcept (), feraiseexcept(), fesetenv(), fesetexceptflag(), fesetround(), fetestexcept(),
8010 feupdateenv()

8011 CHANGE HISTORY
8012 First released in Issue 6. Included for alignment with the ISO/IEC 9899: 1999 standard.

8013 The return types for feclearexcept(), fegetexcepflag(), feraiseexcept(), fesetexceptflag(), fegetenv(),
8014 fesetenv(), and feupdateenv() are changed from void to int for alignment with the
8015 ISO/IEC 9899: 1999 standard, Defect Report 202.

224 Technical Standard (2001) (Draft April 13, 2001)

Headers <float.h>

8016 NAME
8017 float.h — floating types

8018 SYNOPSIS
8019 #include <float.h>

8020 DESCRIPTION
8021 CX The functionality described on this reference page is aligned with the ISO C standard. Any
8022 conflict between the requirements described here and the ISO C standard is unintentional. This
8023 volume of IEEE Std 1003.1-200x defers to the ISO C standard.

8024 The characteristics of floating types are defined in terms of a model that describes a
8025 representation of floating-point numbers and values that provide information about an
8026 implementation’s floating-point arithmetic.

8027 The following parameters are used to define the model for each floating-point type:

8028 s Sign (±1).

8029 b Base or radix of exponent representation (an integer >1).

8030 e Exponent (an integer between a minimum emin and a maximum emax).

8031 p Precision (the number of base−b digits in the significand).

8032 fk Non-negative integers less than b (the significand digits).

8033 A floating-point number x is defined by the following model:

x = sbe
k =1
Σ
p

 fk b−k, emin ≤ e ≤ emax8034

8035 In addition to normalized floating-point numbers (f 1>0 if x≠0), floating types may be able to
8036 contain other kinds of floating-point numbers, such as subnormal floating-point numbers (x≠0,
8037 e=emin, f 1=0) and unnormalized floating-point numbers (x≠0, e>emin, f 1=0), and values that are
8038 not floating-point numbers, such as infinities and NaNs. A NaN is an encoding signifying Not-
8039 a-Number. A quiet NaN propagates through almost every arithmetic operation without raising a
8040 floating-point exception; a signaling NaN generally raises a floating-point exception when
8041 occurring as an arithmetic operand.

8042 The accuracy of the floating-point operations (’+’ , ’ −’ , ’*’ , ’/’) and of the library functions
8043 in <math.h> and <complex.h> that return floating-point results is implementation-defined. The
8044 implementation may state that the accuracy is unknown.

8045 All integer values in the <float.h> header, except FLT_ROUNDS, shall be constant expressions
8046 suitable for use in #if preprocessing directives; all floating values shall be constant expressions.
8047 All except DECIMAL_DIG, FLT_EVAL_METHOD, FLT_RADIX, and FLT_ROUNDS have
8048 separate names for all three floating-point types. The floating-point model representation is
8049 provided for all values except FLT_EVAL_METHOD and FLT_ROUNDS.

8050 The rounding mode for floating-point addition is characterized by the implementation-defined
8051 value of FLT_ROUNDS:

8052 −1 Indeterminable.

8053 0 Toward zero.

8054 1 To nearest.

8055 2 Toward positive infinity.

Base Definitions, Issue 6 225

<float.h> Headers

8056 3 Toward negative infinity.

8057 All other values for FLT_ROUNDS characterize implementation-defined rounding behavior.

8058 The values of operations with floating operands and values subject to the usual arithmetic
8059 conversions and of floating constants are evaluated to a format whose range and precision may
8060 be greater than required by the type. The use of evaluation formats is characterized by the
8061 implementation-defined value of FLT_EVAL_METHOD:

8062 −1 Indeterminable.

8063 0 Evaluate all operations and constants just to the range and precision of the type.

8064 1 Evaluate operations and constants of type float and double to the range and precision of the
8065 double type, evaluate long double operations and constants to the range and precision of
8066 the long double type.

8067 2 Evaluate all operations and constants to the range and precision of the long double type.

8068 All other negative values for FLT_EVAL_METHOD characterize implementation-defined
8069 behavior.

8070 The values given in the following list shall be defined as constant expressions with
8071 implementation-defined values that are greater or equal in magnitude (absolute value) to those
8072 shown, with the same sign.

8073 • Radix of exponent representation, b.

8074 FLT_RADIX 2

8075 • Number of base-FLT_RADIX digits in the floating-point significand, p .

8076 FLT_MANT_DIG

8077 DBL_MANT_DIG

8078 LDBL_MANT_DIG

8079 • Number of decimal digits, n, such that any floating-point number in the widest supported
8080 floating type with pmax radix b digits can be rounded to a floating-point number with n
8081 decimal digits and back again without change to the value.

B
A
C
A
D

 H
A 1 + pmax log10 bJ

A

pmax log10 b
 otherwise
if b is a power of 108082

8083 DECIMAL_DIG 10

8084 • Number of decimal digits, q, such that any floating-point number with q decimal digits can
8085 be rounded into a floating-point number with p radix b digits and back again without change
8086 to the q decimal digits.

B
A
C
A
D

 A
I (p − 1) log10 b AK

p log10 b
 otherwise
if b is a power of 108087

8088 FLT_DIG 6

8089 DBL_DIG 10

226 Technical Standard (2001) (Draft April 13, 2001)

Headers <float.h>

8090 LDBL_DIG 10

8091 • Minimum negative integer such that FLT_RADIX raised to that power minus 1 is a
8092 normalized floating-point number, emin.

8093 FLT_MIN_EXP

8094 DBL_MIN_EXP

8095 LDBL_MIN_EXP

8096 • Minimum negative integer such that 10 raised to that power is in the range of normalized
8097 floating-point numbers.

H
A log10 bemin −1

 JA8098

8099 FLT_MIN_10_EXP −37

8100 DBL_MIN_10_EXP −37

8101 LDBL_MIN_10_EXP −37

8102 • Maximum integer such that FLT_RADIX raised to that power minus 1 is a representable
8103 finite floating-point number, emax.

8104 FLT_MAX_EXP

8105 DBL_MAX_EXP

8106 LDBL_MAX_EXP

8107 • Maximum integer such that 10 raised to that power is in the range of representable finite
8108 floating-point numbers.

A
I log10((1 − b−p) bemax) AK8109

8110 FLT_MAX_10_EXP +37

8111 DBL_MAX_10_EXP +37

8112 LDBL_MAX_10_EXP +37

8113 The values given in the following list shall be defined as constant expressions with
8114 implementation-defined values that are greater than or equal to those shown:

8115 • Maximum representable finite floating-point number.

(1 − b−p) bemax8116

8117 FLT_MAX 1E+37

8118 DBL_MAX 1E+37

8119 LDBL_MAX 1E+37

8120 The values given in the following list shall be defined as constant expressions with
8121 implementation-defined (positive) values that are less than or equal to those shown:

8122 • The difference between 1 and the least value greater that 1 that is representable in the given
8123 floating-point type, b1 − p .

8124 FLT_EPSILON 1E−5

8125 DBL_EPSILON 1E−9

Base Definitions, Issue 6 227

<float.h> Headers

8126 LDBL_EPSILON 1E−9

8127 • Minimum normalized positive floating-point number, bemin −1

.

8128 FLT_MIN 1E−37

8129 DBL_MIN 1E−37

8130 LDBL_MIN 1E−37

8131 APPLICATION USAGE
8132 None.

8133 RATIONALE
8134 None.

8135 FUTURE DIRECTIONS
8136 None.

8137 SEE ALSO
8138 <complex.h>, <math.h>

CHANGE8139 HISTORY
8140 First released in Issue 4. Derived from the ISO C standard.

8141 Issue 6
8142 The description of the operations with floating-point values is updated for alignment with the
8143 ISO/IEC 9899: 1999 standard.

228 Technical Standard (2001) (Draft April 13, 2001)

Headers <fmtmsg.h>

8144 NAME
8145 fmtmsg.h — message display structures

8146 SYNOPSIS
8147 XSI #include <fmtmsg.h>
8148

8149 DESCRIPTION
8150 The <fmtmsg.h> header shall define the following macros, which expand to constant integer
8151 expressions:

8152 MM_HARD Source of the condition is hardware.

8153 MM_SOFT Source of the condition is software.

8154 MM_FIRM Source of the condition is firmware.

8155 MM_APPL Condition detected by application.

8156 MM_UTIL Condition detected by utility.

8157 MM_OPSYS Condition detected by operating system.

8158 MM_RECOVER Recoverable error.

8159 MM_NRECOV Non-recoverable error.

8160 MM_HALT Error causing application to halt.

8161 MM_ERROR Application has encountered a non-fatal fault.

8162 MM_WARNING Application has detected unusual non-error condition.

8163 MM_INFO Informative message.

8164 MM_NOSEV No severity level provided for the message.

8165 MM_PRINT Display message on standard error.

8166 MM_CONSOLE Display message on system console.

8167 The table below indicates the null values and identifiers for fmtmsg() arguments. The
8168 <fmtmsg.h> header shall define the macros in the Identifier column, which expand to constant
8169 expressions that expand to expressions of the type indicated in the Type column:
8170 __
8171 Argument Type Null-Value Identifier__
8172 label char * (char*)0 MM_NULLLBL
8173 severity int 0 MM_NULLSEV
8174 class long 0L MM_NULLMC
8175 text char * (char*)0 MM_NULLTXT
8176 action char * (char*)0 MM_NULLACT
8177 tag char * (char*)0 MM_NULLTAG__L

L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

8178 The <fmtmsg.h> header shall also define the following macros for use as return values for
8179 fmtmsg():

8180 MM_OK The function succeeded.

8181 MM_NOTOK The function failed completely.

8182 MM_NOMSG The function was unable to generate a message on standard error, but
8183 otherwise succeeded.

Base Definitions, Issue 6 229

<fmtmsg.h> Headers

8184 MM_NOCON The function was unable to generate a console message, but otherwise
8185 succeeded.

8186 The following shall be declared as a function and may also be defined as a macro. A function |
8187 prototype shall be provided. |

8188 int fmtmsg(long, const char *, int,
8189 const char *, const char *, const char *);

8190 APPLICATION USAGE
8191 None.

8192 RATIONALE
8193 None.

8194 FUTURE DIRECTIONS
8195 None.

8196 SEE ALSO
8197 The System Interfaces volume of IEEE Std 1003.1-200x, fmtmsg()

8198 CHANGE HISTORY
8199 First released in Issue 4, Version 2.

230 Technical Standard (2001) (Draft April 13, 2001)

Headers <fnmatch.h>

8200 NAME
8201 fnmatch.h — filename-matching types

8202 SYNOPSIS
8203 #include <fnmatch.h>

8204 DESCRIPTION
8205 The <fnmatch.h> header shall define the following constants:

8206 FNM_NOMATCH The string does not match the specified pattern.

8207 FNM_PATHNAME Slash in string only matches slash in pattern.

8208 FNM_PERIOD Leading period in string must be exactly matched by period in pattern.

8209 FNM_NOESCAPE Disable backslash escaping.

8210 OB XSI FNM_NOSYS Reserved.

8211 The following shall be declared as a function and may also be defined as a macro. A function |
8212 prototype shall be provided. |

8213 int fnmatch(const char *, const char *, int);

8214 APPLICATION USAGE
8215 None.

8216 RATIONALE
8217 None.

8218 FUTURE DIRECTIONS
8219 None.

8220 SEE ALSO
8221 The System Interfaces volume of IEEE Std 1003.1-200x, fnmatch(), the Shell and Utilities volume
8222 of IEEE Std 1003.1-200x

8223 CHANGE HISTORY
8224 First released in Issue 4. Derived from the ISO POSIX-2 standard.

8225 Issue 6
8226 The constant FNM_NOSYS is marked obsolescent.

Base Definitions, Issue 6 231

<ftw.h> Headers

8227 NAME
8228 ftw.h — file tree traversal

8229 SYNOPSIS
8230 XSI #include <ftw.h>
8231

8232 DESCRIPTION
8233 The <ftw.h> header shall define the FTW structure that includes at least the following members:

8234 int base
8235 int level

8236 The <ftw.h> header shall define macros for use as values of the third argument to the
8237 application-supplied function that is passed as the second argument to ftw() and nftw():

8238 FTW_F File.

8239 FTW_D Directory.

8240 FTW_DNR Directory without read permission.

8241 FTW_DP Directory with subdirectories visited.

8242 FTW_NS Unknown type; stat() failed.

8243 FTW_SL Symbolic link.

8244 FTW_SLN Symbolic link that names a nonexistent file.

8245 The <ftw.h> header shall define macros for use as values of the fourth argument to nftw():

8246 FTW_PHYS Physical walk, does not follow symbolic links. Otherwise, nftw() follows
8247 links but does not walk down any path that crosses itself.

8248 FTW_MOUNT The walk does not cross a mount point.

8249 FTW_DEPTH All subdirectories are visited before the directory itself.

8250 FTW_CHDIR The walk changes to each directory before reading it.

8251 The following shall be declared as functions and may also be defined as macros. Function |
8252 prototypes shall be provided. |

8253 int ftw(const char *,
8254 int (*)(const char *, const struct stat *, int), int);
8255 int nftw(const char *, int (*)
8256 (const char *, const struct stat *, int, struct FTW*),
8257 int, int);

8258 The <ftw.h> header shall define the stat structure and the symbolic names for st_mode and the
8259 file type test macros as described in <sys/stat.h>.

8260 Inclusion of the <ftw.h> header may also make visible all symbols from <sys/stat.h>.

232 Technical Standard (2001) (Draft April 13, 2001)

Headers <ftw.h>

8261 APPLICATION USAGE
8262 None.

8263 RATIONALE
8264 None.

8265 FUTURE DIRECTIONS
8266 None.

8267 SEE ALSO
8268 <sys/stat.h>, the System Interfaces volume of IEEE Std 1003.1-200x, ftw(), nftw()

8269 CHANGE HISTORY
8270 First released in Issue 1. Derived from Issue 1 of the SVID.

8271 Issue 5
8272 A description of FTW_DP is added.

Base Definitions, Issue 6 233

<glob.h> Headers

8273 NAME
8274 glob.h — pathname pattern-matching types |

8275 SYNOPSIS
8276 #include <glob.h>

8277 DESCRIPTION
8278 The <glob.h> header shall define the structures and symbolic constants used by the glob()
8279 function.

8280 The structure type glob_t shall contain at least the following members:

8281 size_t gl_pathc Count of paths matched by pattern.
8282 char **gl_pathv Pointer to a list of matched pathnames. |
8283 size_t gl_offs Slots to reserve at the beginning of gl_pathv. |

8284 The following constants shall be provided as values for the flags argument:

8285 GLOB_APPEND Append generated pathnames to those previously obtained. |

8286 GLOB_DOOFFS Specify how many null pointers to add to the beginning of pglob-
8287 >gl_pathv.

8288 GLOB_ERR Cause glob() to return on error.

8289 GLOB_MARK Each pathname that is a directory that matches pattern has a slash |
8290 appended.

8291 GLOB_NOCHECK If pattern does not match any pathname, then return a list consisting of |
8292 only pattern. |

8293 GLOB_NOESCAPE Disable backslash escaping.

8294 GLOB_NOSORT Do not sort the pathnames returned. |

8295 The following constants shall be defined as error return values:

8296 GLOB_ABORTED The scan was stopped because GLOB_ERR was set or (*errfunc)()
8297 returned non-zero.

8298 GLOB_NOMATCH The pattern does not match any existing pathname, and |
8299 GLOB_NOCHECK was not set in flags. |

8300 GLOB_NOSPACE An attempt to allocate memory failed.

8301 OB XSI GLOB_NOSYS Reserved.

8302 The following shall be declared as functions and may also be defined as macros. Function |
8303 prototypes shall be provided. |

8304 int glob(const char *restrict, int, int (*restrict)(const char *, int),
8305 glob_t *restrict);
8306 void globfree (glob_t *);

8307 The implementation may define additional macros or constants using names beginning with
8308 GLOB_.

234 Technical Standard (2001) (Draft April 13, 2001)

Headers <glob.h>

8309 APPLICATION USAGE
8310 None.

8311 RATIONALE
8312 None.

8313 FUTURE DIRECTIONS
8314 None.

8315 SEE ALSO
8316 The System Interfaces volume of IEEE Std 1003.1-200x, glob(), the Shell and Utilities volume of
8317 IEEE Std 1003.1-200x

8318 CHANGE HISTORY
8319 First released in Issue 4. Derived from the ISO POSIX-2 standard.

8320 Issue 6
8321 The restrict keyword is added to the prototype for glob().

8322 The constant GLOB_NOSYS is marked obsolescent.

Base Definitions, Issue 6 235

<grp.h> Headers

8323 NAME
8324 grp.h — group structure

8325 SYNOPSIS
8326 #include <grp.h>

8327 DESCRIPTION
8328 The <grp.h> header shall declare the structure group which shall include the following
8329 members:

8330 char *gr_name The name of the group.
8331 gid_t gr_gid Numerical group ID.
8332 char **gr_mem Pointer to a null-terminated array of character
8333 pointers to member names.

8334 The gid_t type shall be defined as described in <sys/types.h>.

8335 The following shall be declared as functions and may also be defined as macros. Function |
8336 prototypes shall be provided. |

8337 struct group *getgrgid(gid_t);
8338 struct group *getgrnam(const char *);
8339 TSF int getgrgid_r(gid_t, struct group *, char *,
8340 size_t, struct group **);
8341 int getgrnam_r(const char *, struct group *, char *,
8342 size_t , struct group **);
8343 XSI struct group *getgrent(void);
8344 void endgrent(void);
8345 void setgrent(void);
8346

8347 APPLICATION USAGE
8348 None.

8349 RATIONALE
8350 None.

8351 FUTURE DIRECTIONS
8352 None.

8353 SEE ALSO
8354 <sys/types.h>, the System Interfaces volume of IEEE Std 1003.1-200x, endgrent(), getgrgid(),
8355 getgrnam()

8356 CHANGE HISTORY
8357 First released in Issue 1.

8358 Issue 5
8359 The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

8360 Issue 6
8361 The following new requirements on POSIX implementations derive from alignment with the
8362 Single UNIX Specification:

8363 • The definition of gid_t is mandated.

8364 • The getgrgid_r() and getgrnam_r() functions are marked as part of the Thread-Safe Functions
8365 option.

236 Technical Standard (2001) (Draft April 13, 2001)

Headers <iconv.h>

8366 NAME
8367 iconv.h — codeset conversion facility

8368 SYNOPSIS
8369 XSI #include <iconv.h>
8370

8371 DESCRIPTION
8372 The <iconv.h> header shall define the following type:

8373 iconv_t Identifies the conversion from one codeset to another.

8374 The following shall be declared as functions and may also be defined as macros. Function |
8375 prototypes shall be provided. |

8376 iconv_t iconv_open(const char *, const char *);
8377 size_t iconv(iconv_t, char **restrict, size_t *restrict, char **restrict,
8378 size_t *restrict);
8379 int iconv_close(iconv_t);

8380 APPLICATION USAGE
8381 None.

8382 RATIONALE
8383 None.

8384 FUTURE DIRECTIONS
8385 None.

8386 SEE ALSO
8387 The System Interfaces volume of IEEE Std 1003.1-200x, iconv(), iconv_close (), iconv_open ()

8388 CHANGE HISTORY
8389 First released in Issue 4.

8390 Issue 6
8391 The restrict keyword is added to the prototype for iconv().

Base Definitions, Issue 6 237

<inttypes.h> Headers

8392 NAME
8393 inttypes.h — fixed size integer types

8394 SYNOPSIS
8395 #include <inttypes.h>

8396 DESCRIPTION
8397 CX Some of the functionality described on this reference page extends the ISO C standard.
8398 Applications shall define the appropriate feature test macro (see the System Interfaces volume of
8399 IEEE Std 1003.1-200x, Section 2.2, The Compilation Environment) to enable the visibility of these
8400 symbols in this header.

8401 The <inttypes.h> header shall include the <stdint.h> header.

8402 The <inttypes.h> header shall include a definition of at least the following type:

8403 imaxdiv_t Structure type that is the type of the value returned by the imaxdiv () function.

8404 The following macros shall be defined. Each expands to a character string literal containing a
8405 conversion specifier, possibly modified by a length modifier, suitable for use within the format
8406 argument of a formatted input/output function when converting the corresponding integer
8407 type. These macros have the general form of PRI (character string literals for the fprintf () and
8408 fwprintf() family of functions) or SCN (character string literals for the fscanf() and fwscanf()
8409 family of functions), followed by the conversion specifier, followed by a name corresponding to
8410 a similar type name in <stdint.h>. In these names, N represents the width of the type as
8411 described in <stdint.h>. For example, PRIdFAST32 can be used in a format string to print the
8412 value of an integer of type int_fast32_t.

8413 The fprintf () macros for signed integers are:

8414 PRIdN PRIdLEASTN PRIdFASTN PRIdMAX PRIdPTR
8415 PRIiN PRIiLEASTN PRIiFASTN PRIiMAX PRIiPTR

8416 The fprintf () macros for unsigned integers are:

8417 PRIoN PRIoLEASTN PRIoFASTN PRIoMAX PRIoPTR
8418 PRIuN PRIuLEASTN PRIuFASTN PRIuMAX PRIuPTR
8419 PRIxN PRIxLEASTN PRIxFASTN PRIxMAX PRIxPTR
8420 PRIXN PRIXLEASTN PRIXFASTN PRIXMAX PRIXPTR

8421 The fscanf() macros for signed integers are:

8422 SCNdN SCNdLEASTN SCNdFASTN SCNdMAX SCNdPTR
8423 SCNiN SCNiLEASTN SCNiFASTN SCNiMAX SCNiPTR

8424 The fscanf() macros for unsigned integers are:

8425 SCNoN SCNoLEASTN SCNoFASTN SCNoMAX SCNoPTR
8426 SCNuN SCNuLEASTN SCNuFASTN SCNuMAX SCNuPTR
8427 SCNxN SCNxLEASTN SCNxFASTN SCNxMAX SCNxPTR

8428 For each type that the implementation provides in <stdint.h>, the corresponding fprintf ()
8429 macros shall be defined and the corresponding fscanf() macros shall be defined unless the
8430 implementation does not have a suitable fscanf length modifier for the type.

8431 The following shall be declared as functions and may also be defined as macros. Function |
8432 prototypes shall be provided. |

8433 intmax_t imaxabs(intmax_t);
8434 imaxdiv_t imaxdiv(intmax_t, intmax_t);
8435 intmax_t strtoimax(const char *restrict, char **restrict, int);

238 Technical Standard (2001) (Draft April 13, 2001)

Headers <inttypes.h>

8436 uintmax_t strtoumax(const char *restrict, char **restrict, int);
8437 intmax_t wcstoimax(const wchar_t *restrict, wchar_t **restrict, int);
8438 uintmax_t wcstoumax(const wchar_t *restrict, wchar_t **restrict, int);

8439 EXAMPLES
8440 #include <inttypes.h>
8441 #include <wchar.h>
8442 int main(void)
8443 {
8444 uintmax_ t i = UINTMAX_MAX; // This type always exists.
8445 wprintf(L"The largest integer value is %020"
8446 PRIxMAX "\n", i);
8447 return 0;
8448 }

8449 APPLICATION USAGE
8450 None.

8451 RATIONALE
8452 The ISO/IEC 9899: 1990 standard specifies that the language should support four signed and
8453 unsigned integer data types—char, short, int, and long—but places very little requirement on
8454 their size other than that int and short be at least 16 bits and long be at least as long as int and
8455 not smaller than 32 bits. For 16-bit systems, most implementations assign 8, 16, 16, and 32 bits to
8456 char, short, int, and long, respectively. For 32-bit systems, the common practice is to assign 8, 16,
8457 32, and 32 bits to these types. This difference in int size can create some problems for users who
8458 migrate from one system to another which assigns different sizes to integer types, because the
8459 ISO C standard integer promotion rule can produce silent changes unexpectedly. The need for
8460 defining an extended integer type increased with the introduction of 64-bit systems.

8461 The purpose of <inttypes.h> is to provide a set of integer types whose definitions are consistent
8462 across machines and independent of operating systems and other implementation
8463 idiosyncrasies. It defines, via typedef, integer types of various sizes. Implementations are free to
8464 typedef them as ISO C standard integer types or extensions that they support. Consistent use of
8465 this header will greatly increase the portability of a users program across platforms.

8466 FUTURE DIRECTIONS
8467 Macro names beginning with PRI or SCN followed by any lowercase letter or ’X’ may be added
8468 to the macros defined in the <inttypes.h> header.

8469 SEE ALSO
8470 The System Interfaces volume of IEEE Std 1003.1-200x, imaxdiv ()

8471 CHANGE HISTORY
8472 First released in Issue 5.

8473 Issue 6
8474 The Open Group Base Resolution bwg97-006 is applied.

8475 This reference page is updated to align with the ISO/IEC 9899: 1999 standard.

Base Definitions, Issue 6 239

<iso646.h> Headers

8476 NAME
8477 iso646.h — alternative spellings

8478 SYNOPSIS
8479 #include <iso646.h>

8480 DESCRIPTION
8481 CX The functionality described on this reference page is aligned with the ISO C standard. Any
8482 conflict between the requirements described here and the ISO C standard is unintentional. This
8483 volume of IEEE Std 1003.1-200x defers to the ISO C standard.

8484 The <iso646.h> header shall define the following eleven macros (on the left) that expand to the
8485 corresponding tokens (on the right):

8486 and &&

8487 and_eq &=

8488 bitand &

8489 bitor |

8490 compl ~

8491 not !

8492 not_eq !=

8493 or ||

8494 or_eq |=

8495 xor ^

8496 xor_eq ^=

8497 APPLICATION USAGE
8498 None.

8499 RATIONALE
8500 None.

8501 FUTURE DIRECTIONS
8502 None.

8503 SEE ALSO
8504 None.

8505 CHANGE HISTORY
8506 First released in Issue 5. Derived from ISO/IEC 9899: 1990/Amendment 1: 1995 (E).

240 Technical Standard (2001) (Draft April 13, 2001)

Headers <langinfo.h>

8507 NAME
8508 langinfo.h — language information constants

8509 SYNOPSIS
8510 XSI #include <langinfo.h>
8511

8512 DESCRIPTION
8513 The <langinfo.h> header contains the constants used to identify items of langinfo data (see
8514 nl_langinfo ()). The type of the constant, nl_item, shall be defined as described in <nl_types.h>.

8515 The following constants shall be defined. The entries under Category indicate in which
8516 setlocale () category each item is defined.
8517 __
8518 Constant Category Meaning__LL LL LL LL

8519 CODESET LC_CTYPE Codeset name.
8520 D_T_FMT LC_TIME String for formatting date and time.
8521 D_FMT LC_TIME Date format string.
8522 T_FMT LC_TIME Time format string.
8523 T_FMT_AMPM LC_TIME a.m. or p.m. time format string.
8524 AM_STR LC_TIME Ante Meridian affix.
8525 PM_STR LC_TIME Post Meridian affix.
8526 DAY_1 LC_TIME Name of the first day of the week (for example, Sunday).
8527 DAY_2 LC_TIME Name of the second day of the week (for example, Monday).
8528 DAY_3 LC_TIME Name of the third day of the week (for example, Tuesday).
8529 DAY_4 LC_TIME Name of the fourth day of the week
8530 (for example, Wednesday).
8531 DAY_5 LC_TIME Name of the fifth day of the week (for example, Thursday).
8532 DAY_6 LC_TIME Name of the sixth day of the week (for example, Friday).
8533 DAY_7 LC_TIME Name of the seventh day of the week
8534 (for example, Saturday).
8535 ABDAY_1 LC_TIME Abbreviated name of the first day of the week.
8536 ABDAY_2 LC_TIME Abbreviated name of the second day of the week.
8537 ABDAY_3 LC_TIME Abbreviated name of the third day of the week.
8538 ABDAY_4 LC_TIME Abbreviated name of the fourth day of the week.
8539 ABDAY_5 LC_TIME Abbreviated name of the fifth day of the week.
8540 ABDAY_6 LC_TIME Abbreviated name of the sixth day of the week.
8541 ABDAY_7 LC_TIME Abbreviated name of the seventh day of the week.
8542 MON_1 LC_TIME Name of the first month of the year.
8543 MON_2 LC_TIME Name of the second month.
8544 MON_3 LC_TIME Name of the third month.
8545 MON_4 LC_TIME Name of the fourth month.
8546 MON_5 LC_TIME Name of the fifth month.
8547 MON_6 LC_TIME Name of the sixth month.
8548 MON_7 LC_TIME Name of the seventh month.
8549 MON_8 LC_TIME Name of the eighth month.
8550 MON_9 LC_TIME Name of the ninth month.
8551 MON_10 LC_TIME Name of the tenth month.
8552 MON_11 LC_TIME Name of the eleventh month.
8553 MON_12 LC_TIME Name of the twelfth month.__L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Base Definitions, Issue 6 241

<langinfo.h> Headers

8554 __
8555 Constant Category Meaning__LL LL LL LL

8556 ABMON_1 LC_TIME Abbreviated name of the first month.
8557 ABMON_2 LC_TIME Abbreviated name of the second month.
8558 ABMON_3 LC_TIME Abbreviated name of the third month.
8559 ABMON_4 LC_TIME Abbreviated name of the fourth month.
8560 ABMON_5 LC_TIME Abbreviated name of the fifth month.
8561 ABMON_6 LC_TIME Abbreviated name of the sixth month.
8562 ABMON_7 LC_TIME Abbreviated name of the seventh month.
8563 ABMON_8 LC_TIME Abbreviated name of the eighth month.
8564 ABMON_9 LC_TIME Abbreviated name of the ninth month.
8565 ABMON_10 LC_TIME Abbreviated name of the tenth month.
8566 ABMON_11 LC_TIME Abbreviated name of the eleventh month.
8567 ABMON_12 LC_TIME Abbreviated name of the twelfth month.
8568 ERA LC_TIME Era description segments.
8569 ERA_D_FMT LC_TIME Era date format string.
8570 ERA_D_T_FMT LC_TIME Era date and time format string.
8571 ERA_T_FMT LC_TIME Era time format string.
8572 ALT_DIGITS LC_TIME Alternative symbols for digits.
8573 RADIXCHAR LC_NUMERIC Radix character.
8574 THOUSEP LC_NUMERIC Separator for thousands.
8575 YESEXPR LC_MESSAGES Affirmative response expression.
8576 NOEXPR LC_MESSAGES Negative response expression.
8577 Currency symbol, preceded by ’ −’ if the symbol should
8578 appear before the value, ’+’ if the symbol should appear
8579 after the value, or ’.’ if the symbol should replace the
8580 radix character.

CRNCYSTR LC_MONETARY

__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

8581 If the locale’s values for p_cs_precedes and n_cs_precedes do not match, the value of |
8582 nl_langinfo(CRNCYSTR) is unspecified. |

8583 The following shall be declared as a function and may also be defined as a macro. A function |
8584 prototype shall be provided. |

8585 char *nl_langinfo(nl_item);

8586 Inclusion of the <langinfo.h> header may also make visible all symbols from <nl_types.h>.

8587 APPLICATION USAGE
8588 Wherever possible, users are advised to use functions compatible with those in the ISO C
8589 standard to access items of langinfo data. In particular, the strftime() function should be used to
8590 access date and time information defined in category LC_TIME. The localeconv () function
8591 should be used to access information corresponding to RADIXCHAR, THOUSEP, and
8592 CRNCYSTR.

8593 RATIONALE
8594 None.

8595 FUTURE DIRECTIONS
8596 None.

8597 SEE ALSO
8598 The System Interfaces volume of IEEE Std 1003.1-200x, nl_langinfo (), localeconv (), strfmon(),
8599 strftime(), Chapter 7 (on page 119)

242 Technical Standard (2001) (Draft April 13, 2001)

Headers <langinfo.h>

8600 CHANGE HISTORY
8601 First released in Issue 2.

8602 Issue 5
8603 The constants YESSTR and NOSTR are marked LEGACY.

8604 Issue 6
8605 The constants YESSTR and NOSTR are removed.

Base Definitions, Issue 6 243

<libgen.h> Headers

8606 NAME
8607 libgen.h — definitions for pattern matching functions

8608 SYNOPSIS
8609 XSI #include <libgen.h>
8610

8611 DESCRIPTION
8612 The following shall be declared as functions and may also be defined as macros. Function |
8613 prototypes shall be provided. |

8614 char *basename(char *);
8615 char *dirname(char *);

8616 APPLICATION USAGE
8617 None.

8618 RATIONALE
8619 None.

8620 FUTURE DIRECTIONS
8621 None.

8622 SEE ALSO
8623 The System Interfaces volume of IEEE Std 1003.1-200x, basename(), dirname()

8624 CHANGE HISTORY
8625 First released in Issue 4, Version 2.

8626 Issue 5
8627 The function prototypes for basename() and dirname() are changed to indicate that the first
8628 argument is of type char * rather than const char *.

8629 Issue 6
8630 The _ _loc1 symbol and the regcmp() and regex() functions are removed.

244 Technical Standard (2001) (Draft April 13, 2001)

Headers <limits.h>

8631 NAME
8632 limits.h — implementation-defined constants

8633 SYNOPSIS
8634 #include <limits.h>

8635 DESCRIPTION
8636 CX Some of the functionality described on this reference page extends the ISO C standard.
8637 Applications shall define the appropriate feature test macro (see the System Interfaces volume of
8638 IEEE Std 1003.1-200x, Section 2.2, The Compilation Environment) to enable the visibility of these
8639 symbols in this header.

8640 CX Many of the symbols listed here are not defined by the ISO/IEC 9899: 1999 standard. Such
8641 symbols are not shown as CX shaded.

8642 The <limits.h> header shall define various symbolic names. Different categories of names are
8643 described below.

8644 The names represent various limits on resources that the implementation imposes on
8645 applications.

8646 Implementations may choose any appropriate value for each limit, provided it is not more
8647 restrictive than the Minimum Acceptable Values listed below. Symbolic constant names
8648 beginning with _POSIX may be found in <unistd.h>.

8649 Applications should not assume any particular value for a limit. To achieve maximum
8650 portability, an application should not require more resource than the Minimum Acceptable
8651 Value quantity. However, an application wishing to avail itself of the full amount of a resource
8652 available on an implementation may make use of the value given in <limits.h> on that
8653 particular implementation, by using the symbolic names listed below. It should be noted,
8654 however, that many of the listed limits are not invariant, and at runtime, the value of the limit
8655 may differ from those given in this header, for the following reasons:

8656 • The limit is pathname-dependent. |

8657 • The limit differs between the compile and runtime machines.

8658 For these reasons, an application may use the fpathconf (), pathconf (), and sysconf() functions to
8659 determine the actual value of a limit at runtime.

8660 The items in the list ending in _MIN give the most negative values that the mathematical types
8661 are guaranteed to be capable of representing. Numbers of a more negative value may be
8662 supported on some implementations, as indicated by the <limits.h> header on the
8663 implementation, but applications requiring such numbers are not guaranteed to be portable to
8664 all implementations. For positive constants ending in _MIN, this indicates the minimum
8665 acceptable value.

8666 The Minimum Acceptable Value symbol ’*’ indicates that there is no guaranteed value across
8667 all conforming implementations.

Base Definitions, Issue 6 245

<limits.h> Headers

8668 Runtime Invariant Values (Possibly Indeterminate)

8669 A definition of one of the symbolic names in the following list shall be omitted from <limits.h>
8670 on specific implementations where the corresponding value is equal to or greater than the stated |
8671 minimum, but is unspecified. |

8672 This indetermination might depend on the amount of available memory space on a specific
8673 instance of a specific implementation. The actual value supported by a specific instance shall be
8674 provided by the sysconf() function.

8675 AIO {AIO_LISTIO_MAX}
8676 Maximum number of I/O operations in a single list I/O call supported by the
8677 implementation.
8678 Minimum Acceptable Value: {_POSIX_AIO_LISTIO_MAX}

8679 AIO {AIO_MAX}
8680 Maximum number of outstanding asynchronous I/O operations supported by the
8681 implementation.
8682 Minimum Acceptable Value: {_POSIX_AIO_MAX}

8683 AIO {AIO_PRIO_DELTA_MAX}
8684 The maximum amount by which a process can decrease its asynchronous I/O priority level
8685 from its own scheduling priority.
8686 Minimum Acceptable Value: 0

8687 {ARG_MAX}
8688 Maximum length of argument to the exec functions including environment data.
8689 Minimum Acceptable Value: {_POSIX_ARG_MAX}

8690 XSI {ATEXIT_MAX}
8691 Maximum number of functions that may be registered with atexit().
8692 Minimum Acceptable Value: 32

8693 {CHILD_MAX}
8694 Maximum number of simultaneous processes per real user ID.
8695 Minimum Acceptable Value: {_POSIX_CHILD_MAX}

8696 TMR {DELAYTIMER_MAX}
8697 Maximum number of timer expiration overruns.
8698 Minimum Acceptable Value: {_POSIX_DELAYTIMER_MAX} |

8699 {HOST_NAME_MAX} |
8700 Maximum length of a host name (not including the terminating null) as returned from the |
8701 gethostname() function. |
8702 Minimum Acceptable Value: {_POSIX_HOST_NAME_MAX} |

8703 XSI {IOV_MAX}
8704 Maximum number of iovec structures that one process has available for use with readv() or
8705 writev().
8706 Minimum Acceptable Value: {_XOPEN_IOV_MAX}

8707 {LOGIN_NAME_MAX}
8708 Maximum length of a login name.
8709 Minimum Acceptable Value: {_POSIX_LOGIN_NAME_MAX}

8710 MSG {MQ_OPEN_MAX}
8711 The maximum number of open message queue descriptors a process may hold.
8712 Minimum Acceptable Value: {_POSIX_MQ_OPEN_MAX}

246 Technical Standard (2001) (Draft April 13, 2001)

Headers <limits.h>

8713 MSG {MQ_PRIO_MAX}
8714 The maximum number of message priorities supported by the implementation.
8715 Minimum Acceptable Value: {_POSIX_MQ_PRIO_MAX}

8716 {OPEN_MAX}
8717 Maximum number of files that one process can have open at any one time.
8718 Minimum Acceptable Value: {_POSIX_OPEN_MAX}

8719 {PAGESIZE}
8720 Size in bytes of a page.
8721 Minimum Acceptable Value: 1

8722 XSI {PAGE_SIZE}
8723 Equivalent to {PAGESIZE}. If either {PAGESIZE} or {PAGE_SIZE} is defined, the other is |
8724 defined with the same value.

8725 THR {PTHREAD_DESTRUCTOR_ITERATIONS}
8726 Maximum number of attempts made to destroy a thread’s thread-specific data values on
8727 thread exit.
8728 Minimum Acceptable Value: {_POSIX_THREAD_DESTRUCTOR_ITERATIONS}

8729 THR {PTHREAD_KEYS_MAX}
8730 Maximum number of data keys that can be created by a process.
8731 Minimum Acceptable Value: {_POSIX_THREAD_KEYS_MAX}

8732 THR {PTHREAD_STACK_MIN}
8733 Minimum size in bytes of thread stack storage.
8734 Minimum Acceptable Value: 0

8735 THR {PTHREAD_THREADS_MAX}
8736 Maximum number of threads that can be created per process.
8737 Minimum Acceptable Value: {_POSIX_THREAD_THREADS_MAX}

8738 {RE_DUP_MAX}
8739 The number of repeated occurrences of a BRE permitted by the regexec() and regcomp()
8740 functions when using the interval notation {\(m,n\}; see Section 9.3.6 (on page 170).
8741 Minimum Acceptable Value: {_POSIX2_RE_DUP_MAX}

8742 RTS {RTSIG_MAX}
8743 Maximum number of realtime signals reserved for application use in this implementation.
8744 Minimum Acceptable Value: {_POSIX_RTSIG_MAX}

8745 SEM {SEM_NSEMS_MAX}
8746 Maximum number of semaphores that a process may have.
8747 Minimum Acceptable Value: {_POSIX_SEM_NSEMS_MAX}

8748 SEM {SEM_VALUE_MAX}
8749 The maximum value a semaphore may have.
8750 Minimum Acceptable Value: {_POSIX_SEM_VALUE_MAX}

8751 RTS {SIGQUEUE_MAX}
8752 Maximum number of queued signals that a process may send and have pending at the
8753 receiver(s) at any time.
8754 Minimum Acceptable Value: {_POSIX_SIGQUEUE_MAX}

8755 SS|TSP {SS_REPL_MAX}
8756 The maximum number of replenishment operations that may be simultaneously pending
8757 for a particular sporadic server scheduler.
8758 Minimum Acceptable Value: {_POSIX_SS_REPL_MAX}

Base Definitions, Issue 6 247

<limits.h> Headers

8759 {STREAM_MAX}
8760 The number of streams that one process can have open at one time. If defined, it has the
8761 same value as {FOPEN_MAX} (see <stdio.h>).
8762 Minimum Acceptable Value: {_POSIX_STREAM_MAX}

8763 {SYMLOOP_MAX}
8764 Maximum number of symbolic links that can be reliably traversed in the resolution of a |
8765 pathname in the absence of a loop. |
8766 Minimum Acceptable Value: {_POSIX_SYMLOOP_MAX}

8767 TMR {TIMER_MAX}
8768 Maximum number of timers per-process supported by the implementation.
8769 Minimum Acceptable Value: {_POSIX_TIMER_MAX}

8770 TRC {TRACE_EVENT_NAME_MAX}
8771 Maximum length of the trace event name.
8772 Minimum Acceptable Value: {_POSIX_TRACE_EVENT_NAME_MAX}

8773 TRC {TRACE_NAME_MAX}
8774 Maximum length of the trace generation version string or of the trace stream name.
8775 Minimum Acceptable Value: {_POSIX_TRACE_NAME_MAX}

8776 TRC {TRACE_SYS_MAX}
8777 Maximum number of trace streams that may simultaneously exist in the system.
8778 Minimum Acceptable Value: {_POSIX_TRACE_SYS_MAX}

8779 TRC {TRACE_USER_EVENT_MAX}
8780 Maximum number of user trace event type identifiers that may simultaneously exist in a
8781 traced process, including the predefined user trace event
8782 POSIX_TRACE_UNNAMED_USER_EVENT.
8783 Minimum Acceptable Value: {_POSIX_TRACE_USER_EVENT_MAX}

8784 {TTY_NAME_MAX}
8785 Maximum length of terminal device name.
8786 Minimum Acceptable Value: {_POSIX_TTY_NAME_MAX}

8787 {TZNAME_MAX}
8788 Maximum number of bytes supported for the name of a timezone (not of the TZ variable).
8789 Minimum Acceptable Value: {_POSIX_TZNAME_MAX}

8790 Note: The length given by {TZNAME_MAX} does not include the quoting characters mentioned in
8791 Section 8.3 (on page 161).

8792 Pathname Variable Values |

8793 The values in the following list may be constants within an implementation or may vary from |
8794 one pathname to another. For example, file systems or directories may have different |
8795 characteristics.

8796 A definition of one of the values shall be omitted from the <limits.h> header on specific
8797 implementations where the corresponding value is equal to or greater than the stated minimum,
8798 but where the value can vary depending on the file to which it is applied. The actual value |
8799 supported for a specific pathname shall be provided by the pathconf () function. |

8800 {FILESIZEBITS}
8801 Minimum number of bits needed to represent, as a signed integer value, the maximum size
8802 of a regular file allowed in the specified directory.
8803 Minimum Acceptable Value: 32

248 Technical Standard (2001) (Draft April 13, 2001)

Headers <limits.h>

8804 {LINK_MAX}
8805 Maximum number of links to a single file.
8806 Minimum Acceptable Value: {_POSIX_LINK_MAX}

8807 {MAX_CANON}
8808 Maximum number of bytes in a terminal canonical input line.
8809 Minimum Acceptable Value: {_POSIX_MAX_CANON}

8810 {MAX_INPUT}
8811 Minimum number of bytes for which space is available in a terminal input queue; therefore, |
8812 the maximum number of bytes a conforming application may require to be typed as input |
8813 before reading them.
8814 Minimum Acceptable Value: {_POSIX_MAX_INPUT}

8815 {NAME_MAX}
8816 Maximum number of bytes in a filename (not including terminating null).
8817 Minimum Acceptable Value: {_POSIX_NAME_MAX}
8818 XSI Minimum Acceptable Value: {_XOPEN_NAME_MAX}

8819 {PATH_MAX}
8820 Maximum number of bytes in a pathname, including the terminating null character. |
8821 Minimum Acceptable Value: {_POSIX_PATH_MAX}
8822 XSI Minimum Acceptable Value: {_XOPEN_PATH_MAX}

8823 {PIPE_BUF}
8824 Maximum number of bytes that is guaranteed to be atomic when writing to a pipe.
8825 Minimum Acceptable Value: {_POSIX_PIPE_BUF}

8826 ADV {POSIX_ALLOC_SIZE_MIN}
8827 Minimum number of bytes of storage actually allocated for any portion of a file.
8828 Minimum Acceptable Value: Not specified.

8829 ADV {POSIX_REC_INCR_XFER_SIZE}
8830 Recommended increment for file transfer sizes between the
8831 {POSIX_REC_MIN_XFER_SIZE} and {POSIX_REC_MAX_XFER_SIZE} values.
8832 Minimum Acceptable Value: Not specified.

8833 ADV {POSIX_REC_MAX_XFER_SIZE}
8834 Maximum recommended file transfer size.
8835 Minimum Acceptable Value: Not specified.

8836 ADV {POSIX_REC_MIN_XFER_SIZE}
8837 Minimum recommended file transfer size.
8838 Minimum Acceptable Value: Not specified.

8839 ADV {POSIX_REC_XFER_ALIGN}
8840 Recommended file transfer buffer alignment.
8841 Minimum Acceptable Value: Not specified.

8842 {SYMLINK_MAX}
8843 Maximum number of bytes in a symbolic link.
8844 Minimum Acceptable Value: {_POSIX_SYMLINK_MAX}

Base Definitions, Issue 6 249

<limits.h> Headers

8845 Runtime Increasable Values

8846 The magnitude limitations in the following list shall be fixed by specific implementations. An
8847 application should assume that the value supplied by <limits.h> in a specific implementation is
8848 the minimum that pertains whenever the application is run under that implementation. A
8849 specific instance of a specific implementation may increase the value relative to that supplied by
8850 <limits.h> for that implementation. The actual value supported by a specific instance shall be
8851 provided by the sysconf() function.

8852 {BC_BASE_MAX}
8853 Maximum obase values allowed by the bc utility.
8854 Minimum Acceptable Value: {_POSIX2_BC_BASE_MAX}

8855 {BC_DIM_MAX}
8856 Maximum number of elements permitted in an array by the bc utility.
8857 Minimum Acceptable Value: {_POSIX2_BC_DIM_MAX}

8858 {BC_SCALE_MAX}
8859 Maximum scale value allowed by the bc utility.
8860 Minimum Acceptable Value: {_POSIX2_BC_SCALE_MAX}

8861 {BC_STRING_MAX}
8862 Maximum length of a string constant accepted by the bc utility.
8863 Minimum Acceptable Value: {_POSIX2_BC_STRING_MAX}

8864 {CHARCLASS_NAME_MAX}
8865 Maximum number of bytes in a character class name.
8866 Minimum Acceptable Value: {_POSIX2_CHARCLASS_NAME_MAX}

8867 {COLL_WEIGHTS_MAX}
8868 Maximum number of weights that can be assigned to an entry of the LC_COLLATE order
8869 keyword in the locale definition file; see Chapter 7 (on page 119).
8870 Minimum Acceptable Value: {_POSIX2_COLL_WEIGHTS_MAX}

8871 {EXPR_NEST_MAX}
8872 Maximum number of expressions that can be nested within parentheses by the expr utility.
8873 Minimum Acceptable Value: {_POSIX2_EXPR_NEST_MAX}

8874 {LINE_MAX}
8875 Unless otherwise noted, the maximum length, in bytes, of a utility’s input line (either
8876 standard input or another file), when the utility is described as processing text files. The
8877 length includes room for the trailing newline.
8878 Minimum Acceptable Value: {_POSIX2_LINE_MAX}

8879 {NGROUPS_MAX}
8880 Maximum number of simultaneous supplementary group IDs per process.
8881 Minimum Acceptable Value: {_POSIX_NGROUPS_MAX}

8882 {RE_DUP_MAX}
8883 Maximum number of repeated occurrences of a regular expression permitted when using
8884 the interval notation \{m,n\}; see Chapter 9 (on page 165).
8885 Minimum Acceptable Value: {_POSIX2_RE_DUP_MAX}

250 Technical Standard (2001) (Draft April 13, 2001)

Headers <limits.h>

8886 Maximum Values

8887 TMR The symbolic constants in the following list shall be defined in <limits.h> with the values
8888 shown. These are symbolic names for the most restrictive value for certain features on an
8889 implementation supporting the Timers option. A conforming implementation shall provide |
8890 values no larger than these values. A conforming application must not require a smaller value |
8891 for correct operation.

8892 TMR {_POSIX_CLOCKRES_MIN}
8893 The resolution of the CLOCK_REALTIME clock, in nanoseconds.
8894 Value: 20 000 000

8895 MON If the Monotonic Clock option is supported, the resolution of the CLOCK_MONOTONIC
8896 clock, in nanoseconds, is represented by {_POSIX_CLOCKRES_MIN}.

8897 Minimum Values

8898 The symbolic constants in the following list shall be defined in <limits.h> with the values
8899 shown. These are symbolic names for the most restrictive value for certain features on an
8900 implementation conforming to this volume of IEEE Std 1003.1-200x. Related symbolic constants
8901 are defined elsewhere in this volume of IEEE Std 1003.1-200x which reflect the actual
8902 implementation and which need not be as restrictive. A conforming implementation shall
8903 provide values at least this large. A strictly conforming application must not require a larger
8904 value for correct operation.

8905 AIO {_POSIX_AIO_LISTIO_MAX}
8906 The number of I/O operations that can be specified in a list I/O call.
8907 Value: 2

8908 AIO {_POSIX_AIO_MAX}
8909 The number of outstanding asynchronous I/O operations.
8910 Value: 1

8911 {_POSIX_ARG_MAX}
8912 Maximum length of argument to the exec functions including environment data.
8913 Value: 4 096

8914 {_POSIX_CHILD_MAX}
8915 Maximum number of simultaneous processes per real user ID.
8916 Value: 6

8917 TMR {_POSIX_DELAYTIMER_MAX}
8918 The number of timer expiration overruns.
8919 Value: 32 |

8920 {_POSIX_HOST_NAME_MAX} |
8921 Maximum length of a host name (not including the terminating null) as returned from the |
8922 gethostname() function. |
8923 Value: 255 |

8924 {_POSIX_LINK_MAX}
8925 Maximum number of links to a single file.
8926 Value: 8

8927 {_POSIX_LOGIN_NAME_MAX}
8928 The size of the storage required for a login name, in bytes, including the terminating null.
8929 Value: 9

Base Definitions, Issue 6 251

<limits.h> Headers

8930 {_POSIX_MAX_CANON}
8931 Maximum number of bytes in a terminal canonical input queue.
8932 Value: 255

8933 {_POSIX_MAX_INPUT}
8934 Maximum number of bytes allowed in a terminal input queue.
8935 Value: 255

8936 MSG {_POSIX_MQ_OPEN_MAX}
8937 The number of message queues that can be open for a single process.
8938 Value: 8

8939 MSG {_POSIX_MQ_PRIO_MAX}
8940 The maximum number of message priorities supported by the implementation.
8941 Value: 32

8942 {_POSIX_NAME_MAX}
8943 Maximum number of bytes in a filename (not including terminating null).
8944 Value: 14

8945 {_POSIX_NGROUPS_MAX}
8946 Maximum number of simultaneous supplementary group IDs per process.
8947 Value: 8

8948 {_POSIX_OPEN_MAX}
8949 Maximum number of files that one process can have open at any one time.
8950 Value: 20

8951 {_POSIX_PATH_MAX}
8952 Maximum number of bytes in a pathname. |
8953 Value: 256

8954 {_POSIX_PIPE_BUF}
8955 Maximum number of bytes that is guaranteed to be atomic when writing to a pipe.
8956 Value: 512

8957 {_POSIX_RE_DUP_MAX}
8958 The number of repeated occurrences of a BRE permitted by the regexec() and regcomp()
8959 functions when using the interval notation {\(m,n\}; see Section 9.3.6 (on page 170).
8960 Value: 255

8961 RTS {_POSIX_RTSIG_MAX}
8962 The number of realtime signal numbers reserved for application use.
8963 Value: 8

8964 SEM {_POSIX_SEM_NSEMS_MAX}
8965 The number of semaphores that a process may have.
8966 Value: 256

8967 SEM {_POSIX_SEM_VALUE_MAX}
8968 The maximum value a semaphore may have.
8969 Value: 32 767

8970 RTS {_POSIX_SIGQUEUE_MAX}
8971 The number of queued signals that a process may send and have pending at the receiver(s)
8972 at any time.
8973 Value: 32

252 Technical Standard (2001) (Draft April 13, 2001)

Headers <limits.h>

8974 {_POSIX_SSIZE_MAX}
8975 The value that can be stored in an object of type ssize_t.
8976 Value: 32 767

8977 {_POSIX_STREAM_MAX}
8978 The number of streams that one process can have open at one time.
8979 Value: 8

8980 SS|TSP {_POSIX_SS_REPL_MAX}
8981 The number of replenishment operations that may be simultaneously pending for a
8982 particular sporadic server scheduler.
8983 Value: 4

8984 {_POSIX_SYMLINK_MAX}
8985 The number of bytes in a symbolic link.
8986 Value: 255

8987 {_POSIX_SYMLOOP_MAX}
8988 The number of symbolic links that can be traversed in the resolution of a pathname in the |
8989 absence of a loop. |
8990 Value: 8

8991 THR {_POSIX_THREAD_DESTRUCTOR_ITERATIONS}
8992 The number of attempts made to destroy a thread’s thread-specific data values on thread
8993 exit.
8994 Value: 4

8995 THR {_POSIX_THREAD_KEYS_MAX}
8996 The number of data keys per process.
8997 Value: 128

8998 THR {_POSIX_THREAD_THREADS_MAX}
8999 The number of threads per process.
9000 Value: 64

9001 TMR {_POSIX_TIMER_MAX}
9002 The per process number of timers.
9003 Value: 32

9004 TRC {_POSIX_TRACE_EVENT_NAME_MAX}
9005 The length in bytes of a trace event name.
9006 Value: 30

9007 TRC {_POSIX_TRACE_NAME_MAX}
9008 The length in bytes of a trace generation version string or a trace stream name.
9009 Value: 8

9010 TRC {_POSIX_TRACE_SYS_MAX}
9011 The number of trace streams that may simultaneously exist in the system.
9012 Value: 8

9013 TRC {_POSIX_TRACE_USER_EVENT_MAX}
9014 The number of user trace event type identifiers that may simultaneously exist in a traced
9015 process, including the predefined user trace event
9016 POSIX_TRACE_UNNAMED_USER_EVENT.
9017 Value: 32

9018 {_POSIX_TTY_NAME_MAX}
9019 The size of the storage required for a terminal device name, in bytes, including the

Base Definitions, Issue 6 253

<limits.h> Headers

9020 terminating null.
9021 Value: 9

9022 {_POSIX_TZNAME_MAX}
9023 Maximum number of bytes supported for the name of a timezone (not of the TZ variable).
9024 Value: 6

9025 Note: The length given by {_POSIX_TZNAME_MAX} does not include the quoting characters
9026 mentioned in Section 8.3 (on page 161).

9027 {_POSIX2_BC_BASE_MAX}
9028 Maximum obase values allowed by the bc utility.
9029 Value: 99

9030 {_POSIX2_BC_DIM_MAX}
9031 Maximum number of elements permitted in an array by the bc utility.
9032 Value: 2 048

9033 {_POSIX2_BC_SCALE_MAX}
9034 Maximum scale value allowed by the bc utility.
9035 Value: 99

9036 {_POSIX2_BC_STRING_MAX}
9037 Maximum length of a string constant accepted by the bc utility.
9038 Value: 1 000

9039 {_POSIX2_CHARCLASS_NAME_MAX}
9040 Maximum number of bytes in a character class name.
9041 Value: 14

9042 {_POSIX2_COLL_WEIGHTS_MAX}
9043 Maximum number of weights that can be assigned to an entry of the LC_COLLATE order
9044 keyword in the locale definition file; see Chapter 7 (on page 119).
9045 Value: 2

9046 {_POSIX2_EXPR_NEST_MAX}
9047 Maximum number of expressions that can be nested within parentheses by the expr utility.
9048 Value: 32

9049 {_POSIX2_LINE_MAX}
9050 Unless otherwise noted, the maximum length, in bytes, of a utility’s input line (either
9051 standard input or another file), when the utility is described as processing text files. The
9052 length includes room for the trailing newline.
9053 Value: 2 048

9054 {_POSIX2_RE_DUP_MAX]
9055 Maximum number of repeated occurrences of a regular expression permitted when using
9056 the interval notation \{m,n\}; see Chapter 9 (on page 165).
9057 Value: 255

9058 XSI {_XOPEN_IOV_MAX}
9059 Maximum number of iovec structures that one process has available for use with readv() or
9060 writev().
9061 Value: 16

9062 XSI {_XOPEN_NAME_MAX}
9063 Maximum number of bytes in a filename (not including terminating null).
9064 Value: 255

254 Technical Standard (2001) (Draft April 13, 2001)

Headers <limits.h>

9065 XSI {_XOPEN_PATH_MAX}
9066 Maximum number of bytes in a pathname. |
9067 Value: 1 024

9068 Numerical Limits

9069 The values in the following lists shall be defined in <limits.h> and are constant expressions
9070 XSI suitable for use in #if preprocessing directives. Moreover, except for {CHAR_BIT}, {DBL_DIG},
9071 {DBL_MAX}, {FLT_DIG}, {FLT_MAX}, {LONG_BIT}, {WORD_BIT}, and {MB_LEN_MAX}, the
9072 symbolic names are defined as expressions of the correct type.

9073 If the value of an object of type char is treated as a signed integer when used in an expression,
9074 the value of {CHAR_MIN} is the same as that of {SCHAR_MIN} and the value of {CHAR_MAX}
9075 is the same as that of {SCHAR_MAX}. Otherwise, the value of {CHAR_MIN} is 0 and the value
9076 of {CHAR_MAX} is the same as that of {UCHAR_MAX}.

9077 {CHAR_BIT}
9078 Number of bits in a type char.
9079 CX Value: 8 |

9080 {CHAR_MAX}
9081 Maximum value of type char.
9082 Minimum Acceptable Value: {UCHAR_MAX} or {SCHAR_MAX}

9083 {INT_MAX}
9084 Maximum value of an int.
9085 Minimum Acceptable Value: 2 147 483 647

9086 XSI {LONG_BIT}
9087 Number of bits in a long.
9088 Minimum Acceptable Value: 32

9089 {LONG_MAX}
9090 Maximum value of a long.
9091 Minimum Acceptable Value: +2 147 483 647

9092 {MB_LEN_MAX}
9093 Maximum number of bytes in a character, for any supported locale.
9094 Minimum Acceptable Value: 1

9095 {SCHAR_MAX}
9096 Maximum value of type signed char.
9097 CX Value: +127 |

9098 {SHRT_MAX}
9099 Maximum value of type short.
9100 Minimum Acceptable Value: +32 767

9101 {SSIZE_MAX}
9102 Maximum value of an object of type ssize_t.
9103 Minimum Acceptable Value: {_POSIX_SSIZE_MAX}

9104 {UCHAR_MAX}
9105 Maximum value of type unsigned char.
9106 CX Value: 255 |

9107 {UINT_MAX}
9108 Maximum value of type unsigned.
9109 Minimum Acceptable Value: 4 294 967 295

Base Definitions, Issue 6 255

<limits.h> Headers

9110 {ULONG_MAX}
9111 Maximum value of type unsigned long.
9112 Minimum Acceptable Value: 4 294 967 295

9113 {USHRT_MAX}
9114 Maximum value for a type unsigned short.
9115 Minimum Acceptable Value: 65 535

9116 XSI {WORD_BIT}
9117 Number of bits in a word or type int.
9118 Minimum Acceptable Value: 16

9119 {CHAR_MIN}
9120 Minimum value of type char.
9121 Maximum Acceptable Value: {SCHAR_MIN} or 0

9122 {INT_MIN}
9123 Minimum value of type int.
9124 Maximum Acceptable Value: −2 147 483 647

9125 {LONG_MIN}
9126 Minimum value of type long.
9127 Maximum Acceptable Value: −2 147 483 647

9128 {SCHAR_MIN}
9129 Minimum value of type signed char.
9130 CX Value: −128 |

9131 {SHRT_MIN}
9132 Minimum value of type short.
9133 Maximum Acceptable Value: −32 767

9134 {LLONG_MIN}
9135 Minimum value of type long long.
9136 Maximum Acceptable Value: −9223372036854775807

9137 {LLONG_MAX}
9138 Maximum value of type long long.
9139 Minimum Acceptable Value: +9223372036854775807

9140 {ULLONG_MAX}
9141 Maximum value of type unsigned long long.
9142 Minimum Acceptable Value: 18446744073709551615

9143 Other Invariant Values

9144 XSI The following constants shall be defined on all implementations in <limits.h>:

9145 XSI {CHARCLASS_NAME_MAX}
9146 Maximum number of bytes in a character class name.
9147 Minimum Acceptable Value: 14

9148 XSI {NL_ARGMAX}
9149 Maximum value of digit in calls to the printf() and scanf() functions.
9150 Minimum Acceptable Value: 9

9151 XSI {NL_LANGMAX}
9152 Maximum number of bytes in a LANG name.
9153 Minimum Acceptable Value: 14

256 Technical Standard (2001) (Draft April 13, 2001)

Headers <limits.h>

9154 XSI {NL_MSGMAX}
9155 Maximum message number.
9156 Minimum Acceptable Value: 32 767

9157 XSI {NL_NMAX}
9158 Maximum number of bytes in an N-to-1 collation mapping.
9159 Minimum Acceptable Value: ’*’

9160 XSI {NL_SETMAX}
9161 Maximum set number.
9162 Minimum Acceptable Value: 255

9163 XSI {NL_TEXTMAX}
9164 Maximum number of bytes in a message string.
9165 Minimum Acceptable Value: {_POSIX2_LINE_MAX}

9166 XSI {NZERO}
9167 Default process priority.
9168 Minimum Acceptable Value: 20

9169 APPLICATION USAGE
9170 None.

9171 RATIONALE
9172 A request was made to reduce the value of {_POSIX_LINK_MAX} from the value of 8 specified
9173 for it in the POSIX.1-1990 standard to 2. The standard developers decided to deny this request
9174 for several reasons.

9175 • They wanted to avoid making any changes to the standard that could break conforming
9176 applications, and the requested change could have that effect.

9177 • The use of multiple hard links to a file cannot always be replaced with use of symbolic links.
9178 Symbolic links are semantically different from hard links in that they associate a pathname |
9179 with another pathname rather than a pathname with a file. This has implications for access |
9180 control, file permanence, and transparency.

9181 • The original standard developers had considered the issue of allowing for implementations
9182 that did not in general support hard links, and decided that this would reduce consensus on
9183 the standard.

9184 Systems that support historical versions of the development option of the ISO POSIX-2 standard
9185 retain the name {_POSIX2_RE_DUP_MAX} as an alias for {_POSIX_RE_DUP_MAX}.

9186 {PATH_MAX}
9187 IEEE PASC Interpretation 1003.1 #15 addressed the inconsistency in the standard with the |
9188 definition of pathname and the description of {PATH_MAX}, allowing application writers to |
9189 allocate either {PATH_MAX} or {PATH_MAX}+1 bytes. The inconsistency has been
9190 removed by correction to the {PATH_MAX} definition to include the null character. With
9191 this change, applications that previously allocated {PATH_MAX} bytes will continue to
9192 succeed.

9193 {SYMLINK_MAX}
9194 This symbol refers to space for data that is stored in the file system, as opposed to
9195 {PATH_MAX} which is the length of a name that can be passed to a function. In some
9196 existing implementations, the filenames pointed to by symbolic links are stored in the
9197 inodes of the links, so it is important that {SYMLINK_MAX} not be constrained to be as
9198 large as {PATH_MAX}.

Base Definitions, Issue 6 257

<limits.h> Headers

9199 FUTURE DIRECTIONS
9200 None.

9201 SEE ALSO
9202 The System Interfaces volume of IEEE Std 1003.1-200x, fpathconf (), pathconf (), sysconf()

9203 CHANGE HISTORY
9204 First released in Issue 1.

9205 Issue 5
9206 The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
9207 Threads Extension.

9208 {FILESIZEBITS} added for the Large File Summit extensions.

9209 The minimum acceptable values for {INT_MAX}, {INT_MIN}, and {UINT_MAX} are changed to
9210 make 32-bit values the minimum requirement.

9211 The entry is restructured to improve readability.

9212 Issue 6
9213 The Open Group Corrigendum U033/4 is applied. The wording is made clear for {CHAR_MIN},
9214 {INT_MIN}, {LONG_MIN}, {SCHAR_MIN}, and {SHRT_MIN} that these are maximum
9215 acceptable values.

9216 The following new requirements on POSIX implementations derive from alignment with the
9217 Single UNIX Specification:

9218 • The minimum value for {CHILD_MAX} is 25. This is a FIPS requirement.

9219 • The minimum value for {OPEN_MAX} is 20. This is a FIPS requirement.

9220 • The minimum value for {NGROUPS_MAX} is 8. This is also a FIPS requirement.

9221 Symbolic constants are added for {_POSIX_SYMLINK_MAX}, {_POSIX_SYMLOOP_MAX},
9222 {_POSIX_RE_DUP_MAX}, {RE_DUP_MAX}, {SYMLOOP_MAX}, and {SYMLINK_MAX}.

9223 The following values are added for alignment with IEEE Std 1003.1d-1999:

9224 {_POSIX_SS_REPL_MAX}
9225 {SS_REPL_MAX}
9226 {POSIX_ALLOC_SIZE_MIN}
9227 {POSIX_REC_INCR_XFER_SIZE}
9228 {POSIX_REC_MAX_XFER_SIZE}
9229 {POSIX_REC_MIN_XFER_SIZE}
9230 {POSIX_REC_XFER_ALIGN}

9231 Reference to CLOCK_MONOTONIC is added in the description of {_POSIX_CLOCKRES_MIN}
9232 for alignment with IEEE Std 1003.1j-2000.

9233 The constants {LLONG_MIN}, {LLONG_MAX}, and {ULLONG_MAX} are added for alignment
9234 with the ISO/IEC 9899: 1999 standard.

9235 The following values are added for alignment with IEEE Std 1003.1q-2000: |

258 Technical Standard (2001) (Draft April 13, 2001)

Headers <limits.h>

9236 {_POSIX_TRACE_EVENT_NAME_MAX} ||
9237 {_POSIX_TRACE_NAME_MAX} ||
9238 {_POSIX_TRACE_SYS_MAX} ||
9239 {_POSIX_TRACE_USER_EVENT_MAX} ||
9240 {TRACE_EVENT_NAME_MAX} ||
9241 {TRACE_NAME_MAX} ||
9242 {TRACE_SYS_MAX} ||
9243 {TRACE_USER_EVENT_MAX} ||

9244 The new limits {_XOPEN_NAME_MAX} and {_XOPEN_PATH_MAX} are added as minimum |
9245 values for {PATH_MAX} and {NAME_MAX} limits on XSI-conformant systems.

9246 The legacy symbols {PASS_MAX} and {TMP_MAX} are removed. |

9247 The values for the limits {CHAR_BIT}, {CHAR_MAX}, {SCHAR_MAX}, and {UCHAR_MAX} are |
9248 now required to be 8, +127, 255, and −128, respectively. |

Base Definitions, Issue 6 259

<locale.h> Headers

9249 NAME
9250 locale.h — category macros

9251 SYNOPSIS
9252 #include <locale.h>

9253 DESCRIPTION
9254 CX Some of the functionality described on this reference page extends the ISO C standard. Any |
9255 conflict between the requirements described here and the ISO C standard is unintentional. This |
9256 volume of IEEE Std 1003.1-200x defers to the ISO C standard. |

9257 The <locale.h> header shall provide a definition for structure lconv, which shall include at least
9258 the following members. (See the definitions of LC_MONETARY in the Section 7.3.3 (on page
9259 138), and Section 7.3.4 (on page 141).)

9260 char *currency_symbol
9261 char *decimal_point
9262 char frac_digits
9263 char *grouping
9264 char *int_curr_symbol
9265 char int_frac_digits
9266 char int_n_cs_precedes
9267 char int_n_sep_by_space
9268 char int_n_sign_posn
9269 char int_p_cs_precedes
9270 char int_p_sep_by_space
9271 char int_p_sign_posn
9272 char *mon_decimal_point
9273 char *mon_grouping
9274 char *mon_thousands_sep
9275 char *negative_sign
9276 char n_cs_precedes
9277 char n_sep_by_space
9278 char n_sign_posn
9279 char *positive_sign
9280 char p_cs_precedes
9281 char p_sep_by_space
9282 char p_sign_posn
9283 char *thousands_sep

9284 The <locale.h> header shall define NULL (as defined in <stddef.h>) and at least the following as
9285 macros:

9286 LC_ALL
9287 LC_COLLATE
9288 LC_CTYPE
9289 CX LC_MESSAGES
9290 LC_MONETARY
9291 LC_NUMERIC
9292 LC_TIME

9293 which shall expand to distinct integer constant expressions, for use as the first argument to the
9294 setlocale () function.

9295 Additional macro definitions, beginning with the characters LC_ and an uppercase letter, may
9296 also be given here.

260 Technical Standard (2001) (Draft April 13, 2001)

Headers <locale.h>

9297 The following shall be declared as functions and may also be defined as macros. Function |
9298 prototypes shall be provided. |

9299 struct lconv *localeconv (void);
9300 char *setlocale(int, const char *); |

9301 APPLICATION USAGE |
9302 None.

9303 RATIONALE
9304 None.

9305 FUTURE DIRECTIONS
9306 None.

9307 SEE ALSO
9308 The System Interfaces volume of IEEE Std 1003.1-200x, localeconv (), setlocale (), Chapter 8 (on
9309 page 157)

9310 CHANGE HISTORY
9311 First released in Issue 3.

9312 Entry included for alignment with the ISO C standard.

9313 Issue 6
9314 The lconv structure is expanded with new members (int_n_cs_precedes, int_n_sep_by_space,
9315 int_n_sign_posn, int_p_cs_precedes, int_p_sep_by_space, and int_p_sign_posn) for alignment
9316 with the ISO/IEC 9899: 1999 standard.

9317 Extensions beyond the ISO C standard are now marked.

Base Definitions, Issue 6 261

<math.h> Headers

9318 NAME
9319 math.h — mathematical declarations

9320 SYNOPSIS
9321 #include <math.h>

9322 DESCRIPTION
9323 CX Some of the functionality described on this reference page extends the ISO C standard.
9324 Applications shall define the appropriate feature test macro (see the System Interfaces volume of
9325 IEEE Std 1003.1-200x, Section 2.2, The Compilation Environment) to enable the visibility of these
9326 symbols in this header.

9327 The <math.h> header shall include definitions for at least the following types: |

9328 float_t A real-floating type at least as wide as float. |

9329 double_t A real-floating type at least as wide as double, and at least as wide as float_t. |

9330 If FLT_EVAL_METHOD equals 0, float_t and double_t shall be float and double, respectively; if
9331 FLT_EVAL_METHOD equals 1, they shall both be double; if FLT_EVAL_METHOD equals 2,
9332 they shall both be long double; for other values of FLT_EVAL_METHOD, they are otherwise
9333 implementation-defined.

9334 The <math.h> header shall define the following macros, where real-floating indicates that the
9335 argument shall be an expression of real-floating type:

9336 int fpclassify(real-floating x);
9337 int isfinite(real-floating x);
9338 int isinf(real-floating x);
9339 int isnan(real-floating x);
9340 int isnormal(real-floating x);
9341 int signbit(real-floating x);
9342 int isgreater(real-floating x, real-floating y);
9343 int isgreaterequal(real-floating x, real-floating y);
9344 int isless(real-floating x, real-floating y);
9345 int islessequal(real-floating x, real-floating y);
9346 int islessgreater(real-floating x, real-floating y);
9347 int isunordered(real-floating x, real-floating y);

9348 The <math.h> header shall provide for the following constants. The values are of type double
9349 and are accurate within the precision of the double type.

9350 XSI M_E Value of e

9351 M_LOG2E Value of log2e

9352 M_LOG10E Value of log10e

9353 M_LN2 Value of loge2

9354 M_LN10 Value of loge10

9355 M_PI Value of π

9356 M_PI_2 Value of π/2

9357 M_PI_4 Value of π/4

9358 M_1_PI Value of 1/π

9359 M_2_PI Value of 2/π

262 Technical Standard (2001) (Draft April 13, 2001)

Headers <math.h>

9360 M_2_SQRTPI Value of 2/√MMπ

9361 M_SQRT2 Value of √MM2

9362 M_SQRT1_2 Value of 1/√MM2

9363 The header shall define the following symbolic constants:

9364 XSI MAXFLOAT Value of maximum non-infinite single-precision floating-point number.

9365 HUGE_VAL A positive double expression, not necessarily representable as a float. Used
9366 as an error value returned by the mathematics library. HUGE_VAL evaluates
9367 to +infinity on systems supporting IEEE Std 754-1985.

9368 HUGE_VALF A positive float constant expression. Used as an error value returned by the
9369 mathematics library. HUGE_VALF evaluates to +infinity on systems
9370 supporting IEEE Std 754-1985.

9371 HUGE_VALL A positive long double constant expression. Used as an error value returned
9372 by the mathematics library. HUGE_VALL evaluates to +infinity on systems
9373 supporting IEEE Std 754-1985.

9374 INFINITY A constant expression of type float representing positive or unsigned infinity,
9375 if available; else a positive constant of type float that overflows at translation
9376 time.

9377 NAN A constant expression of type float representing a quiet NaN. This symbolic
9378 constant is only defined if the implementation supports quiet NaNs for the
9379 float type.

9380 The following macros shall be defined for number classification. They represent the mutually-
9381 exclusive kinds of floating-point values. They expand to integer constant expressions with
9382 distinct values. Additional implementation-defined floating-point classifications, with macro
9383 definitions beginning with FP_ and an uppercase letter, may also be specified by the
9384 implementation.

9385 FP_INFINITE |
9386 FP_NAN |
9387 FP_NORMAL |
9388 FP_SUBNORMAL |
9389 FP_ZERO |

9390 The following optional macros indicate whether the fma() family of functions are fast compared
9391 with direct code:

9392 FP_FAST_FMA |
9393 FP_FAST_FMAF |
9394 FP_FAST_FMAL |

9395 The FP_FAST_FMA macro shall be defined to indicate that the fma() function generally executes
9396 about as fast as, or faster than, a multiply and an add of double operands. The other macros
9397 have the equivalent meaning for the float and long double versions.

9398 The following macros shall expand to integer constant expressions whose values are returned by
9399 ilogb (x) if x is zero or NaN, respectively. The value of FP_ILOGB0 shall be either {INT_MIN} or
9400 −{INT_MAX}. The value of FP_ILOGBNAN shall be either {INT_MAX} or {INT_MIN}.

9401 FP_ILOGB0 |
9402 FP_ILOGBNAN |

Base Definitions, Issue 6 263

<math.h> Headers

9403 The following macros shall expand to the integer constants 1 and 2, respectively;

9404 MATH_ERRNO |
9405 MATH_ERREXCEPT |

9406 The following macro shall expand to an expression that has type int and the value
9407 MATH_ERRNO, MATH_ERREXCEPT, or the bitwise-inclusive OR of both:

9408 math_errhandling |

9409 The value of math_errhandling is constant for the duration of the program. It is unspecified |
9410 whether math_errhandling is a macro or an identifier with external linkage. If a macro definition |
9411 is suppressed or a program defines an identifier with the name math_errhandling , the behavior |
9412 is undefined. If the expression (math_errhandling & MATH_ERREXCEPT) can be non-zero, the |
9413 implementation shall define the macros FE_DIVBYZERO, FE_INVALID, and FE_OVERFLOW in |
9414 <fenv.h>.

9415 The following shall be declared as functions and may also be defined as macros. Function |
9416 prototypes shall be provided. |

9417 double acos(double);
9418 float acosf(float);
9419 double acosh(double);
9420 float acoshf(float);
9421 long double acoshl(long double);
9422 long double acosl(long double);
9423 double asin(double);
9424 float asinf(float);
9425 double asinh(double);
9426 float asinhf(float);
9427 long double asinhl(long double);
9428 long double asinl(long double);
9429 double atan(double);
9430 double atan2(double, double);
9431 float atan2f(float, float);
9432 long double atan2l(long double, long double);
9433 float atanf(float);
9434 double atanh(double);
9435 float atanhf(float);
9436 long double atanhl(long double);
9437 long double atanl(long double);
9438 double cbrt(double);
9439 float cbrtf(float);
9440 long double cbrtl(long double);
9441 double ceil(double);
9442 float ceilf(float);
9443 long double ceill(long double);
9444 double copysign(double, double);
9445 float copysignf(float, float);
9446 long double copysignl(long double, long double);
9447 double cos(double);
9448 float cosf(float);
9449 double cosh(double);
9450 float coshf(float);
9451 long double coshl(long double);

264 Technical Standard (2001) (Draft April 13, 2001)

Headers <math.h>

9452 long double cosl(long double);
9453 double erf(double);
9454 double erfc(double);
9455 float erfcf(float);
9456 long double erfcl(long double);
9457 float erff(float);
9458 long double erfl(long double);
9459 double exp(double);
9460 double exp2(double);
9461 float exp2f(float);
9462 long double exp2l(long double);
9463 float expf(float);
9464 long double expl(long double);
9465 double expm1(double);
9466 float expm1f(float);
9467 long double expm1l(long double);
9468 double fabs(double);
9469 float fabsf(float);
9470 long double fabsl(long double);
9471 double fdim(double, double);
9472 float fdimf(float, float);
9473 long double fdiml(long double, long double);
9474 double floor(double);
9475 float floorf(float);
9476 long double floorl(long double);
9477 double fma(double, double, double);
9478 float fmaf(float, float, float);
9479 long double fmal(long double, long double, long double);
9480 double fmax(double, double);
9481 float fmaxf(float, float);
9482 long double fmaxl(long double, long double);
9483 double fmin(double, double);
9484 float fminf(float, float);
9485 long double fminl(long double, long double);
9486 double fmod(double, double);
9487 float fmodf(float, float);
9488 long double fmodl(long double, long double);
9489 double frexp(double, int *);
9490 float frexpf(float value, int *);
9491 long double frexpl(long double value, int *);
9492 double hypot(double, double);
9493 float hypotf(float, float);
9494 long double hypotl(long double, long double);
9495 int ilogb(double);
9496 int ilogbf(float);
9497 int ilogbl(long double);
9498 XSI double j0(double);
9499 double j1(double);
9500 double jn(int, double);
9501 double ldexp(double, int);
9502 float ldexpf(float, int);
9503 long double ldexpl(long double, int);

Base Definitions, Issue 6 265

<math.h> Headers

9504 double lgamma(double);
9505 float lgammaf(float);
9506 long double lgammal(long double);
9507 long long llrint(double); |
9508 long long llrintf(float); |
9509 long long llrintl(long double); |
9510 long long llround(double); |
9511 long long llroundf(float); |
9512 long long llroundl(long double); |
9513 double log(double); |
9514 double log10(double);
9515 float log10f(float);
9516 long double log10l(long double);
9517 double log1p(double);
9518 float log1pf(float);
9519 long double log1pl(long double);
9520 double log2(double);
9521 float log2f(float);
9522 long double log2l(long double);
9523 double logb(double);
9524 float logbf(float);
9525 long double logbl(long double);
9526 float logf(float);
9527 long double logl(long double);
9528 long lrint(double); |
9529 long lrintf(float);
9530 long lrintl(long double);
9531 long lround(double);
9532 long lroundf(float);
9533 long lroundl(long double);
9534 double modf(double, double *);
9535 float modff(float, float *);
9536 long double modfl(long double, long double *);
9537 double nan(const char *);
9538 float nanf(const char *);
9539 long double nanl(const char *);
9540 double nearbyint(double);
9541 float nearbyintf(float);
9542 long double nearbyintl(long double);
9543 double nextafter(double, double);
9544 float nextafterf(float, float);
9545 long double nextafterl(long double, long double);
9546 double nexttoward(double, long double);
9547 float nexttowardf(float, long double);
9548 long double nexttowardl(long double, long double);
9549 double pow(double, double);
9550 float powf(float, float);
9551 long double powl(long double, long double);
9552 double remainder(double, double);
9553 float remainderf(float, float);
9554 long double remainderl(long double, long double);
9555 double remquo(double, double, int *);

266 Technical Standard (2001) (Draft April 13, 2001)

Headers <math.h>

9556 float remquof(float, float, int *);
9557 long double remquol(long double, long double, int *);
9558 double rint(double);
9559 float rintf(float);
9560 long double rintl(long double);
9561 double round(double);
9562 float roundf(float);
9563 long double roundl(long double);
9564 XSI double scalb(double, double);
9565 double scalbln(double, long);
9566 float scalblnf(float, long);
9567 long double scalblnl(long double, long);
9568 double scalbn(double, int);
9569 float scalbnf(float, int);
9570 long double scalbnl(long double, int);
9571 double sin(double);
9572 float sinf(float);
9573 double sinh(double);
9574 float sinhf(float);
9575 long double sinhl(long double);
9576 long double sinl(long double);
9577 double sqrt(double);
9578 float sqrtf(float);
9579 long double sqrtl(long double);
9580 double tan(double);
9581 float tanf(float);
9582 double tanh(double);
9583 float tanhf(float);
9584 long double tanhl(long double);
9585 long double tanl(long double);
9586 double tgamma(double);
9587 float tgammaf(float);
9588 long double tgammal(long double);
9589 double trunc(double);
9590 float truncf(float);
9591 long double truncl(long double);
9592 XSI double y0(double);
9593 double y1(double);
9594 double yn(int, double);
9595

9596 The following external variable shall be defined:

9597 XSI extern int signgam;
9598

9599 The behavior of each of the functions defined in <math.h> is specified in the System Interfaces
9600 volume of IEEE Std 1003.1-200x for all representable values of its input arguments, except where
9601 stated otherwise. Each function shall execute as if it were a single operation without generating
9602 any externally visible exceptional conditions.

Base Definitions, Issue 6 267

<math.h> Headers

9603 APPLICATION USAGE
9604 The FP_CONTRACT pragma can be used to allow (if the state is on) or disallow (if the state is
9605 off) the implementation to contract expressions. Each pragma can occur either outside external
9606 declarations or preceding all explicit declarations and statements inside a compound statement.
9607 When outside external declarations, the pragma takes effect from its occurrence until another
9608 FP_CONTRACT pragma is encountered, or until the end of the translation unit. When inside a
9609 compound statement, the pragma takes effect from its occurrence until another FP_CONTRACT
9610 pragma is encountered (including within a nested compound statement), or until the end of the
9611 compound statement; at the end of a compound statement the state for the pragma is restored to
9612 its condition just before the compound statement. If this pragma is used in any other context, the
9613 behavior is undefined. The default state (on or off) for the pragma is implementation-defined.

9614 RATIONALE
9615 Before the ISO/IEC 9899: 1999 standard, the math library was defined only for the floating type
9616 double. All the names formed by appending ’f’ or ’l’ to a name in <math.h> were reserved
9617 to allow for the definition of float and long double libraries; and the ISO/IEC 9899: 1999
9618 standard provides for all three versions of math functions.

9619 The functions ecvt(), fcvt(), and gcvt() have been dropped from the ISO C standard since their
9620 capability is available through sprintf(). These are provided on XSI-conformant systems
9621 supporting the Legacy Option Group.

9622 FUTURE DIRECTIONS
9623 None.

9624 SEE ALSO
9625 The System Interfaces volume of IEEE Std 1003.1-200x, acos(), acosh(), asin(), atan(), atan2(),
9626 cbrt(), ceil(), cos(), cosh(), erf(), exp(), expm1(), fabs(), floor (), fmod(), frexp(), hypot(), ilogb (),
9627 isnan(), j0(), ldexp(), lgamma(), log(), log10 (), log1p (), logb(), modf(), nextafter(), pow(),
9628 remainder(), rint(), scalb(), sin(), sinh(), sqrt(), tan(), tanh(), y0()

9629 CHANGE HISTORY
9630 First released in Issue 1.

9631 Issue 6
9632 This reference page is updated to align with the ISO/IEC 9899: 1999 standard.

268 Technical Standard (2001) (Draft April 13, 2001)

Headers <monetary.h>

9633 NAME
9634 monetary.h — monetary types

9635 SYNOPSIS
9636 XSI #include <monetary.h>
9637

9638 DESCRIPTION
9639 The <monetary.h> header shall define the following types:

9640 size_t As described in <stddef.h>.

9641 ssize_t As described in <sys/types.h>.

9642 The following shall be declared as a function and may also be defined as a macro. A function |
9643 prototype shall be provided. |

9644 ssize_t strfmon(char *restrict, size_t, const char *restrict, ...);

9645 APPLICATION USAGE
9646 None.

9647 RATIONALE
9648 None.

9649 FUTURE DIRECTIONS
9650 None.

9651 SEE ALSO
9652 The System Interfaces volume of IEEE Std 1003.1-200x, strfmon()

9653 CHANGE HISTORY
9654 First released in Issue 4.

9655 Issue 6
9656 The restrict keyword is added to the prototype for strfmon().

Base Definitions, Issue 6 269

<mqueue.h> Headers

9657 NAME
9658 mqueue.h — message queues (REALTIME)

9659 SYNOPSIS
9660 MSG #include <mqueue.h>
9661

9662 DESCRIPTION
9663 The <mqueue.h> header shall define the mqd_t type, which is used for message queue
9664 descriptors. This is not an array type.

9665 The <mqueue.h> header shall define the sigevent structure (as described in <signal.h>) and the
9666 mq_attr structure, which is used in getting and setting the attributes of a message queue.
9667 Attributes are initially set when the message queue is created. An mq_attr structure shall have at
9668 least the following fields:

9669 long mq_flags Message queue flags.
9670 long mq_maxmsg Maximum number of messages.
9671 long mq_msgsize Maximum message size.
9672 long mq_curmsgs Number of messages currently queued.

9673 The following shall be declared as functions and may also be defined as macros. Function |
9674 prototypes shall be provided. |

9675 int mq_close(mqd_t);
9676 int mq_getattr(mqd_t, struct mq_attr *);
9677 int mq_notify(mqd_t, const struct sigevent *);
9678 mqd_t mq_open(const char *, int, ...);
9679 ssize_t mq_receive(mqd_t, char *, size_t, unsigned *);
9680 int mq_send(mqd_t, const char *, size_t, unsigned);
9681 int mq_setattr(mqd_t, const struct mq_attr *restrict,
9682 struct mq_attr *restrict);
9683 TMO ssize_t mq_timedreceive(mqd_t, char *restrict, size_t,
9684 unsigned *restrict, const struct timespec *restrict);
9685 int mq_timedsend(mqd_t, const char *, size_t, unsigned ,
9686 const struct timespec *);
9687 int mq_unlink(const char *);

9688 Inclusion of the <mqueue.h> header may make visible symbols defined in the headers <fcntl.h>,
9689 <signal.h>, <sys/types.h>, and <time.h>.

9690 APPLICATION USAGE
9691 None.

9692 RATIONALE
9693 None.

9694 FUTURE DIRECTIONS
9695 None.

9696 SEE ALSO
9697 <fcntl.h>, <signal.h>, <sys/types.h>, <time.h>, the System Interfaces volume of
9698 IEEE Std 1003.1-200x, mq_close(), mq_getattr(), mq_notify(), mq_open(), mq_receive(), mq_send(),
9699 mq_setattr(), mq_timedreceive(), mq_timedsend(), mq_unlink()

270 Technical Standard (2001) (Draft April 13, 2001)

Headers <mqueue.h>

9700 CHANGE HISTORY
9701 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

9702 Issue 6
9703 The <mqueue.h> header is marked as part of the Message Passing option.

9704 The mq_timedreceive() and mq_timedsend() functions are added for alignment with
9705 IEEE Std 1003.1d-1999.

9706 The restrict keyword is added to the prototypes for mq_setattr() and mq_timedreceive().

Base Definitions, Issue 6 271

<ndbm.h> Headers

9707 NAME
9708 ndbm.h — definitions for ndbm database operations

9709 SYNOPSIS
9710 XSI #include <ndbm.h>
9711

9712 DESCRIPTION
9713 The <ndbm.h> header shall define the datum type as a structure that includes at least the
9714 following members:

9715 void *dptr A pointer to the application’s data.
9716 size_t dsize The size of the object pointed to by dptr.

9717 The size_t type shall be defined as described in <stddef.h>.

9718 The <ndbm.h> header shall define the DBM type.

9719 The following constants shall be defined as possible values for the store_mode argument to
9720 dbm_store():

9721 DBM_INSERT Insertion of new entries only.

9722 DBM_REPLACE Allow replacing existing entries.

9723 The following shall be declared as functions and may also be defined as macros. Function |
9724 prototypes shall be provided. |

9725 int dbm_clearerr(DBM *);
9726 void dbm_close(DBM *);
9727 int dbm_delete(DBM *, datum);
9728 int dbm_error(DBM *);
9729 datum dbm_fetch(DBM *, datum);
9730 datum dbm_firstkey(DBM *);
9731 datum dbm_nextkey(DBM *);
9732 DBM *dbm_open(const char *, int, mode_t);
9733 int dbm_store(DBM *, datum, datum, int);

9734 The mode_t type shall be defined through typedef as described in <sys/types.h>.

9735 APPLICATION USAGE
9736 None.

9737 RATIONALE
9738 None.

9739 FUTURE DIRECTIONS
9740 None.

9741 SEE ALSO
9742 The System Interfaces volume of IEEE Std 1003.1-200x, dbm_clearerr()

9743 CHANGE HISTORY
9744 First released in Issue 4, Version 2.

9745 Issue 5
9746 References to the definitions of size_t and mode_t are added to the DESCRIPTION.

272 Technical Standard (2001) (Draft April 13, 2001)

Headers <net/if.h>

9747 NAME
9748 net/if.h — sockets local interfaces

9749 SYNOPSIS
9750 #include <net/if.h>

9751 DESCRIPTION
9752 The <net/if.h> header shall define the if_nameindex structure that includes at least the
9753 following members:

9754 unsigned if_index Numeric index of the interface.
9755 char *if_name Null-terminated name of the interface.

9756 The <net/if.h> header shall define the following macro for the length of a buffer containing an
9757 interface name (including the terminating NULL character):

9758 IF_NAMESIZE Interface name length.

9759 The following shall be declared as functions and may also be defined as macros. Function |
9760 prototypes shall be provided. |

9761 unsigned if_nametoindex(const char *); |
9762 char *if_indextoname(unsigned, char *); |
9763 struct if_nameindex *if_nameindex(void); |
9764 void if_freenameindex(struct if_nameindex *); |

9765 APPLICATION USAGE |
9766 None.

9767 RATIONALE
9768 None.

9769 FUTURE DIRECTIONS
9770 None.

9771 SEE ALSO
9772 The System Interfaces volume of IEEE Std 1003.1-200x, if_freenameindex(), if_indextoname(),
9773 if_nameindex(), if_nametoindex()

9774 CHANGE HISTORY
9775 First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Base Definitions, Issue 6 273

<netdb.h> Headers

9776 NAME
9777 netdb.h — definitions for network database operations

9778 SYNOPSIS
9779 #include <netdb.h>

9780 DESCRIPTION
9781 The <netdb.h> header may define the in_port_t type and the in_addr_t type as described in
9782 <netinet/in.h>.

9783 The <netdb.h> header shall define the hostent structure that includes at least the following
9784 members:

9785 char *h_name Official name of the host.
9786 char **h_aliases A pointer to an array of pointers to
9787 alternative host names, terminated by a
9788 null pointer.
9789 int h_addrtype Address type.
9790 int h_length The length, in bytes, of the address.
9791 char **h_addr_list A pointer to an array of pointers to network
9792 addresses (in network byte order) for the host,
9793 terminated by a null pointer.

9794 The <netdb.h> header shall define the netent structure that includes at least the following
9795 members:

9796 char *n_name Official, fully-qualified (including the
9797 domain) name of the host.
9798 char **n_aliases A pointer to an array of pointers to
9799 alternative network names, terminated by a
9800 null pointer.
9801 int n_addrtype The address type of the network.
9802 uint32_t n_net The network number, in host byte order.

9803 The uint32_t type shall be defined as described in <inttypes.h>.

9804 The <netdb.h> header shall define the protoent structure that includes at least the following
9805 members:

9806 char *p_name Official name of the protocol.
9807 char **p_aliases A pointer to an array of pointers to
9808 alternative protocol names, terminated by
9809 a null pointer.
9810 int p_proto The protocol number.

9811 The <netdb.h> header shall define the servent structure that includes at least the following
9812 members:

9813 char *s_name Official name of the service.
9814 char **s_aliases A pointer to an array of pointers to
9815 alternative service names, terminated by
9816 a null pointer.
9817 int s_port The port number at which the service
9818 resides, in network byte order.
9819 char *s_proto The name of the protocol to use when
9820 contacting the service.

274 Technical Standard (2001) (Draft April 13, 2001)

Headers <netdb.h>

9821 The <netdb.h> header shall define the IPPORT_RESERVED macro with the value of the highest
9822 reserved Internet port number.

9823 OB When the <netdb.h> header is included, h_errno shall be available as a modifiable l-value of type
9824 int. It is unspecified whether h_errno is a macro or an identifier declared with external linkage.

9825 The <netdb.h> header shall define the following macros for use as error values for
9826 gethostbyaddr () and gethostbyname():

9827 HOST_NOT_FOUND |
9828 NO_DATA
9829 NO_RECOVERY
9830 TRY_AGAIN

9831 Address Information Structure

9832 The <netdb.h> header shall define the addrinfo structure that includes at least the following
9833 members:

9834 int ai_flags Input flags.
9835 int ai_family Address family of socket.
9836 int ai_socktype Socket type.
9837 int ai_protocol Protocol of socket.
9838 socklen_t ai_addrlen Length of socket address.
9839 struct sockaddr *ai_addr Socket address of socket.
9840 char *ai_canonname Canonical name of service location.
9841 struct addrinfo *ai_next Pointer to next in list.

9842 The <netdb.h> header shall define the following macros that evaluate to bitwise-distinct integer
9843 constants for use in the flags field of the addrinfo structure:

9844 AI_PASSIVE Socket address is intended for bind().

9845 AI_CANONNAME
9846 Request for canonical name.

9847 AI_NUMERICHOST
9848 Return numeric host address as name. |

9849 AI_NUMERICSERV |
9850 Inhibit service name resolution. |

9851 AI_V4MAPPED |
9852 If no IPv6 addresses are found, query for IPv4 addresses and return them to |
9853 the caller as IPv4-mapped IPv6 addresses. |

9854 AI_ALL Query for both IPv4 and IPv6 addresses. |

9855 AI_ADDRCONFIG |
9856 Query for IPv4 addresses only when an IPv4 address is configured; query for |
9857 IPv6 addresses only when an IPv6 address is configured. |

9858 The <netdb.h> header shall define the following macros that evaluate to bitwise-distinct integer
9859 constants for use in the flags argument to getnameinfo():

9860 NI_NOFQDN Only the nodename portion of the FQDN is returned for local hosts.

9861 NI_NUMERICHOST
9862 The numeric form of the node’s address is returned instead of its name.

Base Definitions, Issue 6 275

<netdb.h> Headers

9863 NI_NAMEREQD Return an error if the node’s name cannot be located in the database.

9864 NI_NUMERICSERV
9865 The numeric form of the service address is returned instead of its name.

9866 NI_DGRAM Indicates that the service is a datagram service (SOCK_DGRAM).

9867 Address Information Errors

9868 The <netdb.h> header shall define the following macros for use as error values for getaddrinfo ()
9869 and getnameinfo():

9870 EAI_AGAIN The name could not be resolved at this time. Future attempts may succeed.

9871 EAI_BADFLAGS The flags had an invalid value.

9872 EAI_FAIL A non-recoverable error occurred.

9873 EAI_FAMILY The address family was not recognized or the address length was invalid for
9874 the specified family.

9875 EAI_MEMORY There was a memory allocation failure.

9876 EAI_NONAME The name does not resolve for the supplied parameters.

9877 NI_NAMEREQD is set and the host’s name cannot be located, or both
9878 nodename and servname were null.

9879 EAI_SERVICE The service passed was not recognized for the specified socket type.

9880 EAI_SOCKTYPE The intended socket type was not recognized.

9881 EAI_SYSTEM A system error occurred. The error code can be found in errno. |

9882 EAI_OVERFLOW An argument buffer overflowed. |

9883 The following shall be declared as functions and may also be defined as macros. Function |
9884 prototypes shall be provided. |

9885 void endhostent(void);
9886 void endnetent(void);
9887 void endprotoent(void);
9888 void endservent(void);
9889 void freeaddrinfo(struct addrinfo *);
9890 const char *gai_strerror(int); |
9891 int getaddrinfo(const char *restrict, const char *restrict, |
9892 const struct addrinfo *restrict,
9893 struct addrinfo **restrict);
9894 struct hostent *gethostbyaddr(const void *, socklen_t, int);
9895 struct hostent *gethostbyname(const char *);
9896 struct hostent *gethostent(void);
9897 int getnameinfo(const struct sockaddr *restrict, socklen_t,
9898 char *restrict, socklen_t, char *restrict,
9899 socklen_t, unsigned);
9900 struct netent *getnetbyaddr(uint32_t, int);
9901 struct netent *getnetbyname(const char *);
9902 struct netent *getnetent(void);
9903 struct protoent *getprotobyname(const char *);
9904 struct protoent *getprotobynumber(int);
9905 struct protoent *getprotoent(void);

276 Technical Standard (2001) (Draft April 13, 2001)

Headers <netdb.h>

9906 struct servent *getservbyname(const char *, const char *);
9907 struct servent *getservbyport(int, const char *);
9908 struct servent *getservent(void);
9909 void sethostent(int);
9910 void setnetent(int);
9911 void setprotoent(int);
9912 void setservent(int);

9913 The type socklen_t shall be defined through typedef as described in <sys/socket.h>.

9914 Inclusion of the <netdb.h> header may also make visible all symbols from <netinet/in.h>, |
9915 <sys/socket.h>, and <inttypes.h>. |

9916 APPLICATION USAGE
9917 None.

9918 RATIONALE
9919 None.

9920 FUTURE DIRECTIONS
9921 None.

9922 SEE ALSO
9923 <netinet/in.h>, <inttypes.h>, <sys/socket.h>, the System Interfaces volume of
9924 IEEE Std 1003.1-200x, bind(), endhostent(), endnetent(), endprotoent(), endservent(), getaddrinfo (),
9925 getnameinfo()

9926 CHANGE HISTORY
9927 First released in Issue 6. Derived from the XNS, Issue 5.2 specification. |

9928 The Open Group Base Resolution bwg2001-009 is applied, which changes the return type for |
9929 gai_strerror() from char * to const char *. This is for coordination with the IPnG Working Group. |

Base Definitions, Issue 6 277

<netinet/in.h> Headers

9930 NAME
9931 netinet/in.h — Internet address family |

9932 SYNOPSIS
9933 #include <netinet/in.h>

9934 DESCRIPTION
9935 The <netinet/in.h> header shall define the following types:

9936 in_port_t Equivalent to the type uint16_t as defined in <inttypes.h>. |

9937 in_addr_t Equivalent to the type uint32_t as defined in <inttypes.h>. |

9938 The sa_family_t type shall be defined as described in <sys/socket.h>.

9939 The uint8_t and uint32_t type shall be defined as described in <inttypes.h>. Inclusion of the |
9940 <netinet/in.h> header may also make visible all symbols from <inttypes.h> and <sys/socket.h>. |

9941 The <netinet/in.h> header shall define the in_addr structure that includes at least the following
9942 member:

9943 in_addr_t s_addr

9944 The <netinet/in.h> header shall define the sockaddr_in structure that includes at least the |
9945 following members (all in network byte order): |

9946 sa_family_t sin_family AF_INET. |
9947 in_port_t sin_port Port number. |
9948 struct in_addr sin_addr IP address. |

9949 The sockaddr_in structure is used to store addresses for the Internet address family. Values of |
9950 this type shall be cast by applications to struct sockaddr for use with socket functions.

9951 IP6 The <netinet/in.h> header shall define the in6_addr structure that contains at least the following
9952 member:

9953 uint8_t s6_addr[16]

9954 This array is used to contain a 128-bit IPv6 address, stored in network byte order.

9955 The <netinet/in.h> header shall define the sockaddr_in6 structure that includes at least the |
9956 following members (all in network byte order): |

9957 sa_family_t sin6_family AF_INET6.
9958 in_port_t sin6_port Port number.
9959 uint32_t sin6_flowinfo IPv6 traffic class and flow information.
9960 struct in6_addr sin6_addr IPv6 address.
9961 uint32_t sin6_scope_id Set of interfaces for a scope.

9962 The sockaddr_in6 structure shall be set to zero by an application prior to using it, since
9963 implementations are free to have additional, implementation-defined fields in sockaddr_in6.

9964 The sin6_scope_id field is a 32-bit integer that identifies a set of interfaces as appropriate for the
9965 scope of the address carried in the sin6_addr field. For a link scope sin6_addr , sin6_scope_id would
9966 be an interface index. For a site scope sin6_addr , sin6_scope_id would be a site identifier. The
9967 mapping of sin6_scope_id to an interface or set of interfaces is implementation-defined.

9968 The <netinet/in.h> header shall declare the following external variable:

9969 struct in6_addr in6addr_any

9970 This variable is initialized by the system to contain the wildcard IPv6 address. The
9971 <netinet/in.h> header also defines the IN6ADDR_ANY_INIT macro. This macro must be

278 Technical Standard (2001) (Draft April 13, 2001)

Headers <netinet/in.h>

9972 constant at compile time and can be used to initialize a variable of type struct in6_addr to the
9973 IPv6 wildcard address.

9974 The <netinet/in.h> header shall declare the following external variable:

9975 struct in6_addr in6addr_loopback

9976 This variable is initialized by the system to contain the loopback IPv6 address. The
9977 <netinet/in.h> header also defines the IN6ADDR_LOOPBACK_INIT macro. This macro must be
9978 constant at compile time and can be used to initialize a variable of type struct in6_addr to the
9979 IPv6 loopback address.

9980 The <netinet/in.h> header shall define the ipv6_mreq structure that includes at least the
9981 following members:

9982 struct in6_addr ipv6mr_multiaddr IPv6 multicast address.
9983 unsigned ipv6mr_interface Interface index.

9984

9985 The <netinet/in.h> header shall define the following macros for use as values of the level
9986 argument of getsockopt () and setsockopt ():

9987 IPPROTO_IP Internet protocol.

9988 IP6 IPPROTO_IPV6 Internet Protocol Version 6.

9989 IPPROTO_ICMP Control message protocol.

9990 RS IPPROTO_RAW Raw IP Packets Protocol.

9991 IPPROTO_TCP Transmission control protocol.

9992 IPPROTO_UDP User datagram protocol.

9993 The <netinet/in.h> header shall define the following macros for use as destination addresses for
9994 connect(), sendmsg(), and sendto():

9995 INADDR_ANY IPv4 local host address.

9996 INADDR_BROADCAST IPv4 broadcast address.

9997 The <netinet/in.h> header shall define the following macro to help applications declare buffers
9998 of the proper size to store IPv4 addresses in string form:

9999 INET_ADDRSTRLEN 16. Length of the string form for IP. |

10000 The htonl(), htons(), ntohl(), and ntohs() functions shall be available as defined in <arpa/inet.h>.
10001 Inclusion of the <netinet/in.h> header may also make visible all symbols from <arpa/inet.h>.

10002 IP6 The <netinet/in.h> header shall define the following macro to help applications declare buffers
10003 of the proper size to store IPv6 addresses in string form:

10004 INET6_ADDRSTRLEN 46. Length of the string form for IPv6. |

10005 The <netinet/in.h> header shall define the following macros, with distinct integer values, for use
10006 in the option_name argument in the getsockopt () or setsockopt () functions at protocol level
10007 IPPROTO_IPV6:

10008 IPV6_JOIN_GROUP Join a multicast group.

10009 IPV6_LEAVE_GROUP Quit a multicast group.

10010 IPV6_MULTICAST_HOPS
10011 Multicast hop limit.

Base Definitions, Issue 6 279

<netinet/in.h> Headers

10012 IPV6_MULTICAST_IF Interface to use for outgoing multicast packets.

10013 IPV6_MULTICAST_LOOP
10014 Multicast packets are delivered back to the local application.

10015 IPV6_UNICAST_HOPS Unicast hop limit. |

10016 IPV6_V6ONLY Restrict AF_INET6 socket to IPv6 communications only. |

10017 The <netinet/in.h> header shall define the following macros that test for special IPv6 addresses.
10018 Each macro is of type int and takes a single argument of type const struct in6_addr *:

10019 IN6_IS_ADDR_UNSPECIFIED
10020 Unspecified address.

10021 IN6_IS_ADDR_LOOPBACK
10022 Loopback address.

10023 IN6_IS_ADDR_MULTICAST
10024 Multicast address.

10025 IN6_IS_ADDR_LINKLOCAL
10026 Unicast link-local address.

10027 IN6_IS_ADDR_SITELOCAL
10028 Unicast site-local address.

10029 IN6_IS_ADDR_V4MAPPED
10030 IPv4 mapped address.

10031 IN6_IS_ADDR_V4COMPAT
10032 IPv4-compatible address.

10033 IN6_IS_ADDR_MC_NODELOCAL
10034 Multicast node-local address.

10035 IN6_IS_ADDR_MC_LINKLOCAL
10036 Multicast link-local address.

10037 IN6_IS_ADDR_MC_SITELOCAL
10038 Multicast site-local address.

10039 IN6_IS_ADDR_MC_ORGLOCAL
10040 Multicast organization-local address.

10041 IN6_IS_ADDR_MC_GLOBAL
10042 Multicast global address.

10043 IN6_IS_ADDR_LINKLOCAL and IN6_IS_ADDR_SITELOCAL return true only for the two
10044 local-use IPv6 unicast addresses. They do not return true for multicast addresses of either link-
10045 local or site-local scope.

280 Technical Standard (2001) (Draft April 13, 2001)

Headers <netinet/in.h>

10046 APPLICATION USAGE
10047 None.

10048 RATIONALE
10049 None.

10050 FUTURE DIRECTIONS
10051 None.

10052 SEE ALSO
10053 Section 4.8 (on page 97), <arpa/inet.h>, <inttypes.h>, <sys/socket.h>, the System Interfaces |
10054 volume of IEEE Std 1003.1-200x, connect(), getsockopt (), htonl(), htons(), ntohl(), ntohs(),
10055 sendmsg(), sendto(), setsockopt ()

10056 CHANGE HISTORY
10057 First released in Issue 6. Derived from the XNS, Issue 5.2 specification. |

10058 The sin_zero member was removed from the sockaddr_in structure as per The Open Group Base |
10059 Resolution bwg2001-004. |

Base Definitions, Issue 6 281

<netinet/tcp.h> Headers

10060 NAME
10061 netinet/tcp.h — definitions for the Internet Transmission Control Protocol (TCP)

10062 SYNOPSIS
10063 #include <netinet/tcp.h>

10064 DESCRIPTION
10065 The <netinet/tcp.h> header shall define the following macro for use as a socket option at the
10066 IPPROTO_TCP level:

10067 TCP_NODELAY Avoid coalescing of small segments.

10068 The macro shall be defined in the header. The implementation need not allow the value of the
10069 option to be set via setsockopt () or retrieved via getsockopt ().

10070 APPLICATION USAGE
10071 None.

10072 RATIONALE
10073 None.

10074 FUTURE DIRECTIONS
10075 None.

10076 SEE ALSO
10077 <sys/socket.h>, the System Interfaces volume of IEEE Std 1003.1-200x, getsockopt (), setsockopt ()

10078 CHANGE HISTORY
10079 First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

282 Technical Standard (2001) (Draft April 13, 2001)

Headers <nl_types.h>

10080 NAME
10081 nl_types.h — data types

10082 SYNOPSIS
10083 XSI #include <nl_types.h>
10084

10085 DESCRIPTION
10086 The <nl_types.h> header shall contain definitions of at least the following types:

10087 nl_catd Used by the message catalog functions catopen(), catgets(), and catclose ()
10088 to identify a catalog descriptor.

10089 nl_item Used by nl_langinfo () to identify items of langinfo data. Values of objects
10090 of type nl_item are defined in <langinfo.h>.

10091 The <nl_types.h> header shall contain definitions of at least the following constants:

10092 NL_SETD Used by gencat when no $set directive is specified in a message text source
10093 file; see the Internationalization Guide. This constant can be passed as the
10094 value of set_id on subsequent calls to catgets() (that is, to retrieve
10095 messages from the default message set). The value of NL_SETD is
10096 implementation-defined.

10097 NL_CAT_LOCALE Value that must be passed as the oflag argument to catopen() to ensure
10098 that message catalog selection depends on the LC_MESSAGES locale
10099 category, rather than directly on the LANG environment variable.

10100 The following shall be declared as functions and may also be defined as macros. Function |
10101 prototypes shall be provided. |

10102 int catclose(nl_catd);
10103 char *catgets(nl_catd, int, int, const char *);
10104 nl_catd catopen(const char *, int);

10105 APPLICATION USAGE
10106 None.

10107 RATIONALE
10108 None.

10109 FUTURE DIRECTIONS
10110 None.

10111 SEE ALSO
10112 <langinfo.h>, the System Interfaces volume of IEEE Std 1003.1-200x, catclose (), catgets(),
10113 catopen(), nl_langinfo (), the Shell and Utilities volume of IEEE Std 1003.1-200x, gencat

10114 CHANGE HISTORY
10115 First released in Issue 2.

Base Definitions, Issue 6 283

<poll.h> Headers

10116 NAME
10117 poll.h — definitions for the poll() function

10118 SYNOPSIS
10119 XSI #include <poll.h>
10120

10121 DESCRIPTION
10122 The <poll.h> header shall define the pollfd structure that includes at least the following
10123 members:

10124 int fd The following descriptor being polled.
10125 short events The input event flags (see below).
10126 short revents The output event flags (see below).

10127 The <poll.h> header shall define the following type through typedef:

10128 nfds_t An unsigned integer type used for the number of file descriptors.

10129 The implementation shall support one or more programming environments in which the width |
10130 of nfds_t is no greater than the width of type long. The names of these programming |
10131 environments can be obtained using the confstr() function or the getconf utility. |

10132 The following symbolic constants shall be defined, zero or more of which may be OR’ed together |
10133 to form the events or revents members in the pollfd structure:

10134 POLLIN Data other than high-priority data may be read without blocking.

10135 POLLRDNORM Normal data may be read without blocking.

10136 POLLRDBAND Priority data may be read without blocking.

10137 POLLPRI High priority data may be read without blocking.

10138 POLLOUT Normal data may be written without blocking.

10139 POLLWRNORM Equivalent to POLLOUT. |

10140 POLLWRBAND Priority data may be written.

10141 POLLERR An error has occurred (revents only).

10142 POLLHUP Device has been disconnected (revents only).

10143 POLLNVAL Invalid fd member (revents only).

10144 The significance and semantics of normal, priority, and high-priority data are file and device-
10145 specific.

10146 The following shall be declared as a function and may also be defined as a macro. A function |
10147 prototype shall be provided. |

10148 int poll(struct pollfd[], nfds_t, int);

284 Technical Standard (2001) (Draft April 13, 2001)

Headers <poll.h>

10149 APPLICATION USAGE
10150 None.

10151 RATIONALE
10152 None.

10153 FUTURE DIRECTIONS
10154 None.

10155 SEE ALSO
10156 The System Interfaces volume of IEEE Std 1003.1-200x, confstr(), poll (), the Shell and Utilities |
10157 volume of IEEE Std 1003.1-200x, getconf |

10158 CHANGE HISTORY
10159 First released in Issue 4, Version 2.

10160 Issue 6
10161 The description of the symbolic constants is updated to match the poll () function.

10162 Text related to STREAMS has been moved to the poll () reference page.

10163 A note is added to the DESCRIPTION regarding the significance and semantics of normal,
10164 priority, and high-priority data.

Base Definitions, Issue 6 285

<pthread.h> Headers

10165 NAME
10166 pthread.h — threads

10167 SYNOPSIS
10168 THR #include <pthread.h>
10169

10170 DESCRIPTION
10171 The <pthread.h> header shall define the following symbols:

10172 BAR PTHREAD_BARRIER_SERIAL_THREAD
10173 PTHREAD_CANCEL_ASYNCHRONOUS
10174 PTHREAD_CANCEL_ENABLE
10175 PTHREAD_CANCEL_DEFERRED
10176 PTHREAD_CANCEL_DISABLE
10177 PTHREAD_CANCELED
10178 PTHREAD_COND_INITIALIZER
10179 PTHREAD_CREATE_DETACHED
10180 PTHREAD_CREATE_JOINABLE
10181 PTHREAD_EXPLICIT_SCHED
10182 PTHREAD_INHERIT_SCHED
10183 XSI PTHREAD_MUTEX_DEFAULT
10184 PTHREAD_MUTEX_ERRORCHECK
10185 PTHREAD_MUTEX_INITIALIZER
10186 XSI PTHREAD_MUTEX_NORMAL
10187 PTHREAD_MUTEX_RECURSIVE
10188 PTHREAD_ONCE_INIT
10189 TPP|TPI PTHREAD_PRIO_INHERIT
10190 PTHREAD_PRIO_NONE
10191 PTHREAD_PRIO_PROTECT
10192 PTHREAD_PROCESS_SHARED
10193 PTHREAD_PROCESS_PRIVATE
10194 TPS PTHREAD_SCOPE_PROCESS
10195 PTHREAD_SCOPE_SYSTEM
10196

10197 The following types shall be defined as described in <sys/types.h>:

10198 pthread_attr_t
10199 BAR pthread_barrier_t
10200 pthread_barrierattr_t
10201 pthread_cond_t
10202 pthread_condattr_t
10203 pthread_key_t
10204 pthread_mutex_t
10205 pthread_mutexattr_t
10206 pthread_once_t
10207 pthread_rwlock_t
10208 pthread_rwlockattr_t
10209 SPI pthread_spinlock_t
10210 pthread_t

10211 The following shall be declared as functions and may also be defined as macros. Function |
10212 prototypes shall be provided. |

286 Technical Standard (2001) (Draft April 13, 2001)

Headers <pthread.h>

10213 int pthread_atfork(void (*)(void), void (*)(void),
10214 void(*)(void));
10215 int pthread_attr_destroy(pthread_attr_t *);
10216 int pthread_attr_getdetachstate(const pthread_attr_t *, int *);
10217 XSI int pthread_attr_getguardsize(const pthread_attr_t *restrict,
10218 size_t *restrict);
10219 TPS int pthread_attr_getinheritsched(const pthread_attr_t *restrict,
10220 int *restrict);
10221 int pthread_attr_getschedparam(const pthread_attr_t *restrict,
10222 struct sched_param *restrict);
10223 TPS int pthread_attr_getschedpolicy(const pthread_attr_t *restrict,
10224 int *restrict);
10225 TPS int pthread_attr_getscope(const pthread_attr_t *restrict,
10226 int *restrict);
10227 XSI int pthread_attr_getstack(const pthread_attr_t *restrict,
10228 void **restrict, size_t *restrict);
10229 TSA int pthread_attr_getstackaddr(const pthread_attr_t *restrict,
10230 void **restrict);
10231 int pthread_attr_getstacksize(const pthread_attr_t *restrict,
10232 size_t *restrict);
10233 int pthread_attr_init(pthread_attr_t *);
10234 int pthread_attr_setdetachstate(pthread_attr_t *, int);
10235 XSI int pthread_attr_setguardsize(pthread_attr_t *, size_t);
10236 TPS int pthread_attr_setinheritsched(pthread_attr_t *, int);
10237 int pthread_attr_setschedparam(pthread_attr_t *restrict,
10238 const struct sched_param *restrict);
10239 TPS int pthread_attr_setschedpolicy(pthread_attr_t *, int);
10240 int pthread_attr_setscope(pthread_attr_t *, int);
10241 XSI int pthread_attr_setstack(pthread_attr_t *, void *, size_t);
10242 TSA int pthread_attr_setstackaddr(pthread_attr_t *, void *);
10243 int pthread_attr_setstacksize(pthread_attr_t *, size_t);
10244 BAR int pthread_barrier_destroy(pthread_barrier_t *);
10245 int pthread_barrier_init(pthread_barrier_t *restrict,
10246 const pthread_barrierattr_t *restrict, unsigned);
10247 int pthread_barrier_wait(pthread_barrier_t *);
10248 int pthread_barrierattr_destroy(pthread_barrierattr_t *);
10249 int pthread_barrierattr_getpshared(\ |
10250 const pthread_barrierattr_t *restrict, int *restrict); |
10251 int pthread_barrierattr_init(pthread_barrierattr_t *); |
10252 int pthread_barrierattr_setpshared(pthread_barrierattr_t *, int);
10253 int pthread_cancel(pthread_t);
10254 void pthread_cleanup_push(void (*)(void *), void *);
10255 void pthread_cleanup_pop(int);
10256 int pthread_cond_broadcast(pthread_cond_t *);
10257 int pthread_cond_destroy(pthread_cond_t *);
10258 int pthread_cond_init(pthread_cond_t *restrict,
10259 const pthread_condattr_t *restrict);
10260 int pthread_cond_signal(pthread_cond_t *);
10261 int pthread_cond_timedwait(pthread_cond_t *restrict,
10262 pthread_mutex_t *restrict, const struct timespec *restrict);
10263 int pthread_cond_wait(pthread_cond_t *restrict,
10264 pthread_mutex_t *restrict);

Base Definitions, Issue 6 287

<pthread.h> Headers

10265 int pthread_condattr_destroy(pthread_condattr_t *);
10266 CS int pthread_condattr_getclock(const pthread_condattr_t *restrict,
10267 clockid_t *restrict);
10268 int pthread_condattr_getpshared(const pthread_condattr_t *restrict,
10269 int *restrict);
10270 int pthread_condattr_init(pthread_condattr_t *);
10271 CS int pthread_condattr_setclock(pthread_condattr_t *, clockid_t);
10272 int pthread_condattr_setpshared(pthread_condattr_t *, int);
10273 int pthread_create(pthread_t *restrict, const pthread_attr_t *restrict,
10274 void *(*)(void *), void *restrict);
10275 int pthread_detach(pthread_t);
10276 int pthread_equal(pthread_t, pthread_t);
10277 void pthread_exit(void *);
10278 XSI int pthread_getconcurrency(void);
10279 TCT int pthread_getcpuclockid(pthread_t, clockid_t *);
10280 TPS int pthread_getschedparam(pthread_t, int *restrict,
10281 struct sched_param *restrict);
10282 void *pthread_getspecific(pthread_key_t);
10283 int pthread_join(pthread_t, void **);
10284 int pthread_key_create(pthread_key_t *, void (*)(void *));
10285 int pthread_key_delete(pthread_key_t);
10286 int pthread_mutex_destroy(pthread_mutex_t *);
10287 TPP int pthread_mutex_getprioceiling(const pthread_mutex_t *restrict,
10288 int *restrict);
10289 int pthread_mutex_init(pthread_mutex_t *restrict,
10290 const pthread_mutexattr_t *restrict);
10291 int pthread_mutex_lock(pthread_mutex_t *);
10292 TPP int pthread_mutex_setprioceiling(pthread_mutex_t *restrict, int,
10293 int *restrict);
10294 TMO int pthread_mutex_timedlock(pthread_mutex_t *,
10295 const struct timespec *);
10296 int pthread_mutex_trylock(pthread_mutex_t *);
10297 int pthread_mutex_unlock(pthread_mutex_t *);
10298 int pthread_mutexattr_destroy(pthread_mutexattr_t *);
10299 TPP|TPI int pthread_mutexattr_getprioceiling(\ |
10300 const pthread_mutexattr_t *restrict, int *restrict); |
10301 int pthread_mutexattr_getprotocol(const pthread_mutexattr_t *restrict, |
10302 int *restrict);
10303 int pthread_mutexattr_getpshared(const pthread_mutexattr_t *restrict,
10304 int *restrict);
10305 XSI int pthread_mutexattr_gettype(const pthread_mutexattr_t *restrict,
10306 int *restrict);
10307 int pthread_mutexattr_init(pthread_mutexattr_t *);
10308 TPP|TPI int pthread_mutexattr_setprioceiling(pthread_mutexattr_t *, int);
10309 int pthread_mutexattr_setprotocol(pthread_mutexattr_t *, int);
10310 int pthread_mutexattr_setpshared(pthread_mutexattr_t *, int);
10311 XSI int pthread_mutexattr_settype(pthread_mutexattr_t *, int);
10312 int pthread_once(pthread_once_t *, void (*)(void));
10313 int pthread_rwlock_destroy(pthread_rwlock_t *);
10314 int pthread_rwlock_init(pthread_rwlock_t *restrict,
10315 const pthread_rwlockattr_t *restrict);
10316 int pthread_rwlock_rdlock(pthread_rwlock_t *);

288 Technical Standard (2001) (Draft April 13, 2001)

Headers <pthread.h>

10317 int pthread_rwlock_timedrdlock(pthread_rwlock_t *restrict,
10318 const struct timespec *restrict);
10319 int pthread_rwlock_timedwrlock(pthread_rwlock_t *restrict,
10320 const struct timespec *restrict);
10321 int pthread_rwlock_tryrdlock(pthread_rwlock_t *);
10322 int pthread_rwlock_trywrlock(pthread_rwlock_t *);
10323 int pthread_rwlock_unlock(pthread_rwlock_t *);
10324 int pthread_rwlock_wrlock(pthread_rwlock_t *);
10325 int pthread_rwlockattr_destroy(pthread_rwlockattr_t *);
10326 int pthread_rwlockattr_getpshared(const pthread_rwlockattr_t *restrict,
10327 int *restrict);
10328 int pthread_rwlockattr_init(pthread_rwlockattr_t *);
10329 int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *, int);
10330 pthread_t
10331 pthread_self(void);
10332 int pthread_setcancelstate(int, int *);
10333 int pthread_setcanceltype(int, int *);
10334 XSI int pthread_setconcurrency(int);
10335 TPS int pthread_setschedparam(pthread_t, int,
10336 const struct sched_param *);
10337 THR TPS int pthread_setschedprio(pthread_t, int); |
10338 int pthread_setspecific(pthread_key_t, const void *); |
10339 SPI int pthread_spin_destroy(pthread_spinlock_t *);
10340 int pthread_spin_init(pthread_spinlock_t *, int);
10341 int pthread_spin_lock(pthread_spinlock_t *);
10342 int pthread_spin_trylock(pthread_spinlock_t *);
10343 int pthread_spin_unlock(pthread_spinlock_t *);
10344 void pthread_testcancel(void);

10345 Inclusion of the <pthread.h> header shall make symbols defined in the headers <sched.h> and
10346 <time.h> visible.

10347 APPLICATION USAGE
10348 None.

10349 RATIONALE
10350 None.

10351 FUTURE DIRECTIONS
10352 None.

10353 SEE ALSO
10354 <sched.h>, <time.h>, the System Interfaces volume of IEEE Std 1003.1-200x,
10355 pthread_attr_getguardsize(), pthread_attr_init(), pthread_attr_setscope(), pthread_barrier_destroy(),
10356 pthread_barrier_init(), pthread_barrier_wait(), pthread_barrierattr_destroy(),
10357 pthread_barrierattr_getpshared(), pthread_barrierattr_init(), pthread_barrierattr_setpshared(),
10358 pthread_cancel(), pthread_cleanup_pop(), pthread_cond_init(), pthread_cond_signal(),
10359 pthread_cond_wait(), pthread_condattr_getclock(), pthread_condattr_init(),
10360 pthread_condattr_setclock(), pthread_create(), pthread_detach(), pthread_equal(), pthread_exit (),
10361 pthread_getconcurrency(), pthread_getcpuclockid(), pthread_getschedparam(), pthread_join (),
10362 pthread_key_create(), pthread_key_delete(), pthread_mutex_init(), pthread_mutex_lock(),
10363 pthread_mutex_setprioceiling(), pthread_mutex_timedlock(), pthread_mutexattr_init(),
10364 pthread_mutexattr_gettype(), pthread_mutexattr_setprotocol(), pthread_once(),
10365 pthread_rwlock_destroy(), pthread_rwlock_init(), pthread_rwlock_rdlock(),
10366 pthread_rwlock_timedrdlock(), pthread_rwlock_timedwrlock(), pthread_rwlock_tryrdlock(),

Base Definitions, Issue 6 289

<pthread.h> Headers

10367 pthread_rwlock_trywrlock(), pthread_rwlock_unlock(), pthread_rwlock_wrlock(),
10368 pthread_rwlockattr_destroy(), pthread_rwlockattr_getpshared(), pthread_rwlockattr_init(),
10369 pthread_rwlockattr_setpshared(), pthread_self (), pthread_setcancelstate(), pthread_setspecific(),
10370 pthread_spin_destroy(), pthread_spin_init(), pthread_spin_lock(), pthread_spin_trylock(),
10371 pthread_spin_unlock()

10372 CHANGE HISTORY
10373 First released in Issue 5. Included for alignment with the POSIX Threads Extension.

10374 Issue 6
10375 The RTT margin markers are now broken out into their POSIX options.

10376 The Open Group Corrigendum U021/9 is applied, correcting the prototype for the
10377 pthread_cond_wait() function.

10378 The Open Group Corrigendum U026/2 is applied correcting the prototype for the
10379 pthread_setschedparam() function so that its second argument is of type int.

10380 The pthread_getcpuclockid() and pthread_mutex_timedlock() functions are added for alignment
10381 with IEEE Std 1003.1d-1999.

10382 The following functions are added for alignment with IEEE Std 1003.1j-2000:
10383 pthread_barrier_destroy(), pthread_barrier_init(), pthread_barrier_wait(),
10384 pthread_barrierattr_destroy(), pthread_barrierattr_getpshared(), pthread_barrierattr_init(),
10385 pthread_barrierattr_setpshared(), pthread_condattr_getclock(), pthread_condattr_setclock(),
10386 pthread_rwlock_timedrdlock(), pthread_rwlock_timedwrlock(), pthread_spin_destroy(),
10387 pthread_spin_init(), pthread_spin_lock(), pthread_spin_trylock(), and pthread_spin_unlock().

10388 PTHREAD_RWLOCK_INITIALIZER is deleted for alignment with IEEE Std 1003.1j-2000.

10389 Functions previously marked as part of the Read-Write Locks option are now moved to the
10390 Threads option.

10391 The restrict keyword is added to the prototypes for pthread_attr_getguardsize(),
10392 pthread_attr_getinheritsched(), pthread_attr_getschedparam(), pthread_attr_getschedpolicy(),
10393 pthread_attr_getscope(), pthread_attr_getstackaddr(), pthread_attr_getstacksize(),
10394 pthread_attr_setschedparam(), pthread_barrier_init(), pthread_barrierattr_getpshared(),
10395 pthread_cond_init(), pthread_cond_signal(), pthread_cond_timedwait(), pthread_cond_wait(),
10396 pthread_condattr_getclock(), pthread_condattr_getpshared(), pthread_create(),
10397 pthread_getschedparam(), pthread_mutex_getprioceiling(), pthread_mutex_init(),
10398 pthread_mutex_setprioceiling(), pthread_mutexattr_getprioceiling(), pthread_mutexattr_getprotocol(),
10399 pthread_mutexattr_getpshared(), pthread_mutexattr_gettype(), pthread_rwlock_init(),
10400 pthread_rwlock_timedrdlock(), pthread_rwlock_timedwrlock(), pthread_rwlockattr_getpshared(), and
10401 pthread_sigmask().

10402 IEEE PASC Interpretation 1003.1 #86 is applied, allowing the symbols from <sched.h> and
10403 <time.h> to be made visible when <pthread.h> is included. Previously this was an XSI
10404 extension.

10405 IEEE PASC Interpretation 1003.1c #42 is applied, removing the requirement for prototypes for
10406 the pthread_kill () and pthread_sigmask() functions. These are required to be in the <signal.h>
10407 header. They are allowed here through the name space rules. |

10408 IEEE PASC Interpretation 1003.1 #96 is applied, adding the pthread_setschedprio() function. |

290 Technical Standard (2001) (Draft April 13, 2001)

Headers <pwd.h>

10409 NAME
10410 pwd.h — password structure

10411 SYNOPSIS
10412 #include <pwd.h>

10413 DESCRIPTION
10414 The <pwd.h> header shall provide a definition for struct passwd, which shall include at least the
10415 following members:

10416 char *pw_name User’s login name.
10417 uid_t pw_uid Numerical user ID.
10418 gid_t pw_gid Numerical group ID.
10419 char *pw_dir Initial working directory.
10420 char *pw_shell Program to use as shell.

10421 The gid_t and uid_t types shall be defined as described in <sys/types.h>.

10422 The following shall be declared as functions and may also be defined as macros. Function |
10423 prototypes shall be provided. |

10424 struct passwd *getpwnam(const char *);
10425 struct passwd *getpwuid(uid_t);
10426 TSF int getpwnam_r(const char *, struct passwd *, char *,
10427 size_t, struct passwd **);
10428 int getpwuid_r(uid_t, struct passwd *, char *,
10429 size_t, struct passwd **);
10430 XSI void endpwent(void);
10431 struct passwd *getpwent(void);
10432 void setpwent(void);
10433

10434 APPLICATION USAGE
10435 None.

10436 RATIONALE
10437 None.

10438 FUTURE DIRECTIONS
10439 None.

10440 SEE ALSO
10441 <sys/types.h>, the System Interfaces volume of IEEE Std 1003.1-200x, endpwent(), getpwnam(),
10442 getpwuid()

10443 CHANGE HISTORY
10444 First released in Issue 1.

10445 Issue 5
10446 The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

10447 Issue 6
10448 The following new requirements on POSIX implementations derive from alignment with the
10449 Single UNIX Specification:

10450 • The gid_t and uid_t types are mandated.

10451 • The getpwnam_r() and getpwuid_r() functions are marked as part of the
10452 _POSIX_THREAD_SAFE_FUNCTIONS option.

Base Definitions, Issue 6 291

<regex.h> Headers

10453 NAME
10454 regex.h — regular expression matching types

10455 SYNOPSIS
10456 #include <regex.h>

10457 DESCRIPTION
10458 The <regex.h> header shall define the structures and symbolic constants used by the regcomp(),
10459 regexec(), regerror(), and regfree() functions.

10460 The structure type regex_t shall contain at least the following member:

10461 size_t re_nsub Number of parenthesized subexpressions.

10462 The type size_t shall be defined as described in <sys/types.h>.

10463 The type regoff_t shall be defined as a signed integer type that can hold the largest value that |
10464 can be stored in either a type off_t or type ssize_t. The structure type regmatch_t shall contain
10465 at least the following members:

10466 regoff_t rm_so Byte offset from start of string
10467 to start of substring.
10468 regoff_t rm_eo Byte offset from start of string of the
10469 first character after the end of substring.

10470 Values for the cflags parameter to the regcomp() function:

10471 REG_EXTENDED Use Extended Regular Expressions.

10472 REG_ICASE Ignore case in match.

10473 REG_NOSUB Report only success or fail in regexec().

10474 REG_NEWLINE Change the handling of newline.

10475 Values for the eflags parameter to the regexec() function:

10476 REG_NOTBOL The circumflex character (’ˆ’), when taken as a special character, does
10477 not match the beginning of string.

10478 REG_NOTEOL The dollar sign (’$’), when taken as a special character, does not match
10479 the end of string.

10480 The following constants shall be defined as error return values:

10481 REG_NOMATCH regexec() failed to match.

10482 REG_BADPAT Invalid regular expression.

10483 REG_ECOLLATE Invalid collating element referenced.

10484 REG_ECTYPE Invalid character class type referenced.

10485 REG_EESCAPE Trailing ’\’ in pattern.

10486 REG_ESUBREG Number in \digit invalid or in error.

10487 REG_EBRACK "[]" imbalance.

10488 REG_EPAREN "\(\)" or "()" imbalance.

10489 REG_EBRACE "\{\}" imbalance.

10490 REG_BADBR Content of "\{\}" invalid: not a number, number too large, more than
10491 two numbers, first larger than second.

292 Technical Standard (2001) (Draft April 13, 2001)

Headers <regex.h>

10492 REG_ERANGE Invalid endpoint in range expression.

10493 REG_ESPACE Out of memory.

10494 REG_BADRPT ’?’ , ’*’ , or ’+’ not preceded by valid regular expression.

10495 OB REG_ENOSYS Reserved.

10496 The following shall be declared as functions and may also be defined as macros. Function |
10497 prototypes shall be provided. |

10498 int regcomp(regex_t *restrict, const char *restrict, int);
10499 size_t regerror(int, const regex_t *restrict, char *restrict, size_t);
10500 int regexec(const regex_t *restrict, const char *restrict, size_t,
10501 regmatch_t[restrict], int);
10502 void regfree(regex_t *);

10503 The implementation may define additional macros or constants using names beginning with
10504 REG_.

10505 APPLICATION USAGE
10506 None.

10507 RATIONALE
10508 None.

10509 FUTURE DIRECTIONS
10510 None.

10511 SEE ALSO
10512 The System Interfaces volume of IEEE Std 1003.1-200x, regcomp(), the Shell and Utilities volume
10513 of IEEE Std 1003.1-200x

10514 CHANGE HISTORY
10515 First released in Issue 4.

10516 Originally derived from the ISO POSIX-2 standard.

10517 Issue 6
10518 The REG_ENOSYS constant is marked obsolescent.

10519 The restrict keyword is added to the prototypes for regcomp(), regerror(), and regexec().

10520 A statement is added that the size_t type is defined as described in <sys/types.h>.

Base Definitions, Issue 6 293

<sched.h> Headers

10521 NAME
10522 sched.h — execution scheduling (REALTIME)

10523 SYNOPSIS
10524 PS #include <sched.h>
10525

10526 DESCRIPTION
10527 The <sched.h> header shall define the sched_param structure, which contains the scheduling
10528 parameters required for implementation of each supported scheduling policy. This structure
10529 shall contain at least the following member:

10530 int sched_priority Process execution scheduling priority.

10531 SS|TSP In addition, if _POSIX_SPORADIC_SERVER or _POSIX_THREAD_SPORADIC_SERVER is
10532 defined, the sched_param structure defined in <sched.h> shall contain the following members
10533 in addition to those specified above:

10534 int sched_ss_low_priority Low scheduling priority for
10535 sporadic server.
10536 struct timespec sched_ss_repl_period Replenishment period for
10537 sporadic server.
10538 struct timespec sched_ss_init_budget Initial budget for sporadic server.
10539 int sched_ss_max_repl Maximum pending replenishments for
10540 sporadic server.

10541

10542 Each process is controlled by an associated scheduling policy and priority. Associated with each
10543 policy is a priority range. Each policy definition specifies the minimum priority range for that
10544 policy. The priority ranges for each policy may overlap the priority ranges of other policies.

10545 Four scheduling policies are defined; others may be defined by the implementation. The four
10546 standard policies are indicated by the values of the following symbolic constants:

10547 SCHED_FIFO First in-first out (FIFO) scheduling policy.

10548 SCHED_RR Round robin scheduling policy.

10549 SS|TSP SCHED_SPORADIC Sporadic server scheduling policy.

10550 SCHED_OTHER Another scheduling policy.

10551 The values of these constants are distinct.

10552 The following shall be declared as functions and may also be defined as macros. Function |
10553 prototypes shall be provided. |

10554 int sched_get_priority_max(int);
10555 int sched_get_priority_min(int);
10556 int sched_getparam(pid_t, struct sched_param *);
10557 int sched_getscheduler(pid_t);
10558 int sched_rr_get_interval(pid_t, struct timespec *);
10559 int sched_setparam(pid_t, const struct sched_param *);
10560 int sched_setscheduler(pid_t, int, const struct sched_param *);
10561 int sched_yield(void);

10562 Inclusion of the <sched.h> header makes symbols defined in the header <time.h> visible.

294 Technical Standard (2001) (Draft April 13, 2001)

Headers <sched.h>

10563 APPLICATION USAGE
10564 None.

10565 RATIONALE
10566 None.

10567 FUTURE DIRECTIONS
10568 None.

10569 SEE ALSO
10570 <time.h>

CHANGE10571 HISTORY
10572 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

10573 Issue 6
10574 The <sched.h> header is marked as part of the Process Scheduling option.

10575 Sporadic server members are added to the sched_param structure, and the SCHED_SPORADIC
10576 scheduling policy is added for alignment with IEEE Std 1003.1d-1999.

10577 IEEE PASC Interpretation 1003.1 #108 is applied, correcting the sched_param structure whose
10578 members sched_ss_repl_period and sched_ss_init_budget members should be type struct timespec
10579 and not timespec.

Base Definitions, Issue 6 295

<search.h> Headers

10580 NAME
10581 search.h — search tables

10582 SYNOPSIS
10583 XSI #include <search.h>
10584

10585 DESCRIPTION
10586 The <search.h> header shall define the ENTRY type for structure entry which shall include the
10587 following members:

10588 char *key
10589 void *data

10590 and shall define ACTION and VISIT as enumeration data types through type definitions as
10591 follows:

10592 enum { FIND, ENTER } ACTION;
10593 enum { preorder, postorder, endorder, leaf } VISIT;

10594 The size_t type shall be defined as described in <sys/types.h>.

10595 The following shall be declared as functions and may also be defined as macros. Function |
10596 prototypes shall be provided. |

10597 int hcreate(size_t);
10598 void hdestroy(void);
10599 ENTRY *hsearch(ENTRY, ACTION);
10600 void insque(void *, void *);
10601 void *lfind(const void *, const void *, size_t *,
10602 size_t, int (*)(const void *, const void *));
10603 void *lsearch(const void *, void *, size_t *,
10604 size_t, int (*)(const void *, const void *));
10605 void remque(void *);
10606 void *tdelete(const void *restrict, void **restrict,
10607 int(*)(const void *, const void *));
10608 void *tfind(const void *, void *const *,
10609 int(*)(const void *, const void *));
10610 void *tsearch(const void *, void **,
10611 int(*)(const void *, const void *));
10612 void twalk(const void *,
10613 void (*)(const void *, VISIT, int));

10614 APPLICATION USAGE
10615 None.

10616 RATIONALE
10617 None.

10618 FUTURE DIRECTIONS
10619 None.

10620 SEE ALSO
10621 <sys/types.h>, the System Interfaces volume of IEEE Std 1003.1-200x, hcreate(), insque(),
10622 lsearch(), remque(), tsearch()

296 Technical Standard (2001) (Draft April 13, 2001)

Headers <search.h>

10623 CHANGE HISTORY
10624 First released in Issue 1. Derived from Issue 1 of the SVID.

10625 Issue 6
10626 The Open Group Corrigendum U021/6 is applied updating the prototypes for tdelete() and
10627 tsearch().

10628 The restrict keyword is added to the prototype for tdelete().

Base Definitions, Issue 6 297

<semaphore.h> Headers

10629 NAME
10630 semaphore.h — semaphores (REALTIME)

10631 SYNOPSIS
10632 SEM #include <semaphore.h>
10633

10634 DESCRIPTION
10635 The <semaphore.h> header shall define the sem_t type, used in performing semaphore
10636 operations. The semaphore may be implemented using a file descriptor, in which case
10637 applications are able to open up at least a total of {OPEN_MAX} files and semaphores. The
10638 symbol SEM_FAILED shall be defined (see sem_open()).

10639 The following shall be declared as functions and may also be defined as macros. Function |
10640 prototypes shall be provided. |

10641 int sem_close(sem_t *);
10642 int sem_destroy(sem_t *);
10643 int sem_getvalue(sem_t *restrict, int *restrict);
10644 int sem_init(sem_t *, int, unsigned);
10645 sem_t *sem_open(const char *, int, ...);
10646 int sem_post(sem_t *);
10647 TMO int sem_timedwait(sem_t *restrict, const struct timespec *restrict);
10648 int sem_trywait(sem_t *);
10649 int sem_unlink(const char *);
10650 int sem_wait(sem_t *);

10651 Inclusion of the <semaphore.h> header may make visible symbols defined in the headers
10652 <fcntl.h> and <sys/types.h>.

10653 APPLICATION USAGE
10654 None.

10655 RATIONALE
10656 None.

10657 FUTURE DIRECTIONS
10658 None.

10659 SEE ALSO
10660 <fcntl.h>, <sys/types.h>, the System Interfaces volume of IEEE Std 1003.1-200x, sem_destroy(),
10661 sem_getvalue(), sem_init(), sem_open(), sem_post(), sem_timedwait(), sem_trywait(), sem_unlink(),
10662 sem_wait()

10663 CHANGE HISTORY
10664 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

10665 Issue 6
10666 The <semaphore.h> header is marked as part of the Semaphores option.

10667 The Open Group Corrigendum U021/3 is applied, adding a description of SEM_FAILED.

10668 The sem_timedwait() function is added for alignment with IEEE Std 1003.1d-1999.

10669 The restrict keyword is added to the prototypes for sem_getvalue() and sem_timedwait().

298 Technical Standard (2001) (Draft April 13, 2001)

Headers <setjmp.h>

10670 NAME
10671 setjmp.h — stack environment declarations

10672 SYNOPSIS
10673 #include <setjmp.h>

10674 DESCRIPTION
10675 CX Some of the functionality described on this reference page extends the ISO C standard.
10676 Applications shall define the appropriate feature test macro (see the System Interfaces volume of
10677 IEEE Std 1003.1-200x, Section 2.2, The Compilation Environment) to enable the visibility of these
10678 symbols in this header.

10679 CX The <setjmp.h> header shall define the array types jmp_buf andsigjmp_buf.

10680 The following shall be declared as functions and may also be defined as macros. Function |
10681 prototypes shall be provided. |

10682 void longjmp(jmp_buf, int);
10683 CX void siglongjmp(sigjmp_buf, int);
10684 XSI void _longjmp(jmp_buf, int);
10685

10686 The following may be declared as a function, or defined as a macro, or both. Function prototypes |
10687 shall be provided. |

10688 int setjmp(jmp_buf);
10689 CX int sigsetjmp(sigjmp_buf, int);
10690 XSI int _setjmp(jmp_buf);
10691

10692 APPLICATION USAGE
10693 None.

10694 RATIONALE
10695 None.

10696 FUTURE DIRECTIONS
10697 None.

10698 SEE ALSO
10699 The System Interfaces volume of IEEE Std 1003.1-200x, longjmp(), _longjmp (), setjmp(),
10700 siglongjmp (), sigsetjmp()

10701 CHANGE HISTORY
10702 First released in Issue 1.

10703 Issue 6
10704 Extensions beyond the ISO C standard are now marked.

Base Definitions, Issue 6 299

<signal.h> Headers

10705 NAME
10706 signal.h — signals

10707 SYNOPSIS
10708 #include <signal.h>

10709 DESCRIPTION
10710 CX Some of the functionality described on this reference page extends the ISO C standard.
10711 Applications shall define the appropriate feature test macro (see the System Interfaces volume of
10712 IEEE Std 1003.1-200x, Section 2.2, The Compilation Environment) to enable the visibility of these
10713 symbols in this header.

10714 The <signal.h> header shall define the following symbolic constants, each of which expands to a
10715 distinct constant expression of the type:

10716 void (*)(int)

10717 whose value matches no declarable function.

10718 SIG_DFL Request for default signal handling.

10719 SIG_ERR Return value from signal() in case of error.

10720 CX SIG_HOLD Request that signal be held.

10721 SIG_IGN Request that signal be ignored.

10722 The following data types shall be defined through typedef:

10723 sig_atomic_t Possibly volatile-qualified integer type of an object that can be accessed as
10724 an atomic entity, even in the presence of asynchronous interrupts.

10725 CX sigset_t Integer or structure type of an object used to represent sets of signals.

10726 CX pid_t As described in <sys/types.h>.

10727 RTS The <signal.h> header shall define the sigevent structure, which has at least the following
10728 members:

10729 int sigev_notify Notification type.
10730 int sigev_signo Signal number.
10731 union sigval sigev_value Signal value.
10732 void(*)(union sigval) sigev_notify_function Notification function.
10733 (pthread_attr_t *) sigev_notify_attributes Notification attributes.

10734 The following values of sigev_notify shall be defined:

10735 SIGEV_NONE No asynchronous notification is delivered when the event of interest
10736 occurs.

10737 SIGEV_SIGNAL A queued signal, with an application-defined value, is generated when
10738 the event of interest occurs.

10739 SIGEV_THREAD A notification function is called to perform notification.

10740 The sigval union shall be defined as:

10741 int sival_int Integer signal value.
10742 void *sival_ptr Pointer signal value.

10743 This header shall also declare the macros SIGRTMIN and SIGRTMAX, which evaluate to integer |
10744 expressions, and specify a range of signal numbers that are reserved for application use and for |
10745 which the realtime signal behavior specified in this volume of IEEE Std 1003.1-200x is supported. |

300 Technical Standard (2001) (Draft April 13, 2001)

Headers <signal.h>

10746 The signal numbers in this range do not overlap any of the signals specified in the following |
10747 table. |

10748 The range SIGRTMIN through SIGRTMAX inclusive shall include at least {RTSIG_MAX} signal
10749 numbers.

10750 It is implementation-defined whether realtime signal behavior is supported for other signals.

10751 This header also declares the constants that are used to refer to the signals that occur in the
10752 system. Signals defined here begin with the letters SIG. Each of the signals have distinct positive
10753 integer values. The value 0 is reserved for use as the null signal (see kill ()). Additional
10754 implementation-defined signals may occur in the system.

10755 CX The ISO C standard only requires the signal names SIGABRT, SIGFPE, SIGILL, SIGINT,
10756 SIGSEGV, and SIGTERM to be defined.

10757 The following signals shall be supported on all implementations (default actions are explained
10758 below the table):
10759 ___
10760 Signal Default Action Description___
10761 SIGABRT A Process abort signal.
10762 SIGALRM T Alarm clock.
10763 SIGBUS A Access to an undefined portion of a memory object.
10764 SIGCHLD I Child process terminated, stopped, |
10765 XSI or continued. |
10766 SIGCONT C Continue executing, if stopped. |
10767 SIGFPE A Erroneous arithmetic operation.
10768 SIGHUP T Hangup.
10769 SIGILL A Illegal instruction.
10770 SIGINT T Terminal interrupt signal.
10771 SIGKILL T Kill (cannot be caught or ignored).
10772 SIGPIPE T Write on a pipe with no one to read it.
10773 SIGQUIT A Terminal quit signal.
10774 SIGSEGV A Invalid memory reference.
10775 SIGSTOP S Stop executing (cannot be caught or ignored).
10776 SIGTERM T Termination signal.
10777 SIGTSTP S Terminal stop signal.
10778 SIGTTIN S Background process attempting read.
10779 SIGTTOU S Background process attempting write.
10780 SIGUSR1 T User-defined signal 1.
10781 SIGUSR2 T User-defined signal 2.
10782 XSI SIGPOLL T Pollable event.
10783 SIGPROF T Profiling timer expired.
10784 SIGSYS A Bad system call.
10785 SIGTRAP A Trace/breakpoint trap.
10786 SIGURG I High bandwidth data is available at a socket.
10787 XSI SIGVTALRM T Virtual timer expired.
10788 SIGXCPU A CPU time limit exceeded.
10789 SIGXFSZ A File size limit exceeded.___LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

10790 The default actions are as follows:

10791 T Abnormal termination of the process. The process is terminated with all the consequences
10792 of _exit() except that the status made available to wait() and waitpid () indicates abnormal
10793 termination by the specified signal.

Base Definitions, Issue 6 301

<signal.h> Headers

10794 A Abnormal termination of the process. |
10795 XSI Additionally, implementation-defined abnormal termination actions, such as creation of a |
10796 core file, may occur.
10797 I Ignore the signal.
10798 S Stop the process.
10799 C Continue the process, if it is stopped; otherwise, ignore the signal.

10800 CX The header shall provide a declaration of struct sigaction, including at least the following
10801 members:

10802 void (*sa_handler)(int) What to do on receipt of signal.
10803 sigset_t sa_mask Set of signals to be blocked during execution
10804 of the signal handling function.
10805 int sa_flags Special flags.
10806 void (*)(int, siginfo_t *, void *) sa_sigaction
10807 Pointer to signal handler function or one
10808 of the macros SIG_IGN or SIG_DFL.

10809

10810 XSI The storage occupied by sa_handler and sa_sigaction may overlap, and a portable program must
10811 not use both simultaneously.

10812 The following shall be declared as constants:

10813 CX SA_NOCLDSTOP Do not generate SIGCHLD when children stop |
10814 XSI or stopped children continue. |

10815 CX SIG_BLOCK The resulting set is the union of the current set and the signal set pointed
10816 to by the argument set.

10817 CX SIG_UNBLOCK The resulting set is the intersection of the current set and the complement
10818 of the signal set pointed to by the argument set.

10819 CX SIG_SETMASK The resulting set is the signal set pointed to by the argument set.

10820 XSI SA_ONSTACK Causes signal delivery to occur on an alternate stack.

10821 XSI SA_RESETHAND Causes signal dispositions to be set to SIG_DFL on entry to signal
10822 handlers.

10823 XSI SA_RESTART Causes certain functions to become restartable.

10824 XSI SA_SIGINFO Causes extra information to be passed to signal handlers at the time of
10825 receipt of a signal.

10826 XSI SA_NOCLDWAIT Causes implementations not to create zombie processes on child death.

10827 XSI SA_NODEFER Causes signal not to be automatically blocked on entry to signal handler.

10828 XSI SS_ONSTACK Process is executing on an alternate signal stack.

10829 XSI SS_DISABLE Alternate signal stack is disabled.

10830 XSI MINSIGSTKSZ Minimum stack size for a signal handler.

10831 XSI SIGSTKSZ Default size in bytes for the alternate signal stack.

10832 XSI The ucontext_t structure shall be defined through typedef as described in <ucontext.h>.

10833 The mcontext_t type shall be defined through typedef as described in <ucontext.h>.

302 Technical Standard (2001) (Draft April 13, 2001)

Headers <signal.h>

10834 The <signal.h> header shall define the stack_t type as a structure that includes at least the
10835 following members:

10836 void *ss_sp Stack base or pointer.
10837 size_t ss_size Stack size.
10838 int ss_flags Flags.

10839 The <signal.h> header shall define the sigstack structure that includes at least the following
10840 members:

10841 int ss_onstack Non-zero when signal stack is in use.
10842 void *ss_sp Signal stack pointer.

10843

10844 CX The <signal.h> header shall define the siginfo_t type as a structure that includes at least the |
10845 following members: |

10846 CX int si_signo Signal number.
10847 XSI int si_errno If non-zero, an errno value associated with
10848 this signal, as defined in <errno.h>.
10849 CX int si_code Signal code.
10850 XSI pid_t si_pid Sending process ID.
10851 uid_t si_uid Real user ID of sending process.
10852 void *si_addr Address of faulting instruction.
10853 int si_status Exit value or signal.
10854 long si_band Band event for SIGPOLL.
10855 RTS union sigval si_value Signal value.
10856

10857 The macros specified in the Code column of the following table are defined for use as values of
10858 XSI si_code that are signal-specific ornon-signal-specific reasons why the signal was generated.

Base Definitions, Issue 6 303

<signal.h> Headers

10859 __
10860 Signal Code Reason__
10861 XSI SIGILL ILL_ILLOPC Illegal opcode.
10862 ILL_ILLOPN Illegal operand.
10863 ILL_ILLADR Illegal addressing mode.
10864 ILL_ILLTRP Illegal trap.
10865 ILL_PRVOPC Privileged opcode.
10866 ILL_PRVREG Privileged register.
10867 ILL_COPROC Coprocessor error.
10868 ILL_BADSTK Internal stack error.__
10869 SIGFPE FPE_INTDIV Integer divide by zero.
10870 FPE_INTOVF Integer overflow.
10871 FPE_FLTDIV Floating-point divide by zero.
10872 FPE_FLTOVF Floating-point overflow.
10873 FPE_FLTUND Floating-point underflow.
10874 FPE_FLTRES Floating-point inexact result.
10875 FPE_FLTINV Invalid floating-point operation.
10876 FPE_FLTSUB Subscript out of range.__
10877 SIGSEGV SEGV_MAPERR Address not mapped to object.
10878 SEGV_ACCERR Invalid permissions for mapped object.__
10879 SIGBUS BUS_ADRALN Invalid address alignment.
10880 BUS_ADRERR Non-existent physical address.
10881 BUS_OBJERR Object specific hardware error.__
10882 SIGTRAP TRAP_BRKPT Process breakpoint.
10883 TRAP_TRACE Process trace trap.__
10884 SIGCHLD CLD_EXITED Child has exited.
10885 CLD_KILLED Child has terminated abnormally and did not create a core file.
10886 CLD_DUMPED Child has terminated abnormally and created a core file.
10887 CLD_TRAPPED Traced child has trapped.
10888 CLD_STOPPED Child has stopped.
10889 CLD_CONTINUED Stopped child has continued.__
10890 SIGPOLL POLL_IN Data input available.
10891 POLL_OUT Output buffers available.
10892 POLL_MSG Input message available.
10893 POLL_ERR I/O error.
10894 POLL_PRI High priority input available.
10895 POLL_HUP Device disconnected.__
10896 CX Any SI_USER Signal sent by kill ().
10897 SI_QUEUE Signal sent by the sigqueue().
10898 SI_TIMER Signal generated by expiration of a timer set by timer_settime().
10899 SI_ASYNCIO Signal generated by completion of an asynchronous I/O
10900 request.
10901 SI_MESGQ Signal generated by arrival of a message on an empty message
10902 queue.__LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

10903 XSI Implementations may support additional si_code values not included in this list, may generate
10904 values included in this list under circumstances other than those described in this list, and may
10905 contain extensions or limitations that prevent some values from being generated.
10906 Implementations do not generate a different value from the ones described in this list for
10907 circumstances described in this list.

304 Technical Standard (2001) (Draft April 13, 2001)

Headers <signal.h>

10908 In addition, the following signal-specific information shall be available:
10909 ___
10910 Signal Member Value___
10911 SIGILL void * si_addr Address of faulting instruction.
10912 SIGFPE___
10913 SIGSEGV void * si_addr Address of faulting memory reference.
10914 SIGBUS___
10915 SIGCHLD pid_t si_pid Child process ID.
10916 int si_status Exit value or signal.
10917 uid_t si_uid Real user ID of the process that sent the signal.___
10918 SIGPOLL long si_band Band event for POLL_IN, POLL_OUT, or POLL_MSG.___L

L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L

10919 For some implementations, the value of si_addr may be inaccurate.

10920 The following shall be declared as functions and may also be defined as macros:

10921 XSI void (*bsd_signal(int, void (*)(int)))(int);
10922 CX int kill(pid_t, int);
10923 XSI int killpg(pid_t, int);
10924 THR int pthread_kill(pthread_t, int); |
10925 int pthread_sigmask(int, const sigset_t *, sigset_t *);
10926 int raise(int);
10927 CX int sigaction(int, const struct sigaction *restrict,
10928 struct sigaction *restrict);
10929 int sigaddset(sigset_t *, int);
10930 XSI int sigaltstack(const stack_t *restrict, stack_t *restrict);
10931 CX int sigdelset(sigset_t *, int);
10932 int sigemptyset(sigset_t *);
10933 int sigfillset(sigset_t *);
10934 XSI int sighold(int);
10935 int sigignore(int);
10936 int siginterrupt(int, int);
10937 CX int sigismember(const sigset_t *, int);
10938 void (*signal(int, void (*)(int)))(int);
10939 XSI int sigpause(int);
10940 CX int sigpending(sigset_t *);
10941 int sigprocmask(int, const sigset_t *restrict, sigset_t *restrict);
10942 RTS int sigqueue(pid_t, int, const union sigval);
10943 XSI int sigrelse(int);
10944 void (*sigset(int, void (*)(int)))(int);
10945 CX int sigsuspend(const sigset_t *);
10946 RTS int sigtimedwait(const sigset_t *restrict, siginfo_t *restrict,
10947 const struct timespec *restrict);
10948 CX int sigwait(const sigset_t *restrict, int *restrict);
10949 RTS int sigwaitinfo(const sigset_t *restrict, siginfo_t *restrict);
10950

Base Definitions, Issue 6 305

<signal.h> Headers

10951 CX Inclusion of the <signal.h> header may make visible all symbols from the <time.h> header.

10952 APPLICATION USAGE
10953 None.

10954 RATIONALE
10955 None.

10956 FUTURE DIRECTIONS
10957 None.

10958 SEE ALSO
10959 <errno.h>, <stropts.h>, <sys/types.h>, <time.h>, <ucontext.h>, the System Interfaces volume of
10960 IEEE Std 1003.1-200x, alarm(), bsd_signal(), ioctl (), kill (), killpg (), raise(), sigaction (), sigaddset(),
10961 sigaltstack (), sigdelset(), sigemptyset(), sigfillset (), siginterrupt(), sigismember(), signal(),
10962 sigpending(), sigprocmask (), sigqueue(), sigsuspend(), sigwaitinfo (), wait(), waitid ()

10963 CHANGE HISTORY
10964 First released in Issue 1.

10965 Issue 5
10966 The DESCRIPTION is updated for alignment with POSIX Realtime Extension and the POSIX
10967 Threads Extension.

10968 The default action for SIGURG is changed for i to iii. The function prototype for sigmask() is
10969 removed.

10970 Issue 6
10971 The Open Group Corrigendum U035/2 is applied. In the DESCRIPTION, the wording for
10972 abnormal termination is clarified.

10973 The Open Group Corrigendum U028/8 is applied, correcting the prototype for the sigset()
10974 function.

10975 The Open Group Corrigendum U026/3 is applied, correcting the type of the sigev_notify_function
10976 function member of the sigevent structure.

10977 The following new requirements on POSIX implementations derive from alignment with the
10978 Single UNIX Specification:

10979 • The SIGCHLD, SIGCONT, SIGSTOP, SIGTSTP, SIGTTIN, and SIGTTOU signals are now
10980 mandated. This is also a FIPS requirement.

10981 • The pid_t definition is mandated.

10982 The RT markings are now changed to RTS to denote that the semantics are part of the Realtime
10983 Signals Extension option.

10984 The restrict keyword is added to the prototypes for sigaction (), sigaltstack (), sigprocmask (),
10985 sigtimedwait (), sigwait (), and sigwaitinfo ().

10986 IEEE PASC Interpretation 1003.1 #85 is applied, adding the statement that symbols from
10987 <time.h> may be made visible when <signal.h> is included. Extensions beyond the ISO C
10988 standard are now marked.

306 Technical Standard (2001) (Draft April 13, 2001)

Headers <spawn.h>

10989 NAME
10990 spawn.h — spawn (ADVANCED REALTIME)

10991 SYNOPSIS
10992 SPN #include <spawn.h>
10993

10994 DESCRIPTION
10995 The <spawn.h> header shall define the posix_spawnattr_t and posix_spawn_file_actions_t
10996 types used in performing spawn operations.

10997 The <spawn.h> header shall define the flags that may be set in a posix_spawnattr_t object using
10998 the posix_spawnattr_setflags() function:

10999 POSIX_SPAWN_RESETIDS
11000 POSIX_SPAWN_SETPGROUP
11001 PS POSIX_SPAWN_SETSCHEDPARAM
11002 POSIX_SPAWN_SETSCHEDULER
11003 POSIX_SPAWN_SETSIGDEF
11004 POSIX_SPAWN_SETSIGMASK

11005 The following shall be declared as functions and may also be defined as macros. Function |
11006 prototypes shall be provided. |

11007 int posix_spawn(pid_t *restrict, const char *restrict,
11008 const posix_spawn_file_actions_t *,
11009 const posix_spawnattr_t *restrict, char *const [restrict],
11010 char *const [restrict]);
11011 int posix_spawn_file_actions_addclose(posix_spawn_file_actions_t *,
11012 int);
11013 int posix_spawn_file_actions_adddup2(posix_spawn_file_actions_t *,
11014 int, int);
11015 int posix_spawn_file_actions_addopen(posix_spawn_file_actions_t *restrict,
11016 int, const char *restrict, int, mode_t);
11017 int posix_spawn_file_actions_destroy(posix_spawn_file_actions_t *);
11018 int posix_spawn_file_actions_init(posix_spawn_file_actions_t *);
11019 int posix_spawnattr_destroy(posix_spawnattr_t *);
11020 int posix_spawnattr_getsigdefault(const posix_spawnattr_t *restrict,
11021 sigset_t *restrict);
11022 int posix_spawnattr_getflags(const posix_spawnattr_t *restrict,
11023 short *restrict);
11024 int posix_spawnattr_getpgroup(const posix_spawnattr_t *restrict,
11025 pid_t *restrict);
11026 PS int posix_spawnattr_getschedparam(const posix_spawnattr_t *restrict,
11027 struct sched_param *restrict);
11028 int posix_spawnattr_getschedpolicy(const posix_spawnattr_t *restrict,
11029 int *restrict);
11030 int posix_spawnattr_getsigmask(const posix_spawnattr_t *restrict,
11031 sigset_t *restrict);
11032 int posix_spawnattr_init(posix_spawnattr_t *);
11033 int posix_spawnattr_setsigdefault(posix_spawnattr_t *restrict,
11034 const sigset_t *restrict);
11035 int posix_spawnattr_setflags(posix_spawnattr_t *, short);
11036 int posix_spawnattr_setpgroup(posix_spawnattr_t *, pid_t);
11037 PS

Base Definitions, Issue 6 307

<spawn.h> Headers

11038 int posix_spawnattr_setschedparam(posix_spawnattr_t *restrict,
11039 const struct sched_param *restrict);
11040 int posix_spawnattr_setschedpolicy(posix_spawnattr_t *, int);
11041 int posix_spawnattr_setsigmask(posix_spawnattr_t *restrict,
11042 const sigset_t *restrict);
11043 int posix_spawnp(pid_t *restrict, const char *restrict, |
11044 const posix_spawn_file_actions_t *,
11045 const posix_spawnattr_t *restrict,
11046 char *const [restrict], char *const [restrict]);

11047 Inclusion of the <spawn.h> header may make visible symbols defined in the <sched.h>,
11048 <signal.h>, and <sys/types.h> headers.

11049 APPLICATION USAGE
11050 None.

11051 RATIONALE
11052 None.

11053 FUTURE DIRECTIONS
11054 None.

11055 SEE ALSO
11056 <sched.h>, <semaphore.h>, <signal.h>, <sys/types.h>, the System Interfaces volume of
11057 IEEE Std 1003.1-200x, posix_spawnattr_destroy(), posix_spawnattr_getsigdefault(),
11058 posix_spawnattr_getflags(), posix_spawnattr_getpgroup(), posix_spawnattr_getschedparam(),
11059 posix_spawnattr_getschedpolicy(), posix_spawnattr_getsigmask(), posix_spawnattr_init(),
11060 posix_spawnattr_setsigdefault(), posix_spawnattr_setflags(), posix_spawnattr_setpgroup(),
11061 posix_spawnattr_setschedparam(), posix_spawnattr_setschedpolicy(), posix_spawnattr_setsigmask(),
11062 posix_spawn (), posix_spawn_file_actions_addclose(), posix_spawn_file_actions_adddup2(),
11063 posix_spawn_file_actions_addopen(), posix_spawn_file_actions_destroy(),
11064 posix_spawn_file_actions_init(), posix_spawnp ()

11065 CHANGE HISTORY
11066 First released in Issue 6. Included for alignment with IEEE Std 1003.1d-1999.

11067 The restrict keyword is added to the prototypes for posix_spawn (),
11068 posix_spawn_file_actions_addopen(), posix_spawnattr_getsigdefault(), posix_spawnattr_getflags(),
11069 posix_spawnattr_getpgroup(), posix_spawnattr_getschedparam(), posix_spawnattr_getschedpolicy(),
11070 posix_spawnattr_getsigmask(), posix_spawnattr_setsigdefault(), posix_spawnattr_setschedparam(),
11071 posix_spawnattr_setsigmask(), and posix_spawnp ().

308 Technical Standard (2001) (Draft April 13, 2001)

Headers <stdarg.h>

11072 NAME
11073 stdarg.h — handle variable argument list

11074 SYNOPSIS
11075 #include <stdarg.h>

11076 void va_start(va_list ap, argN);
11077 void va_copy(va_list dest , va_list src);
11078 type va_arg(va_list ap, type);
11079 void va_end(va_list ap);

11080 DESCRIPTION
11081 CX The functionality described on this reference page is aligned with the ISO C standard. Any
11082 conflict between the requirements described here and the ISO C standard is unintentional. This
11083 volume of IEEE Std 1003.1-200x defers to the ISO C standard.

11084 The <stdarg.h> header shall contain a set of macros which allows portable functions that accept
11085 variable argument lists to be written. Functions that have variable argument lists (such as
11086 printf()) but do not use these macros, are inherently non-portable, as different systems use
11087 different argument-passing conventions.

11088 The type va_list shall be defined for variables used to traverse the list.

11089 The va_start () macro is invoked to initialize ap to the beginning of the list before any calls to
11090 va_arg ().

11091 The va_copy () macro initializes as a copy of src, as if the va_start () macro had been applied to
11092 dest followed by the same sequence of uses of the va_arg () macro as had previously been used to
11093 reach the present state of src. Neither the va_copy () nor va_start () macro shall be invoked to
11094 reinitialize dest without an intervening invocation of the va_end() macro for the same dest.

11095 The object ap may be passed as an argument to another function; if that function invokes the
11096 va_arg () macro with parameter ap , the value of ap in the calling function is unspecified and shall |
11097 be passed to the va_end() macro prior to any further reference to ap . The parameter argN is the |
11098 identifier of the rightmost parameter in the variable parameter list in the function definition (the
11099 one just before the . . .). If the parameter argN is declared with the register storage class, with a
11100 function type or array type, or with a type that is not compatible with the type that results after
11101 application of the default argument promotions, the behavior is undefined.

11102 The va_arg () macro shall return the next argument in the list pointed to by ap . Each invocation
11103 of va_arg () modifies ap so that the values of successive arguments are returned in turn. The type
11104 parameter is the type the argument is expected to be. This is the type name specified such that
11105 the type of a pointer to an object that has the specified type can be obtained simply by suffixing
11106 a ’*’ to type. Different types can be mixed, but it is up to the routine to know what type of
11107 argument is expected.

11108 The va_end() macro is used to clean up; it invalidates ap for use (unless va_start () or va_copy () is
11109 invoked again).

11110 Each invocation of the va_start () and va_copy () macros shall be matched by a corresponding
11111 invocation of the va_end() macro in the same function.

11112 Multiple traversals, each bracketed by va_start () . . . va_end(), are possible.

11113 EXAMPLES
11114 This example is a possible implementation of execl():

11115 #include <stdarg.h>

Base Definitions, Issue 6 309

<stdarg.h> Headers

11116 #define MAXARGS 31

11117 /*
11118 * execl is called by
11119 * execl(file, arg1, arg2, ..., (char *)(0));
11120 */
11121 int execl(const char *file, const char *args, ...)
11122 {
11123 va_list ap;
11124 char *array[MAXARGS];
11125 int argno = 0;
11126 va_start(ap, args);
11127 while (args != 0) {
11128 array[argno++] = args;
11129 args = va_arg(ap, const char *);
11130 }
11131 va_end(ap);
11132 return execv(file, array);
11133 }

11134 APPLICATION USAGE
11135 It is up to the calling routine to communicate to the called routine how many arguments there
11136 are, since it is not always possible for the called routine to determine this in any other way. For
11137 example, execl() is passed a null pointer to signal the end of the list. The printf() function can tell
11138 how many arguments are there by the format argument.

11139 RATIONALE
11140 None.

11141 FUTURE DIRECTIONS
11142 None.

11143 SEE ALSO
11144 The System Interfaces volume of IEEE Std 1003.1-200x, exec(), printf()

11145 CHANGE HISTORY
11146 First released in Issue 4. Derived from the ANSI C standard.

310 Technical Standard (2001) (Draft April 13, 2001)

Headers <stdbool.h>

11147 NAME
11148 stdbool.h — boolean type and values

11149 SYNOPSIS
11150 #include <stdbool.h>

11151 DESCRIPTION
11152 CX The functionality described on this reference page is aligned with the ISO C standard. Any
11153 conflict between the requirements described here and the ISO C standard is unintentional. This
11154 volume of IEEE Std 1003.1-200x defers to the ISO C standard.

11155 The <stdbool.h> header shall define the following macros:

11156 bool Expands to _Bool.

11157 true Expands to the integer constant 1.

11158 false Expands to the integer constant 0.

11159 _ _bool_true_false_are_defined
11160 Expands to the integer constant 1.

11161 An application may undefine and then possibly redefine the macros bool, true, and false.

11162 APPLICATION USAGE
11163 None.

11164 RATIONALE
11165 None.

11166 FUTURE DIRECTIONS
11167 The ability to undefine and redefine the macros bool, true, and false is an obsolescent feature
11168 and may be withdrawn in the future.

11169 SEE ALSO
11170 None.

11171 CHANGE HISTORY
11172 First released in Issue 6. Included for alignment with the ISO/IEC 9899: 1999 standard.

Base Definitions, Issue 6 311

<stddef.h> Headers

11173 NAME
11174 stddef.h — standard type definitions

11175 SYNOPSIS
11176 #include <stddef.h>

11177 DESCRIPTION
11178 CX The functionality described on this reference page is aligned with the ISO C standard. Any
11179 conflict between the requirements described here and the ISO C standard is unintentional. This
11180 volume of IEEE Std 1003.1-200x defers to the ISO C standard.

11181 The <stddef.h> header shall define the following macros:

11182 NULL Null pointer constant.

11183 offsetof(type, member-designator)
11184 Integer constant expression of type size_t, the value of which is the offset in bytes
11185 to the structure member (member-designator), from the beginning of its structure
11186 (type).

11187 The <stddef.h> header shall define the following types:

11188 ptrdiff_t Signed integer type of the result of subtracting two pointers.

11189 wchar_t Integer type whose range of values can represent distinct wide-character codes for
11190 all members of the largest character set specified among the locales supported by
11191 the compilation environment: the null character has the code value 0 and each |
11192 member of the portable character set has a code value equal to its value when used |
11193 as the lone character in an integer character constant. |

11194 size_t Unsigned integer type of the result of the sizeof operator.

11195 The implementation shall support one or more programming environments in which the widths |
11196 of ptrdiff_t, size_t, and wchar_t are no greater than the width of type long. The names of these |
11197 programming environments can be obtained using the confstr() function or the getconf utility. |

11198 APPLICATION USAGE
11199 None.

11200 RATIONALE
11201 None.

11202 FUTURE DIRECTIONS
11203 None.

11204 SEE ALSO
11205 <wchar.h>, <sys/types.h>, the System Interfaces volume of IEEE Std 1003.1-200x, confstr(), the |
11206 Shell and Utilities volume of IEEE Std 1003.1-200x, getconf |

11207 CHANGE HISTORY
11208 First released in Issue 4. Derived from the ANSI C standard.

312 Technical Standard (2001) (Draft April 13, 2001)

Headers <stdint.h>

11209 NAME
11210 stdint.h — integer types

11211 SYNOPSIS
11212 #include <stdint.h>

11213 DESCRIPTION
11214 CX Some of the functionality described on this reference page extends the ISO C standard.
11215 Applications shall define the appropriate feature test macro (see the System Interfaces volume of
11216 IEEE Std 1003.1-200x, Section 2.2, The Compilation Environment) to enable the visibility of these
11217 symbols in this header.

11218 The <stdint.h> header shall declare sets of integer types having specified widths, and shall
11219 define corresponding sets of macros. It shall also define macros that specify limits of integer
11220 types corresponding to types defined in other standard headers.

11221 Note: The ‘‘width’’ of an integer type is the number of bits used to store its value in a pure binary
11222 system; the actual type may use more bits than that (for example, a 28-bit type could be stored
11223 in 32 bits of actual storage). An N-bit signed type has values in the range −2N−1 or 1−2N−1 to
11224 2N−1−1, while an N-bit unsigned type has values in the range 0 to 2N−1.

11225 Types are defined in the following categories:

11226 • Integer types having certain exact widths

11227 • Integer types having at least certain specified widths

11228 • Fastest integer types having at least certain specified widths

11229 • Integer types wide enough to hold pointers to objects

11230 • Integer types having greatest width

11231 (Some of these types may denote the same type.)

11232 Corresponding macros specify limits of the declared types and construct suitable constants.

11233 For each type described herein that the implementation provides, the <stdint.h> header shall
11234 declare that typedef name and define the associated macros. Conversely, for each type described
11235 herein that the implementation does not provide, the <stdint.h> header shall not declare that
11236 typedef name, nor shall it define the associated macros. An implementation shall provide those
11237 types described as required, but need not provide any of the others (described as optional).

11238 Integer Types

11239 When typedef names differing only in the absence or presence of the initial u are defined, they
11240 shall denote corresponding signed and unsigned types as described in the ISO/IEC 9899: 1999
11241 standard, Section 6.2.5; an implementation providing one of these corresponding types shall also
11242 provide the other.

11243 In the following descriptions, the symbol N represents an unsigned decimal integer with no
11244 leading zeros (for example, 8 or 24, but not 04 or 048).

11245 • Exact-width integer types

11246 The typedef name intN_t designates a signed integer type with width N, no padding bits,
11247 and a two’s-complement representation. Thus, int8_t denotes a signed integer type with a
11248 width of exactly 8 bits.

11249 The typedef name uintN_t designates an unsigned integer type with width N. Thus,
11250 uint24_t denotes an unsigned integer type with a width of exactly 24 bits.

Base Definitions, Issue 6 313

<stdint.h> Headers

11251 CX The following types are required: |

11252 int8_t |
11253 int16_t
11254 int32_t
11255 uint8_t
11256 uint16_t
11257 uint32_t
11258 |

11259 If an implementation provides integer types with width 64 that meet these requirements, |
11260 then the following types are required: |

11261 int64_t ||
11262 uint64_t ||

11263 CX In particular, this will be the case if any of the following are true: |

11264 — The implementation supports the _POSIX_V6_ILP32_OFFBIG programming |
11265 environment and the application is being built in the _POSIX_V6_ILP32_OFFBIG
11266 programming environment (see the Shell and Utilities volume of IEEE Std 1003.1-200x,
11267 c99, Programming Environments).

11268 — The implementation supports the _POSIX_V6_LP64_OFF64 programming environment
11269 and the application is being built in the _POSIX_V6_LP64_OFF64 programming
11270 environment.

11271 — The implementation supports the _POSIX_V6_LPBIG_OFFBIG programming
11272 environment and the application is being built in the _POSIX_V6_LPBIG_OFFBIG
11273 programming environment. |

11274 All other types are of this form optional. |

11275 • Minimum-width integer types

11276 The typedef name int_leastN_t designates a signed integer type with a width of at least N,
11277 such that no signed integer type with lesser size has at least the specified width. Thus,
11278 int_least32_t denotes a signed integer type with a width of at least 32 bits.

11279 The typedef name uint_leastN_t designates an unsigned integer type with a width of at least
11280 N, such that no unsigned integer type with lesser size has at least the specified width. Thus,
11281 uint_least16_t denotes an unsigned integer type with a width of at least 16 bits.

11282 The following types are required: |

11283 int_least8_t ||
11284 int_least16_t |
11285 int_least32_t |
11286 int_least64_t |
11287 uint_least8_t |
11288 uint_least16_t |
11289 uint_least32_t |
11290 uint_least64_t |

11291 All other types of this form are optional. |

11292 • Fastest minimum-width integer types |

11293 Each of the following types designates an integer type that is usually fastest to operate with |
11294 among all integer types that have at least the specified width. |

314 Technical Standard (2001) (Draft April 13, 2001)

Headers <stdint.h>

11295 The designated type is not guaranteed to be fastest for all purposes; if the implementation |
11296 has no clear grounds for choosing one type over another, it will simply pick some integer |
11297 type satisfying the signedness and width requirements. |

11298 The typedef name int_fastN_t designates the fastest signed integer type with a width of at |
11299 least N. The typedef name uint_fastN_t designates the fastest unsigned integer type with a |
11300 width of at least N. |

11301 The following types are required: |

11302 int_fast8_t ||
11303 int_fast16_t |
11304 int_fast32_t |
11305 int_fast64_t |
11306 uint_fast8_t |
11307 uint_fast16_t |
11308 uint_fast32_t |
11309 uint_fast64_t |

11310 All other types of this form are optional. |

11311 • Integer types capable of holding object pointers |

11312 The following type designates a signed integer type with the property that any valid pointer |
11313 to void can be converted to this type, then converted back to a pointer to void, and the result |
11314 will compare equal to the original pointer: |

11315 intptr_t ||

11316 The following type designates an unsigned integer type with the property that any valid |
11317 pointer to void can be converted to this type, then converted back to a pointer to void, and |
11318 the result will compare equal to the original pointer: |

11319 uintptr_t ||

11320 XSI On XSI-conformant systems, the intptr_t and uintptr_t types are required;otherwise, they are |
11321 optional. |

11322 • Greatest-width integer types |

11323 The following type designates a signed integer type capable of representing any value of any |
11324 signed integer type: |

11325 intmax_t ||

11326 The following type designates an unsigned integer type capable of representing any value of |
11327 any unsigned integer type: |

11328 uintmax_t ||

11329 These types are required. |
11330 Note: Applications can test for optional types by using the corresponding limit macro from Limits of |
11331 Specified-Width Integer Types (on page 316). |

Base Definitions, Issue 6 315

<stdint.h> Headers

11332 Limits of Specified-Width Integer Types |

11333 The following macros specify the minimum and maximum limits of the types declared in the
11334 <stdint.h> header. Each macro name corresponds to a similar type name in Integer Types (on
11335 page 313).

11336 Each instance of any defined macro shall be replaced by a constant expression suitable for use in
11337 #if preprocessing directives, and this expression shall have the same type as would an
11338 expression that is an object of the corresponding type converted according to the integer
11339 promotions. Its implementation-defined value shall be equal to or greater in magnitude
11340 (absolute value) than the corresponding value given below, with the same sign, except where
11341 stated to be exactly the given value.

11342 • Limits of exact-width integer types

11343 — Minimum values of exact-width signed integer types:

11344 {INTN_MIN} Exactly −(2N−1)

11345 — Maximum values of exact-width signed integer types:

11346 {INTN_MAX} Exactly 2N−1 −1

11347 — Maximum values of exact-width unsigned integer types:

11348 {UINTN_MAX} Exactly 2N −1

11349 • Limits of minimum-width integer types

11350 — Minimum values of minimum-width signed integer types:

11351 {INT_LEASTN_MIN} −(2N−1 −1)

11352 — Maximum values of minimum-width signed integer types:

11353 {INT_LEASTN_MAX} 2N−1 −1 |

11354 — Maximum values of minimum-width unsigned integer types:

11355 {UINT_LEASTN_MAX} 2N −1

11356 • Limits of fastest minimum-width integer types

11357 — Minimum values of fastest minimum-width signed integer types:

11358 {INT_FASTN_MIN} −(2N−1 −1)

11359 — Maximum values of fastest minimum-width signed integer types:

11360 {INT_FASTN_MAX} 2N−1 −1

11361 — Maximum values of fastest minimum-width unsigned integer types:

11362 {UINT_FASTN_MAX} 2N −1

11363 • Limits of integer types capable of holding object pointers

11364 — Minimum value of pointer-holding signed integer type:

11365 {INTPTR_MIN} −(215 −1)

11366 — Maximum value of pointer-holding signed integer type:

11367 {INTPTR_MAX} 215 −1

11368 — Maximum value of pointer-holding unsigned integer type:

316 Technical Standard (2001) (Draft April 13, 2001)

Headers <stdint.h>

11369 {UINTPTR_MAX} 216 −1

11370 • Limits of greatest-width integer types

11371 — Minimum value of greatest-width signed integer type:

11372 {INTMAX_MIN} −(263 −1)

11373 — Maximum value of greatest-width signed integer type:

11374 {INTMAX_MAX} 263 −1

11375 — Maximum value of greatest-width unsigned integer type:

11376 {UINTMAX_MAX} 264 −1

11377 Limits of Other Integer Types

11378 The following macros specify the minimum and maximum limits of integer types corresponding
11379 to types defined in other standard headers.

11380 Each instance of these macros shall be replaced by a constant expression suitable for use in #if
11381 preprocessing directives, and this expression shall have the same type as would an expression
11382 that is an object of the corresponding type converted according to the integer promotions. Its
11383 implementation-defined value shall be equal to or greater in magnitude (absolute value) than
11384 the corresponding value given below, with the same sign.

11385 • Limits of ptrdiff_t:

11386 {PTRDIFF_MIN} −65535

11387 {PTRDIFF_MAX} +65535

11388 • Limits of sig_atomic_t:

11389 {SIG_ATOMIC_MIN} See below.

11390 {SIG_ATOMIC_MAX} See below.

11391 • Limit of size_t:

11392 {SIZE_MAX} 65535

11393 • Limits of wchar_t:

11394 {WCHAR_MIN} See below.

11395 {WCHAR_MAX} See below.

11396 • Limits of wint_t:

11397 {WINT_MIN} See below.

11398 {WINT_MAX} See below.

11399 If sig_atomic_t (see the <signal.h> header) is defined as a signed integer type, the value of
11400 {SIG_ATOMIC_MIN} shall be no greater than −127 and the value of {SIG_ATOMIC_MAX} shall
11401 be no less than 127; otherwise, sig_atomic_t shall be defined as an unsigned integer type, and the
11402 value of {SIG_ATOMIC_MIN} shall be 0 and the value of {SIG_ATOMIC_MAX} shall be no less
11403 than 255.

11404 If wchar_t (see the <stddef.h> header) is defined as a signed integer type, the value of
11405 {WCHAR_MIN} shall be no greater than −127 and the value of {WCHAR_MAX} shall be no less
11406 than 127; otherwise, wchar_t shall be defined as an unsigned integer type, and the value of
11407 {WCHAR_MIN} shall be 0 and the value of {WCHAR_MAX} shall be no less than 255.

Base Definitions, Issue 6 317

<stdint.h> Headers

11408 If wint_t (see the <wchar.h> header) is defined as a signed integer type, the value of
11409 {WINT_MIN} shall be no greater than −32767 and the value of {WINT_MAX} shall be no less
11410 than 32767; otherwise, wint_t shall be defined as an unsigned integer type, and the value of
11411 {WINT_MIN} shall be 0 and the value of {WINT_MAX} shall be no less than 65535. |

11412 Macros for Integer Constant Expressions |

11413 The following macros expand to integer constant expressions suitable for initializing objects that |
11414 have integer types corresponding to types defined in the <stdint.h> header. Each macro name
11415 corresponds to a similar type name listed under Minimum-width integer types and Greatest-width
11416 integer types.

11417 Each invocation of one of these macros shall expand to an integer constant expression suitable |
11418 for use in #if preprocessing directives. The type of the expression shall have the same type as |
11419 would an expression that is an object of the corresponding type converted according to the |
11420 integer promotions. The value of the expression shall be that of the argument. |

11421 The argument in any instance of these macros shall be a decimal, octal, or hexadecimal constant |
11422 with a value that does not exceed the limits for the corresponding type.

11423 • Macros for minimum-width integer constant expressions |

11424 The macro INTN_C(value) shall expand to an integer constant expression corresponding to |
11425 the type int_leastN_t. The macro UINTN_C(value) shall expand to an integer constant
11426 expression corresponding to the type uint_leastN_t. For example, if uint_least64_t is a name
11427 for the type unsigned long long, then UINT64_C(0x123) might expand to the integer
11428 constant 0x123ULL. |

11429 • Macros for greatest-width integer constant expressions |

11430 The following macro expands to an integer constant expression having the value specified by |
11431 its argument and the type intmax_t: |

11432 INTMAX_C(value) ||

11433 The following macro expands to an integer constant expression having the value specified by |
11434 its argument and the type uintmax_t: |

11435 UINTMAX_C(value) ||

11436 APPLICATION USAGE |
11437 None. |

11438 RATIONALE |
11439 The <stdint.h> header is a subset of the <inttypes.h> header more suitable for use in |
11440 freestanding environments, which might not support the formatted I/O functions. In some |
11441 environments, if the formatted conversion support is not wanted, using this header instead of |
11442 the <inttypes.h> header avoids defining such a large number of macros. |

11443 As a consequence of adding int8_t the following are true: |

11444 • A byte is exactly 8 bits. |

11445 • {CHAR_BIT} has the value 8, {SCHAR_MAX} has the value 127, {SCHAR_MIN} has the |
11446 value −127 or −128, and {UCHAR_MAX} has the value 255. |

11447 FUTURE DIRECTIONS |
11448 typedef names beginning with int or uint and ending with _t may be added to the types defined
11449 in the <stdint.h> header. Macro names beginning with INT or UINT and ending with _MAX,
11450 _MIN, or _C may be added to the macros defined in the <stdint.h> header.

318 Technical Standard (2001) (Draft April 13, 2001)

Headers <stdint.h>

11451 SEE ALSO
11452 <signal.h>, <stddef.h>, <wchar.h>, <inttypes.h>

CHANGE11453 HISTORY
11454 First released in Issue 6. Included for alignment with the ISO/IEC 9899: 1999 standard. |

11455 ISO/IEC 9899: 1999 standard, Technical Corrigendum No. 1 is incorporated. |

Base Definitions, Issue 6 319

<stdio.h> Headers

11456 NAME
11457 stdio.h — standard buffered input/output

11458 SYNOPSIS
11459 #include <stdio.h>

11460 DESCRIPTION
11461 CX Some of the functionality described on this reference page extends the ISO C standard.
11462 Applications shall define the appropriate feature test macro (see the System Interfaces volume of
11463 IEEE Std 1003.1-200x, Section 2.2, The Compilation Environment) to enable the visibility of these
11464 symbols in this header.

11465 The <stdio.h> header shall define the following macros as positive integer constant expressions:

11466 BUFSIZ Size of <stdio.h> buffers.

11467 _IOFBF Input/output fully buffered.

11468 _IOLBF Input/output line buffered.

11469 _IONBF Input/output unbuffered.

11470 CX L_ctermid Maximum size of character array to hold ctermid() output.

11471 L_tmpnam Maximum size of character array to hold tmpnam() output.

11472 SEEK_CUR Seek relative to current position.

11473 SEEK_END Seek relative to end-of-file.

11474 SEEK_SET Seek relative to start-of-file.

11475 The following macros shall be defined as positive integer constant expressions which denote
11476 implementation limits:

11477 {FILENAME_MAX} Maximum size in bytes of the longest filename string that the
11478 implementation guarantees can be opened.

11479 {FOPEN_MAX} Number of streams which the implementation guarantees can be open
11480 simultaneously. The value is at least eight.

11481 {TMP_MAX} Minimum number of unique filenames generated by tmpnam().
11482 Maximum number of times an application can call tmpnam() reliably. The
11483 XSI value of {TMP_MAX} is at least 25. On XSI-conformant systems, the
11484 value of {TMP_MAX} is at least 10,000.

11485 The following macro name shall be defined as a negative integer constant expression:

11486 EOF End-of-file return value.

11487 The following macro name shall be defined as a null pointer constant:

11488 NULL Null pointer.

11489 The following macro name shall be defined as a string constant:

11490 XSI P_tmpdir Default directory prefix for tempnam().

11491 The following shall be defined as expressions of type ‘‘pointer to FILE’’ that point to the FILE
11492 objects associated, respectively, with the standard error, input, and output streams:

11493 stderr Standard error output stream.

11494 stdin Standard input stream.

320 Technical Standard (2001) (Draft April 13, 2001)

Headers <stdio.h>

11495 stdout Standard output stream.

11496 The following data types shall be defined through typedef:

11497 FILE A structure containing information about a file.

11498 fpos_t A non-array type containing all information needed to specify uniquely
11499 every position within a file.

11500 XSI va_list As described in <stdarg.h>.

11501 size_t As described in <stddef.h>.

11502 The following shall be declared as functions and may also be defined as macros. Function |
11503 prototypes shall be provided. |

11504 void clearerr(FILE *);
11505 CX char *ctermid(char *);
11506 int fclose(FILE *);
11507 CX FILE *fdopen(int, const char *);
11508 int feof(FILE *);
11509 int ferror(FILE *);
11510 int fflush(FILE *);
11511 int fgetc(FILE *);
11512 int fgetpos(FILE *restrict, fpos_t *restrict);
11513 char *fgets(char *restrict, int, FILE *restrict);
11514 CX int fileno(FILE *);
11515 TSF void flockfile(FILE *);
11516 FILE *fopen(const char *restrict, const char *restrict);
11517 int fprintf(FILE *restrict, const char *restrict, ...);
11518 int fputc(int, FILE *);
11519 int fputs(const char *restrict, FILE *restrict);
11520 size_t fread(void *restrict, size_t, size_t, FILE *restrict);
11521 FILE *freopen(const char *restrict, const char *restrict,
11522 FILE *restrict);
11523 int fscanf(FILE *restrict, const char *restrict, ...);
11524 int fseek(FILE *, long, int);
11525 CX int fseeko(FILE *, off_t, int);
11526 int fsetpos(FILE *, const fpos_t *);
11527 long ftell(FILE *);
11528 CX off_t ftello(FILE *);
11529 TSF int ftrylockfile(FILE *);
11530 void funlockfile(FILE *);
11531 size_t fwrite(const void *restrict, size_t, size_t, FILE *restrict);
11532 int getc(FILE *);
11533 int getchar(void);
11534 TSF int getc_unlocked(FILE *);
11535 int getchar_unlocked(void);
11536 char *gets(char *);
11537 CX int pclose(FILE *);
11538 void perror(const char *);
11539 CX FILE *popen(const char *, const char *);
11540 int printf(const char *restrict, ...);
11541 int putc(int, FILE *);
11542 int putchar(int);
11543 TSF

Base Definitions, Issue 6 321

<stdio.h> Headers

11544 int putc_unlocked(int, FILE *);
11545 int putchar_unlocked(int);
11546 int puts(const char *);
11547 int remove(const char *);
11548 int rename(const char *, const char *);
11549 void rewind(FILE *);
11550 int scanf(const char *restrict, ...);
11551 void setbuf(FILE *restrict, char *restrict);
11552 int setvbuf(FILE *restrict, char *restrict, int, size_t);
11553 int snprintf(char *restrict, size_t, const char *restrict, ...);
11554 int sprintf(char *restrict, const char *restrict, ...);
11555 int sscanf(const char *restrict, const char *restrict, int ...);
11556 XSI char *tempnam(const char *, const char *);
11557 FILE *tmpfile(void);
11558 char *tmpnam(char *);
11559 int ungetc(int, FILE *);
11560 int vfprintf(FILE *restrict, const char *restrict, va_list);
11561 int vfscanf(FILE *restrict, const char *restrict, va_list);
11562 int vprintf(const char *restrict, va_list);
11563 int vscanf(const char *restrict, va_list);
11564 int vsnprintf(char *restrict, size_t, const char *restrict, va_list;
11565 int vsprintf(char *restrict, const char *restrict, va_list);
11566 int vsscanf(const char *restrict, const char *restrict, va_list arg);

11567 XSI Inclusion of the <stdio.h> header may also make visible all symbols from <stddef.h>.

11568 APPLICATION USAGE
11569 None.

11570 RATIONALE
11571 None.

11572 FUTURE DIRECTIONS
11573 None.

11574 SEE ALSO
11575 <sys/types.h>, the System Interfaces volume of IEEE Std 1003.1-200x, clearerr(), ctermid(),
11576 fclose(), fdopen(), fgetc(), fgetpos(), ferror(), feof(), fflush(), fgets(), fileno (), flockfile (), fopen(),
11577 fputc(), fputs(), fread(), freopen(), fseek(), fsetpos(), ftell (), fwrite(), getc(), getc_unlocked(),
11578 getwchar(), getchar(), getopt(), gets(), pclose(), perror(), popen(), printf(), putc(), putchar(), puts(),
11579 putwchar(), remove(), rename(), rewind(), scanf(), setbuf(), setvbuf(), sscanf(), stdin , system(),
11580 tempnam(), tmpfile(), tmpnam(), ungetc(), vfscanf (), vscanf(), vprintf(), vsscanf()

11581 CHANGE HISTORY
11582 First released in Issue 1. Derived from Issue 1 of the SVID.

11583 Issue 5
11584 The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

11585 Large File System extensions are added.

11586 The constant L_cuserid and the external variables optarg , opterr , optind , and optopt are marked as
11587 extensions and LEGACY.

11588 The cuserid() and getopt() functions are marked LEGACY.

322 Technical Standard (2001) (Draft April 13, 2001)

Headers <stdio.h>

11589 Issue 6
11590 The constant L_cuserid and the external variables optarg , opterr , optind , and optopt are removed
11591 as they were previously marked LEGACY.

11592 The cuserid(), getopt(), and getw() functions are removed as they were previously marked |
11593 LEGACY.

11594 Several functions are marked as part of the _POSIX_THREAD_SAFE_FUNCTIONS option.

11595 This reference page is updated to align with the ISO/IEC 9899: 1999 standard. Note that the
11596 description of the fpos_t type is now explicitly updated to exclude array types.

11597 Extensions beyond the ISO C standard are now marked. |

Base Definitions, Issue 6 323

<stdlib.h> Headers

11598 NAME
11599 stdlib.h — standard library definitions

11600 SYNOPSIS
11601 #include <stdlib.h>

11602 DESCRIPTION
11603 CX Some of the functionality described on this reference page extends the ISO C standard.
11604 Applications shall define the appropriate feature test macro (see the System Interfaces volume of
11605 IEEE Std 1003.1-200x, Section 2.2, The Compilation Environment) to enable the visibility of these
11606 symbols in this header.

11607 The <stdlib.h> header shall define the following macros:

11608 EXIT_FAILURE Unsuccessful termination for exit(); evaluates to a non-zero value.

11609 EXIT_SUCCESS Successful termination for exit(); evaluates to 0.

11610 NULL Null pointer.

11611 {RAND_MAX} Maximum value returned by rand(); at least 32,767.

11612 {MB_CUR_MAX} Integer expression whose value is the maximum number of bytes in a
11613 character specified by the current locale.

11614 The following data types shall be defined through typedef:

11615 div_t Structure type returned by the div() function.

11616 ldiv_t Structure type returned by the ldiv () function.

11617 lldiv_t Structure type returned by the lldiv () function.

11618 size_t As described in <stddef.h>.

11619 wchar_t As described in <stddef.h>.

11620 In addition, the following symbolic names and macros shall be defined as in <sys/wait.h>, for
11621 use in decoding the return value from system():

11622 XSI WNOHANG
11623 WUNTRACED
11624 WEXITSTATUS
11625 WIFEXITED
11626 WIFSIGNALED
11627 WIFSTOPPED
11628 WSTOPSIG
11629 WTERMSIG
11630

11631 The following shall be declared as functions and may also be defined as macros. Function |
11632 prototypes shall be provided. |

11633 void _Exit(int);
11634 XSI long a64l(const char *);
11635 void abort(void);
11636 int abs(int);
11637 int atexit(void (*)(void));
11638 double atof(const char *);
11639 int atoi(const char *);
11640 long atol(const char *);

324 Technical Standard (2001) (Draft April 13, 2001)

Headers <stdlib.h>

11641 long long atoll(const char *);
11642 void *bsearch(const void *, const void *, size_t, size_t,
11643 int (*)(const void *, const void *));
11644 void *calloc(size_t, size_t);
11645 div_t div(int, int);
11646 XSI double drand48(void);
11647 char *ecvt(double, int, int *restrict, int *restrict); (LEGACY)
11648 double erand48(unsigned short[3]);
11649 void exit(int);
11650 XSI char *fcvt(double, int, int *restrict, int *restrict); (LEGACY)
11651 void free(void *);
11652 XSI char *gcvt(double, int, char *); (LEGACY)
11653 char *getenv(const char *);
11654 XSI int getsubopt(char **, char *const *, char **);
11655 int grantpt(int);
11656 char *initstate(unsigned, char *, size_t);
11657 long jrand48(unsigned short[3]);
11658 char *l64a(long);
11659 long labs(long);
11660 XSI void lcong48(unsigned short[7]);
11661 ldiv_t ldiv(long, long);
11662 long long llabs(long long);
11663 lldiv_t lldiv(long long, long long);
11664 XSI long lrand48(void);
11665 void *malloc(size_t);
11666 int mblen(const char *, size_t);
11667 size_t mbstowcs(wchar_t *restrict, const char *restrict, size_t);
11668 int mbtowc(wchar_t *restrict, const char *restrict, size_t);
11669 XSI char *mktemp(char *); (LEGACY)
11670 int mkstemp(char *);
11671 long mrand48(void);
11672 long nrand48(unsigned short[3]);
11673 ADV int posix_memalign(void **, size_t, size_t);
11674 XSI int posix_openpt(int);
11675 char *ptsname(int);
11676 int putenv(char *);
11677 void qsort(void *, size_t, size_t, int (*)(const void *,
11678 const void *));
11679 int rand(void);
11680 TSF int rand_r(unsigned *);
11681 XSI long random(void);
11682 void *realloc(void *, size_t);
11683 XSI char *realpath(const char *restrict, char *restrict);
11684 unsigned short seed48(unsigned short[3]);
11685 CX int setenv(const char *, const char *, int);
11686 XSI void setkey(const char *);
11687 char *setstate(const char *);
11688 void srand(unsigned);
11689 XSI void srand48(long);
11690 void srandom(unsigned);
11691 double strtod(const char *restrict, char **restrict);
11692 float strtof(const char *restrict, char **restrict);

Base Definitions, Issue 6 325

<stdlib.h> Headers

11693 long strtol(const char *restrict, char **restrict, int);
11694 long double strtold(const char *restrict, char **restrict);
11695 long long strtoll(const char *restrict, char **restrict, int);
11696 unsigned long strtoul(const char *restrict, char **restrict, int);
11697 long long strtoull(const char *restrict, char **restrict, int);
11698 int system(const char *);
11699 XSI int unlockpt(int);
11700 CX int unsetenv(const char *);
11701 size_t wcstombs(char *restrict, const wchar_t *restrict, size_t);
11702 int wctomb(char *, wchar_t);

11703 XSI Inclusion of the <stdlib.h> header may also make visible all symbols from <stddef.h>,
11704 <limits.h>, <math.h>, and <sys/wait.h>.

11705 APPLICATION USAGE
11706 None.

11707 RATIONALE
11708 None.

11709 FUTURE DIRECTIONS
11710 None.

11711 SEE ALSO
11712 <sys/types.h>, the System Interfaces volume of IEEE Std 1003.1-200x, _Exit(), a64l (), abort(),
11713 abs(), atexit(), atof (), atoi (), atol (), atoll (), bsearch(), calloc (), div(), drand48(), erand48(), exit(),
11714 free(), getenv(), getsubopt(), grantpt(), initstate(), jrand48(), l64a (), labs(), lcong48 (), ldiv (), llabs(),
11715 lldiv (), lrand48(), malloc (), mblen(), mbstowcs(), mbtowc(), mkstemp(), mrand48(), nrand48(),
11716 posix_memalign(), ptsname(), putenv(), qsort(), rand(), realloc (), realpath (), setstate(), srand(),
11717 srand48(), srandom(), strtod(), strtof(), strtol(), strtold(), strtoll (), strtoul(), strtoull(), unlockpt (),
11718 wcstombs(), wctomb()

11719 CHANGE HISTORY
11720 First released in Issue 3.

11721 Issue 5
11722 The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

11723 The ttyslot () and valloc () functions are marked LEGACY.

11724 The type of the third argument to initstate() is changed from int to size_t. The type of the return
11725 value from setstate() is changed from char to char *, and the type of the first argument is
11726 changed from char * to const char *.

11727 Issue 6
11728 The Open Group Corrigendum U021/1 is applied, correcting the prototype for realpath () to be
11729 consistent with the reference page.

11730 The Open Group Corrigendum U028/13 is applied, correcting the prototype for putenv() to be
11731 consistent with the reference page.

11732 The rand_r() function is marked as part of the _POSIX_THREAD_SAFE_FUNCTIONS option.

11733 Function prototypes for setenv() and unsetenv() are added.

11734 The posix_memalign() function is added for alignment with IEEE Std 1003.1d-1999.

11735 This reference page is updated to align with the ISO/IEC 9899: 1999 standard.

326 Technical Standard (2001) (Draft April 13, 2001)

Headers <stdlib.h>

11736 The ecvt(), fcvt(), gcvt(), and mktemp() functions are marked LEGACY.

11737 The ttyslot () and valloc () functions are removed as they were previously marked LEGACY. |

11738 Extensions beyond the ISO C standard are now marked. |

Base Definitions, Issue 6 327

<string.h> Headers

11739 NAME
11740 string.h — string operations

11741 SYNOPSIS
11742 #include <string.h>

11743 DESCRIPTION
11744 CX Some of the functionality described on this reference page extends the ISO C standard.
11745 Applications shall define the appropriate feature test macro (see the System Interfaces volume of
11746 IEEE Std 1003.1-200x, Section 2.2, The Compilation Environment) to enable the visibility of these
11747 symbols in this header.

11748 The <string.h> header shall define the following:

11749 NULL Null pointer constant.

11750 size_t As described in <stddef.h>.

11751 The following shall be declared as functions and may also be defined as macros. Function |
11752 prototypes shall be provided. |

11753 XSI void *memccpy(void *restrict, const void *restrict, int, size_t);
11754 void *memchr(const void *, int, size_t);
11755 int memcmp(const void *, const void *, size_t);
11756 void *memcpy(void *restrict, const void *restrict, size_t);
11757 void *memmove(void *, const void *, size_t);
11758 void *memset(void *, int, size_t);
11759 char *strcat(char *restrict, const char *restrict);
11760 char *strchr(const char *, int);
11761 int strcmp(const char *, const char *);
11762 int strcoll(const char *, const char *);
11763 char *strcpy(char *restrict, const char *restrict);
11764 size_t strcspn(const char *, const char *);
11765 XSI char *strdup(const char *);
11766 char *strerror(int);
11767 size_t strlen(const char *);
11768 char *strncat(char *restrict, const char *restrict, size_t);
11769 int strncmp(const char *, const char *, size_t);
11770 char *strncpy(char *restrict, const char *restrict, size_t);
11771 char *strpbrk(const char *, const char *);
11772 char *strrchr(const char *, int);
11773 size_t strspn(const char *, const char *);
11774 char *strstr(const char *, const char *);
11775 char *strtok(char *restrict, const char *restrict);
11776 TSF char *strtok_r(char *, const char *, char **);
11777 size_t strxfrm(char *restrict, const char *restrict, size_t);

11778 XSI Inclusion of the <string.h> header may also make visible all symbols from <stddef.h>.

328 Technical Standard (2001) (Draft April 13, 2001)

Headers <string.h>

11779 APPLICATION USAGE
11780 None.

11781 RATIONALE
11782 None.

11783 FUTURE DIRECTIONS
11784 None.

11785 SEE ALSO
11786 <sys/types.h>, the System Interfaces volume of IEEE Std 1003.1-200x, memccpy(), memchr(),
11787 memcmp(), memcpy(), memmove(), memset(), strcat(), strchr(), strcmp(), strcoll(), strcpy(),
11788 strcspn(), strdup(), strerror(), strlen(), strncat(), strncmp(), strncpy(), strpbrk(), strrchr(), strspn(),
11789 strstr(), strtok(), strxfrm()

11790 CHANGE HISTORY
11791 First released in Issue 1. Derived from Issue 1 of the SVID.

11792 Issue 5
11793 The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

11794 Issue 6
11795 The strtok_r() function is marked as part of the _POSIX_THREAD_SAFE_FUNCTIONS option.

11796 This reference page is updated to align with the ISO/IEC 9899: 1999 standard.

Base Definitions, Issue 6 329

<strings.h> Headers

11797 NAME
11798 strings.h — string operations

11799 SYNOPSIS
11800 XSI #include <strings.h>
11801

11802 DESCRIPTION
11803 The following shall be declared as functions and may also be defined as macros. Function |
11804 prototypes shall be provided. |

11805 int bcmp(const void *, const void *, size_t); (LEGACY)
11806 void bcopy(const void *, void *, size_t); (LEGACY)
11807 void bzero(void *, size_t); (LEGACY)
11808 int ffs(int);
11809 char *index(const char *, int); (LEGACY)
11810 char *rindex(const char *, int); (LEGACY)
11811 int strcasecmp(const char *, const char *);
11812 int strncasecmp(const char *, const char *, size_t);

11813 The size_t type shall be defined through typedef as described in <stddef.h>.

11814 APPLICATION USAGE
11815 None.

11816 RATIONALE
11817 None.

11818 FUTURE DIRECTIONS
11819 None.

11820 SEE ALSO
11821 <stddef.h>, the System Interfaces volume of IEEE Std 1003.1-200x, ffs(), strcasecmp(),
11822 strncasecmp()

11823 CHANGE HISTORY
11824 First released in Issue 4, Version 2.

11825 Issue 6
11826 The Open Group Corrigendum U021/2 is applied, correcting the prototype for index() to be
11827 consistent with the reference page.

11828 The bcmp(), bcopy(), bzero(), index(), and rindex() functions are marked LEGACY.

330 Technical Standard (2001) (Draft April 13, 2001)

Headers <stropts.h>

11829 NAME
11830 stropts.h — STREAMS interface (STREAMS)

11831 SYNOPSIS
11832 XSR #include <stropts.h>
11833

11834 DESCRIPTION
11835 The <stropts.h> header shall define the bandinfo structure that includes at least the following
11836 members:

11837 unsigned char bi_pri Priority band. |
11838 int bi_flag Flushing type. |

11839 The <stropts.h> header shall define the strpeek structure that includes at least the following |
11840 members:

11841 struct strbuf ctlbuf The control portion of the message. |
11842 struct strbuf databuf The data portion of the message. |
11843 t_uscalar_t flags RS_HIPRI or 0. |

11844 The <stropts.h> header shall define the strbuf structure that includes at least the following |
11845 members:

11846 int maxlen Maximum buffer length. |
11847 int len Length of data. |
11848 char *buf Pointer to buffer. |

11849 The <stropts.h> header shall define the strfdinsert structure that includes at least the following |
11850 members:

11851 struct strbuf ctlbuf The control portion of the message. |
11852 struct strbuf databuf The data portion of the message. |
11853 t_uscalar_t flags RS_HIPRI or 0. |
11854 int fildes File descriptor of the other STREAM. |
11855 int offset Relative location of the stored value. |

11856 The <stropts.h> header shall define the strioctl structure that includes at least the following |
11857 members:

11858 int ic_cmd ioctl() command. |
11859 int ic_timout Timeout for response. |
11860 int ic_len Length of data. |
11861 char *ic_dp Pointer to buffer. |

11862 The <stropts.h> header shall define the strrecvfd structure that includes at least the following |
11863 members:

11864 int fda Received file descriptor. |
11865 uid_t uid UID of sender. |
11866 gid_t gid GID of sender. |

11867 The uid_t and gid_t types shall be defined through typedef as described in <sys/types.h>. |

11868 The <stropts.h> header shall define the t_scalar_t and t_uscalar_t types respectively as signed |
11869 and unsigned opaque types of equal length of at least 32 bits. |

11870 The <stropts.h> header shall define the str_list structure that includes at least the following
11871 members:

Base Definitions, Issue 6 331

<stropts.h> Headers

11872 int sl_nmods Number of STREAMS module names. |
11873 struct str_mlist *sl_modlist STREAMS module names. |

11874 The <stropts.h> header shall define the str_mlist structure that includes at least the following |
11875 member:

11876 char l_name[FMNAMESZ+1] A STREAMS module name. |

11877 At least the following macros shall be defined for use as the request argument to ioctl (): |

11878 I_PUSH Push a STREAMS module. |

11879 I_POP Pop a STREAMS module. |

11880 I_LOOK Get the top module name. |

11881 I_FLUSH Flush a STREAM. |

11882 I_FLUSHBAND Flush one band of a STREAM. |

11883 I_SETSIG Ask for notification signals. |

11884 I_GETSIG Retrieve current notification signals. |

11885 I_FIND Look for a STREAMS module. |

11886 I_PEEK Peek at the top message on a STREAM. |

11887 I_SRDOPT Set the read mode. |

11888 I_GRDOPT Get the read mode. |

11889 I_NREAD Size the top message. |

11890 I_FDINSERT Send implementation-defined information about another STREAM. |

11891 I_STR Send a STREAMS ioctl (). |

11892 I_SWROPT Set the write mode. |

11893 I_GWROPT Get the write mode. |

11894 I_SENDFD Pass a file descriptor through a STREAMS pipe. |

11895 I_RECVFD Get a file descriptor sent via I_SENDFD. |

11896 I_LIST Get all the module names on a STREAM. |

11897 I_ATMARK Is the top message ‘‘marked’’? |

11898 I_CKBAND See if any messages exist in a band. |

11899 I_GETBAND Get the band of the top message on a STREAM. |

11900 I_CANPUT Is a band writable? |

11901 I_SETCLTIME Set close time delay. |

11902 I_GETCLTIME Get close time delay. |

11903 I_LINK Connect two STREAMs. |

11904 I_UNLINK Disconnect two STREAMs. |

11905 I_PLINK Persistently connect two STREAMs. |

11906 I_PUNLINK Dismantle a persistent STREAMS link. |

332 Technical Standard (2001) (Draft April 13, 2001)

Headers <stropts.h>

11907 At least the following macros shall be defined for use with I_LOOK: |

11908 FMNAMESZ The minimum size in bytes of the buffer referred to by the arg argument.

11909 At least the following macros shall be defined for use with I_FLUSH: |

11910 FLUSHR Flush read queues.

11911 FLUSHW Flush write queues.

11912 FLUSHRW Flush read and write queues.

11913 At least the following macros shall be defined for use with I_SETSIG: |

11914 S_RDNORM A normal (priority band set to 0) message has arrived at the head of a
11915 STREAM head read queue.

11916 S_RDBAND A message with a non-zero priority band has arrived at the head of a STREAM
11917 head read queue.

11918 S_INPUT A message, other than a high-priority message, has arrived at the head of a
11919 STREAM head read queue.

11920 S_HIPRI A high-priority message is present on a STREAM head read queue.

11921 S_OUTPUT The write queue for normal data (priority band 0) just below the STREAM
11922 head is no longer full. This notifies the process that there is room on the queue
11923 for sending (or writing) normal data downstream.

11924 S_WRNORM Equivalent to S_OUTPUT. |

11925 S_WRBAND The write queue for a non-zero priority band just below the STREAM head is
11926 no longer full.

11927 S_MSG A STREAMS signal message that contains the SIGPOLL signal reaches the
11928 front of the STREAM head read queue.

11929 S_ERROR Notification of an error condition reaches the STREAM head.

11930 S_HANGUP Notification of a hangup reaches the STREAM head.

11931 S_BANDURG When used in conjunction with S_RDBAND, SIGURG is generated instead of
11932 SIGPOLL when a priority message reaches the front of the STREAM head read
11933 queue.

11934 At least the following macros shall be defined for use with I_PEEK: |

11935 RS_HIPRI Only look for high-priority messages.

11936 At least the following macros shall be defined for use with I_SRDOPT: |

11937 RNORM Byte-STREAM mode, the default.

11938 RMSGD Message-discard mode.

11939 RMSGN Message-nondiscard mode.

11940 RPROTNORM Fail read() with [EBADMSG] if a message containing a control part is at the
11941 front of the STREAM head read queue.

11942 RPROTDAT Deliver the control part of a message as data when a process issues a read().

11943 RPROTDIS Discard the control part of a message, delivering any data part, when a
11944 process issues a read().

Base Definitions, Issue 6 333

<stropts.h> Headers

11945 At least the following macros shall be defined for use with I_SWOPT: |

11946 SNDZERO Send a zero-length message downstream when a write() of 0 bytes occurs.

11947 At least the following macros shall be defined for use with I_ATMARK: |

11948 ANYMARK Check if the message is marked.

11949 LASTMARK Check if the message is the last one marked on the queue.

11950 At least the following macros shall be defined for use with I_UNLINK: |

11951 MUXID_ALL Unlink all STREAMs linked to the STREAM associated with fildes .

11952 The following macros shall be defined for getmsg(), getpmsg(), putmsg(), and putpmsg(): |

11953 MSG_ANY Receive any message.

11954 MSG_BAND Receive message from specified band.

11955 MSG_HIPRI Send/receive high-priority message.

11956 MORECTL More control information is left in message.

11957 MOREDATA More data is left in message.

11958 The <stropts.h> header may make visible all of the symbols from <unistd.h>.

11959 The following shall be declared as functions and may also be defined as macros. Function |
11960 prototypes shall be provided. |

11961 int isastream(int);
11962 int getmsg(int, struct strbuf *restrict, struct strbuf *restrict,
11963 int *restrict);
11964 int getpmsg(int, struct strbuf *restrict, struct strbuf *restrict,
11965 int *restrict, int *restrict);
11966 int ioctl(int, int, ...);
11967 int putmsg(int, const struct strbuf *, const struct strbuf *, int);
11968 int putpmsg(int, const struct strbuf *, const struct strbuf *, int,
11969 int);
11970 int fattach(int, const char *);
11971 int fdetach(const char *);

11972 APPLICATION USAGE
11973 None.

11974 RATIONALE
11975 None.

11976 FUTURE DIRECTIONS
11977 None.

11978 SEE ALSO
11979 <sys/types.h>, the System Interfaces volume of IEEE Std 1003.1-200x, close(), fcntl(), getmsg(),
11980 ioctl (), open(), pipe(), read(), poll (), putmsg(), signal(), write() |

11981 CHANGE HISTORY
11982 First released in Issue 4, Version 2.

334 Technical Standard (2001) (Draft April 13, 2001)

Headers <stropts.h>

11983 Issue 5
11984 The flags member of the strpeek and strfdinsert structures are changed from type long to
11985 t_uscalar_t.

11986 Issue 6
11987 This header is marked as part of the XSI STREAMS Option Group.

11988 The restrict keyword is added to the prototypes for getmsg() and getpmsg().

Base Definitions, Issue 6 335

<sys/ipc.h> Headers

11989 NAME
11990 sys/ipc.h — XSI interprocess communication access structure

11991 SYNOPSIS
11992 XSI #include <sys/ipc.h>
11993

11994 DESCRIPTION
11995 The <sys/ipc.h> header is used by three mechanisms for XSI interprocess communication (IPC):
11996 messages, semaphores, and shared memory. All use a common structure type, ipc_perm to pass
11997 information used in determining permission to perform an IPC operation.

11998 The ipc_perm structure shall contain the following members:

11999 uid_t uid Owner’s user ID.
12000 gid_t gid Owner’s group ID.
12001 uid_t cuid Creator’s user ID.
12002 gid_t cgid Creator’s group ID.
12003 mode_t mode Read/write permission.

12004 The uid_t, gid_t, mode_t, and key_t types shall be defined as described in <sys/types.h>.

12005 Definitions shall be provided for the following constants:

12006 Mode bits:

12007 IPC_CREAT Create entry if key does not exist.

12008 IPC_EXCL Fail if key exists.

12009 IPC_NOWAIT Error if request must wait.

12010 Keys:

12011 IPC_PRIVATE Private key.

12012 Control commands:

12013 IPC_RMID Remove identifier.

12014 IPC_SET Set options.

12015 IPC_STAT Get options.

12016 The following shall be declared as a function and may also be defined as a macro. A function |
12017 prototype shall be provided. |

12018 key_t ftok(const char *, int);

12019 APPLICATION USAGE
12020 None.

12021 RATIONALE
12022 None.

12023 FUTURE DIRECTIONS
12024 None.

12025 SEE ALSO
12026 <sys/types.h>, the System Interfaces volume of IEEE Std 1003.1-200x, ftok ()

336 Technical Standard (2001) (Draft April 13, 2001)

Headers <sys/ipc.h>

12027 CHANGE HISTORY
12028 First released in Issue 2. Derived from System V Release 2.0.

Base Definitions, Issue 6 337

<sys/mman.h> Headers

12029 NAME
12030 sys/mman.h — memory management declarations

12031 SYNOPSIS
12032 #include <sys/mman.h>

12033 DESCRIPTION
12034 The <sys/mman.h> header shall be supported if the implementation supports at least one of the
12035 following options:

12036 MF • The Memory Mapped Files option

12037 SHM • The Shared Memory Objects option

12038 ML • The Process Memory Locking option

12039 MPR • The Memory Protection option

12040 TYM • The Typed Memory Objects option

12041 SIO • The Synchronized Input and Output option

12042 ADV • The Advisory Information option

12043 TYM • The Typed Memory Objects option

12044 MC2 If one or more of the Advisory Information, Memory Mapped Files, or Shared Memory Objects
12045 options are supported, the following protection options shall be defined:

12046 MC2 PROT_READ Page can be read.

12047 MC2 PROT_WRITE Page can be written.

12048 MC2 PROT_EXEC Page can be executed.

12049 MC2 PROT_NONE Page cannot be accessed.

12050 The following flag options shall be defined:

12051 MF|SHM MAP_SHARED Share changes.

12052 MF|SHM MAP_PRIVATE Changes are private.

12053 MF|SHM MAP_FIXED Interpret addr exactly.

12054 The following flags shall be defined for msync():

12055 MF|SIO MS_ASYNC Perform asynchronous writes.

12056 MF|SIO MS_SYNC Perform synchronous writes.

12057 MF|SIO MS_INVALIDATE Invalidate mappings.

12058 ML The following symbolic constants shall be defined for the mlockall () function:

12059 ML MCL_CURRENT Lock currently mapped pages.

12060 ML MCL_FUTURE Lock pages that become mapped.

12061 MF|SHM The symbolic constant MAP_FAILED shall be defined to indicate a failure from the mmap()
12062 function.

12063 MC1 If the Advisory Information and either the Memory Mapped Files or Shared Memory Objects
12064 options are supported, values for advice used by posix_madvise() shall be defined as follows:

12065 POSIX_MADV_NORMAL
12066 The application has no advice to give on its behavior with respect to the specified range. It

338 Technical Standard (2001) (Draft April 13, 2001)

Headers <sys/mman.h>

12067 is the default characteristic if no advice is given for a range of memory.

12068 POSIX_MADV_SEQUENTIAL
12069 The application expects to access the specified range sequentially from lower addresses to
12070 higher addresses.

12071 POSIX_MADV_RANDOM
12072 The application expects to access the specified range in a random order.

12073 POSIX_MADV_WILLNEED
12074 The application expects to access the specified range in the near future.

12075 POSIX_MADV_DONTNEED
12076 The application expects that it will not access the specified range in the near future.
12077

12078 TYM The following flags shall be defined for posix_typed_mem_open():

12079 POSIX_TYPED_MEM_ALLOCATE
12080 Allocate on mmap().

12081 POSIX_TYPED_MEM_ALLOCATE_CONTIG
12082 Allocate contiguously on mmap().

12083 POSIX_TYPED_MEM_MAP_ALLOCATABLE Map on mmap(), without affecting allocatability.
12084

12085 The mode_t, off_t, and size_t types shall be defined as described in <sys/types.h>.

12086 TYM The <sys/mman.h> header shall define the structure posix_typed_mem_info, which includes at
12087 least the following member:

12088 size_t posix_tmi_length Maximum length which may be allocated
12089 from a typed memory object.

12090

12091 The following shall be declared as functions and may also be defined as macros. Function |
12092 prototypes shall be provided. |

12093 ML int mlock(const void *, size_t);
12094 int mlockall(int);
12095 MF|SHM void *mmap(void *, size_t, int, int, int, off_t);
12096 MPR int mprotect(void *, size_t, int);
12097 MF|SIO int msync(void *, size_t, int);
12098 ML int munlock(const void *, size_t);
12099 int munlockall(void);
12100 MF|SHM int munmap(void *, size_t);
12101 ADV int posix_madvise(void *, size_t, int);
12102 TYM int posix_mem_offset(const void *restrict, size_t, off_t *restrict,
12103 size_t *restrict, int *restrict);
12104 int posix_typed_mem_get_info(int, struct posix_typed_mem_info *);
12105 int posix_typed_mem_open(const char *, int, int);
12106 SHM int shm_open(const char *, int, mode_t);
12107 int shm_unlink(const char *);
12108

Base Definitions, Issue 6 339

<sys/mman.h> Headers

12109 APPLICATION USAGE
12110 None.

12111 RATIONALE
12112 None.

12113 FUTURE DIRECTIONS
12114 None.

12115 SEE ALSO
12116 <sys/types.h>, the System Interfaces volume of IEEE Std 1003.1-200x, mlock(), mlockall (),
12117 mmap(), mprotect(), msync(), munlock(), munlockall (), munmap(), posix_mem_offset(),
12118 posix_typed_mem_get_info(), posix_typed_mem_open(), shm_open(), shm_unlink()

12119 CHANGE HISTORY
12120 First released in Issue 4, Version 2.

12121 Issue 5
12122 Updated for alignment with the POSIX Realtime Extension.

12123 Issue 6
12124 The <sys/mman.h> header is marked as dependent on support for either the
12125 _POSIX_MAPPED_FILES, _POSIX_MEMLOCK, or _POSIX_SHARED_MEMORY options.

12126 The following changes are made for alignment with IEEE Std 1003.1j-2000:

12127 • The TYM margin code is added to the list of margin codes for the <sys/mman.h> header line,
12128 as well as for other lines.

12129 • The POSIX_TYPED_MEM_ALLOCATE, POSIX_TYPED_MEM_ALLOCATE_CONTIG, and
12130 POSIX_TYPED_MEM_MAP_ALLOCATABLE flags are added.

12131 • The posix_tmi_length structure is added.

12132 • The posix_mem_offset(), posix_typed_mem_get_info(), and posix_typed_mem_open() functions
12133 are added.

12134 The restrict keyword is added to the prototype for posix_mem_offset().

12135 IEEE PASC Interpretation 1003.1 #102 is applied adding the prototype for posix_madvise().

340 Technical Standard (2001) (Draft April 13, 2001)

Headers <sys/msg.h>

12136 NAME
12137 sys/msg.h — XSI message queue structures

12138 SYNOPSIS
12139 XSI #include <sys/msg.h>
12140

12141 DESCRIPTION
12142 The <sys/msg.h> header shall define the following constant and members of the structure
12143 msqid_ds.

12144 The following data types shall be defined through typedef:

12145 msgqnum_t Used for the number of messages in the message queue.

12146 msglen_t Used for the number of bytes allowed in a message queue.

12147 These types shall be unsigned integer types that are able to store values at least as large as a type
12148 unsigned short.

12149 Message operation flag:

12150 MSG_NOERROR No error if big message.

12151 The msqid_ds structure shall contain the following members:

12152 struct ipc_perm msg_perm Operation permission structure.
12153 msgqnum_t msg_qnum Number of messages currently on queue.
12154 msglen_t msg_qbytes Maximum number of bytes allowed on queue.
12155 pid_t msg_lspid Process ID of last msgsnd().
12156 pid_t msg_lrpid Process ID of last msgrcv().
12157 time_t msg_stime Time of last msgsnd().
12158 time_t msg_rtime Time of last msgrcv().
12159 time_t msg_ctime Time of last change.

12160 The pid_t, time_t, key_t, size_t, and ssize_t types shall be defined as described in <sys/types.h>.

12161 The following shall be declared as functions and may also be defined as macros. Function |
12162 prototypes shall be provided. |

12163 int msgctl(int, int, struct msqid_ds *);
12164 int msgget(key_t, int);
12165 ssize_t msgrcv(int, void *, size_t, long, int);
12166 int msgsnd(int, const void *, size_t, int);

12167 In addition, all of the symbols from <sys/ipc.h> shall be defined when this header is included.

12168 APPLICATION USAGE
12169 None.

12170 RATIONALE
12171 None.

12172 FUTURE DIRECTIONS
12173 None.

12174 SEE ALSO
12175 <sys/types.h>, msgctl(), msgget(), msgrcv(), msgsnd()

Base Definitions, Issue 6 341

<sys/msg.h> Headers

12176 CHANGE HISTORY
12177 First released in Issue 2. Derived from System V Release 2.0.

342 Technical Standard (2001) (Draft April 13, 2001)

Headers <sys/resource.h>

12178 NAME
12179 sys/resource.h — definitions for XSI resource operations

12180 SYNOPSIS
12181 XSI #include <sys/resource.h>
12182

12183 DESCRIPTION
12184 The <sys/resource.h> header shall define the following symbolic constants as possible values of
12185 the which argument of getpriority () and setpriority():

12186 PRIO_PROCESS Identifies the who argument as a process ID.

12187 PRIO_PGRP Identifies the who argument as a process group ID.

12188 PRIO_USER Identifies the who argument as a user ID.

12189 The following type shall be defined through typedef:

12190 rlim_t Unsigned integer type used for limit values.

12191 The following symbolic constants shall be defined:

12192 RLIM_INFINITY A value of rlim_t indicating no limit.

12193 RLIM_SAVED_MAX A value of type rlim_t indicating an unrepresentable saved hard
12194 limit.

12195 RLIM_SAVED_CUR A value of type rlim_t indicating an unrepresentable saved soft limit.

12196 On implementations where all resource limits are representable in an object of type rlim_t,
12197 RLIM_SAVED_MAX and RLIM_SAVED_CUR need not be distinct from RLIM_INFINITY.

12198 The following symbolic constants shall be defined as possible values of the who parameter of
12199 getrusage():

12200 RUSAGE_SELF Returns information about the current process.

12201 RUSAGE_CHILDREN Returns information about children of the current process.

12202 The <sys/resource.h> header shall define the rlimit structure that includes at least the following
12203 members:

12204 rlim_t rlim_cur The current (soft) limit. |
12205 rlim_t rlim_max The hard limit. |

12206 The <sys/resource.h> header shall define the rusage structure that includes at least the following |
12207 members:

12208 struct timeval ru_utime User time used. |
12209 struct timeval ru_stime System time used. |

12210 The timeval structure shall be defined as described in <sys/time.h>. |

12211 The following symbolic constants shall be defined as possible values for the resource argument of
12212 getrlimit() and setrlimit():

12213 RLIMIT_CORE Limit on size of core dump file.

12214 RLIMIT_CPU Limit on CPU time per process.

12215 RLIMIT_DATA Limit on data segment size.

12216 RLIMIT_FSIZE Limit on file size.

Base Definitions, Issue 6 343

<sys/resource.h> Headers

12217 RLIMIT_NOFILE Limit on number of open files.

12218 RLIMIT_STACK Limit on stack size.

12219 RLIMIT_AS Limit on address space size.

12220 The following shall be declared as functions and may also be defined as macros. Function |
12221 prototypes shall be provided. |

12222 int getpriority(int, id_t);
12223 int getrlimit(int, struct rlimit *);
12224 int getrusage(int, struct rusage *);
12225 int setpriority(int, id_t, int);
12226 int setrlimit(int, const struct rlimit *);

12227 The id_t type shall be defined through typedef as described in <sys/types.h>.

12228 Inclusion of the <sys/resource.h> header may also make visible all symbols from <sys/time.h>.

12229 APPLICATION USAGE
12230 None.

12231 RATIONALE
12232 None.

12233 FUTURE DIRECTIONS
12234 None.

12235 SEE ALSO
12236 <sys/time.h>, <sys/types.h>, the System Interfaces volume of IEEE Std 1003.1-200x, getpriority (),
12237 getrusage(), getrlimit()

12238 CHANGE HISTORY
12239 First released in Issue 4, Version 2.

12240 Issue 5
12241 Large File System extensions are added.

344 Technical Standard (2001) (Draft April 13, 2001)

Headers <sys/select.h>

12242 NAME
12243 sys/select.h — select types

12244 SYNOPSIS
12245 #include <sys/select.h>

12246 DESCRIPTION
12247 The <sys/select.h> header shall define the timeval structure that includes at least the following
12248 members:

12249 time_t tv_sec Seconds.
12250 suseconds_t tv_usec Microseconds.

12251 The time_t and suseconds_t types shall be defined as described in <sys/types.h>.

12252 The sigset_t type shall be defined as described in <signal.h>.

12253 The timespec structure shall be defined as described in <time.h>.

12254 The <sys/select.h> header shall define the fd_set type as a structure. |

12255 Each of the following may be declared as a function, or defined as a macro, or both:

12256 void FD_CLR(int fd, fd_set *fdset)
12257 Clears the bit for the file descriptor fd in the file descriptor set fdset .

12258 int FD_ISSET(int fd, fd_set *fdset)
12259 Returns a non-zero value if the bit for the file descriptor fd is set in the file descriptor set by
12260 fdset , and 0 otherwise.

12261 void FD_SET(int fd, fd_set *fdset)
12262 Sets the bit for the file descriptor fd in the file descriptor set fdset .

12263 void FD_ZERO(fd_set *fdset)
12264 Initializes the file descriptor set fdset to have zero bits for all file descriptors.

12265 If implemented as macros, these may evaluate their arguments more than once, so applications
12266 should ensure that the arguments they supply are never expressions with side effects.

12267 The following shall be defined as a macro:

12268 FD_SETSIZE
12269 Maximum number of file descriptors in an fd_set structure.

12270 The following shall be declared as functions and may also be defined as macros. Function |
12271 prototypes shall be provided. |

12272 int pselect(int, fd_set *restrict, fd_set *restrict, fd_set *restrict,
12273 const struct timespec *restrict, const sigset_t *restrict);
12274 int select(int, fd_set *restrict, fd_set *restrict, fd_set *restrict,
12275 struct timeval *restrict);

12276 Inclusion of the <sys/select.h> header may make visible all symbols from the headers
12277 <signal.h>, <sys/time.h>, and <time.h>.

Base Definitions, Issue 6 345

<sys/select.h> Headers

12278 APPLICATION USAGE
12279 None.

12280 RATIONALE
12281 None.

12282 FUTURE DIRECTIONS
12283 None.

12284 SEE ALSO
12285 <signal.h>, <sys/time.h>, <sys/types.h>, <time.h>, the System Interfaces volume of
12286 IEEE Std 1003.1-200x, pselect(), select()

12287 CHANGE HISTORY
12288 First released in Issue 6. Derived from IEEE Std 1003.1g-2000. |

12289 The requirement for the fd_set structure to have a member fds_bits has been removed as per The |
12290 Open Group Base Resolution bwg2001-005. |

346 Technical Standard (2001) (Draft April 13, 2001)

Headers <sys/sem.h>

12291 NAME
12292 sys/sem.h — XSI semaphore facility

12293 SYNOPSIS
12294 XSI #include <sys/sem.h>
12295

12296 DESCRIPTION
12297 The <sys/sem.h> header shall define the following constants and structures.

12298 Semaphore operation flags:

12299 SEM_UNDO Set up adjust on exit entry.

12300 Command definitions for the semctl() function shall be provided as follows:

12301 GETNCNT Get semncnt.

12302 GETPID Get sempid.

12303 GETVAL Get semval .

12304 GETALL Get all cases of semval .

12305 GETZCNT Get semzcnt.

12306 SETVAL Set semval .

12307 SETALL Set all cases of semval .

12308 The semid_ds structure shall contain the following members:

12309 struct ipc_perm sem_perm Operation permission structure.
12310 unsigned short sem_nsems Number of semaphores in set.
12311 time_t sem_otime Last semop() time.
12312 time_t sem_ctime Last time changed by semctl().

12313 The pid_t, time_t, key_t, and size_t types shall be defined as described in <sys/types.h>.

12314 A semaphore shall be represented by an anonymous structure containing the following
12315 members:

12316 unsigned short semval Semaphore value.
12317 pid_t sempid Process ID of last operation.
12318 unsigned short semncnt Number of processes waiting for semval
12319 to become greater than current value.
12320 unsigned short semzcnt Number of processes waiting for semval
12321 to become 0.

12322 The sembuf structure shall contain the following members:

12323 unsigned short sem_num Semaphore number.
12324 short sem_op Semaphore operation.
12325 short sem_flg Operation flags.

12326 The following shall be declared as functions and may also be defined as macros. Function |
12327 prototypes shall be provided. |

12328 int semctl(int, int, int, ...);
12329 int semget(key_t, int, int);
12330 int semop(int, struct sembuf *, size_t);

Base Definitions, Issue 6 347

<sys/sem.h> Headers

12331 In addition, all of the symbols from <sys/ipc.h> shall be defined when this header is included.

12332 APPLICATION USAGE
12333 None.

12334 RATIONALE
12335 None.

12336 FUTURE DIRECTIONS
12337 None.

12338 SEE ALSO
12339 <sys/types.h>, semctl(), semget(), semop()

12340 CHANGE HISTORY
12341 First released in Issue 2. Derived from System V Release 2.0.

348 Technical Standard (2001) (Draft April 13, 2001)

Headers <sys/shm.h>

12342 NAME
12343 sys/shm.h — XSI shared memory facility

12344 SYNOPSIS
12345 XSI #include <sys/shm.h>
12346

12347 DESCRIPTION
12348 The <sys/shm.h> header shall define the following symbolic constants:

12349 SHM_RDONLY Attach read-only (else read-write).

12350 SHM_RND Round attach address to SHMLBA.

12351 The <sys/shm.h> header shall define the following symbolic value:

12352 SHMLBA Segment low boundary address multiple.

12353 The following data types shall be defined through typedef:

12354 shmatt_t Unsigned integer used for the number of current attaches that must be able to
12355 store values at least as large as a type unsigned short.

12356 The shmid_ds structure shall contain the following members:

12357 struct ipc_perm shm_perm Operation permission structure.
12358 size_t shm_segsz Size of segment in bytes.
12359 pid_t shm_lpid Process ID of last shared memory operation.
12360 pid_t shm_cpid Process ID of creator.
12361 shmatt_t shm_nattch Number of current attaches.
12362 time_t shm_atime Time of last shmat().
12363 time_t shm_dtime Time of last shmdt().
12364 time_t shm_ctime Time of last change by shmctl().

12365 The pid_t, time_t, key_t, and size_t types shall be defined as described in <sys/types.h>.

12366 The following shall be declared as functions and may also be defined as macros. Function |
12367 prototypes shall be provided. |

12368 void *shmat(int, const void *, int);
12369 int shmctl(int, int, struct shmid_ds *);
12370 int shmdt(const void *);
12371 int shmget(key_t, size_t, int);

12372 In addition, all of the symbols from <sys/ipc.h> shall be defined when this header is included.

12373 APPLICATION USAGE
12374 None.

12375 RATIONALE
12376 None.

12377 FUTURE DIRECTIONS
12378 None.

12379 SEE ALSO
12380 <sys/types.h>, the System Interfaces volume of IEEE Std 1003.1-200x, shmat(), shmctl(), shmdt(),
12381 shmget()

Base Definitions, Issue 6 349

<sys/shm.h> Headers

12382 CHANGE HISTORY
12383 First released in Issue 2. Derived from System V Release 2.0.

12384 Issue 5
12385 The type of shm_segsz is changed from int to size_t.

350 Technical Standard (2001) (Draft April 13, 2001)

Headers <sys/socket.h>

12386 NAME
12387 sys/socket.h — main sockets header

12388 SYNOPSIS
12389 #include <sys/socket.h>

12390 DESCRIPTION
12391 The <sys/socket.h> header shall define the type socklen_t, which is an integer type of width of |
12392 at least 32 bits; see APPLICATION USAGE. |

12393 The <sys/socket.h> header shall define the unsigned integer type sa_family_t.

12394 The <sys/socket.h> header shall define the sockaddr structure that includes at least the
12395 following members:

12396 sa_family_t sa_family Address family.
12397 char sa_data[] Socket address (variable-length data).

12398 The sockaddr structure is used to define a socket address which is used in the bind(), connect(),
12399 getpeername(), getsockname(), recvfrom(), and sendto() functions.

12400 The <sys/socket.h> header shall define the sockaddr_storage structure. This structure shall be:

12401 • Large enough to accommodate all supported protocol-specific address structures

12402 • Aligned at an appropriate boundary so that pointers to it can be cast as pointers to protocol-
12403 specific address structures and used to access the fields of those structures without
12404 alignment problems

12405 The sockaddr_storage structure shall contain at least the following members:

12406 sa_family_t ss_family

12407 When a sockaddr_storage structure is cast as a sockaddr structure, the ss_family field of the
12408 sockaddr_storage structure shall map onto the sa_family field of the sockaddr structure. When a
12409 sockaddr_storage structure is cast as a protocol-specific address structure, the ss_family field
12410 shall map onto a field of that structure that is of type sa_family_t and that identifies the
12411 protocol’s address family.

12412 The <sys/socket.h> header shall define the msghdr structure that includes at least the following
12413 members:

12414 void *msg_name Optional address.
12415 socklen_t msg_namelen Size of address.
12416 struct iovec *msg_iov Scatter/gather array.
12417 int msg_iovlen Members in msg_iov.
12418 void *msg_control Ancillary data; see below.
12419 socklen_t msg_controllen Ancillary data buffer len.
12420 int msg_flags Flags on received message.

12421 The msghdr structure is used to minimize the number of directly supplied parameters to the
12422 recvmsg() and sendmsg() functions. This structure is used as a value-result parameter in the |
12423 recvmsg() function and value only for the sendmsg() function.

12424 The iovec structure shall be defined as described in <sys/uio.h>. |

12425 The <sys/socket.h> header shall define the cmsghdr structure that includes at least the following
12426 members:

12427 socklen_t cmsg_len Data byte count, including the cmsghdr.
12428 int cmsg_level Originating protocol.

Base Definitions, Issue 6 351

<sys/socket.h> Headers

12429 int cmsg_type Protocol-specific type.

12430 The cmsghdr structure is used for storage of ancillary data object information.

12431 Ancillary data consists of a sequence of pairs, each consisting of a cmsghdr structure followed
12432 by a data array. The data array contains the ancillary data message, and the cmsghdr structure
12433 contains descriptive information that allows an application to correctly parse the data.

12434 The values for cmsg_level shall be legal values for the level argument to the getsockopt () and
12435 setsockopt () functions. The system documentation shall specify the cmsg_type definitions for the
12436 supported protocols.

12437 Ancillary data is also possible at the socket level. The <sys/socket.h> header defines the
12438 following macro for use as the cmsg_type value when cmsg_level is SOL_SOCKET:

12439 SCM_RIGHTS Indicates that the data array contains the access rights to be sent or
12440 received.

12441 The <sys/socket.h> header defines the following macros to gain access to the data arrays in the
12442 ancillary data associated with a message header:

12443 CMSG_DATA(cmsg)
12444 If the argument is a pointer to a cmsghdr structure, this macro shall return an unsigned
12445 character pointer to the data array associated with the cmsghdr structure.

12446 CMSG_NXTHDR(mhdr,cmsg)
12447 If the first argument is a pointer to a msghdr structure and the second argument is a pointer
12448 to a cmsghdr structure in the ancillary data pointed to by the msg_control field of that
12449 msghdr structure, this macro shall return a pointer to the next cmsghdr structure, or a null
12450 pointer if this structure is the last cmsghdr in the ancillary data.

12451 CMSG_FIRSTHDR(mhdr)
12452 If the argument is a pointer to a msghdr structure, this macro shall return a pointer to the
12453 first cmsghdr structure in the ancillary data associated with this msghdr structure, or a null
12454 pointer if there is no ancillary data associated with the msghdr structure.

12455 The <sys/socket.h> header shall define the linger structure that includes at least the following
12456 members:

12457 int l_onoff Indicates whether linger option is enabled.
12458 int l_linger Linger time, in seconds.

12459 The <sys/socket.h> header shall define the following macros, with distinct integer values:

12460 SOCK_DGRAM Datagram socket. |

12461 RS SOCK_RAW Raw Protocol Interface. |

12462 SOCK_SEQPACKET Sequenced-packet socket. |

12463 SOCK_STREAM Byte-stream socket. |

12464 The <sys/socket.h> header shall define the following macro for use as the level argument of
12465 setsockopt () and getsockopt ().

12466 SOL_SOCKET Options to be accessed at socket level, not protocol level.

12467 The <sys/socket.h> header shall define the following macros, with distinct integer values, for
12468 use as the option_name argument in getsockopt () or setsockopt () calls:

12469 SO_ACCEPTCONN Socket is accepting connections.

352 Technical Standard (2001) (Draft April 13, 2001)

Headers <sys/socket.h>

12470 SO_BROADCAST Transmission of broadcast messages is supported.

12471 SO_DEBUG Debugging information is being recorded.

12472 SO_DONTROUTE Bypass normal routing.

12473 SO_ERROR Socket error status.

12474 SO_KEEPALIVE Connections are kept alive with periodic messages.

12475 SO_LINGER Socket lingers on close.

12476 SO_OOBINLINE Out-of-band data is transmitted in line.

12477 SO_RCVBUF Receive buffer size.

12478 SO_RCVLOWAT Receive ‘‘low water mark’’.

12479 SO_RCVTIMEO Receive timeout.

12480 SO_REUSEADDR Reuse of local addresses is supported.

12481 SO_SNDBUF Send buffer size.

12482 SO_SNDLOWAT Send ‘‘low water mark’’.

12483 SO_SNDTIMEO Send timeout.

12484 SO_TYPE Socket type.

12485 The <sys/socket.h> header shall define the following macro as the maximum backlog queue
12486 length which may be specified by the backlog field of the listen() function:

12487 SOMAXCONN The maximum backlog queue length.

12488 The <sys/socket.h> header shall define the following macros, with distinct integer values, for
12489 use as the valid values for the msg_flags field in the msghdr structure, or the flags parameter in
12490 recvfrom(), recvmsg(), sendmsg(), or sendto() calls:

12491 MSG_CTRUNC Control data truncated.

12492 MSG_DONTROUTE Send without using routing tables.

12493 MSG_EOR Terminates a record (if supported by the protocol).

12494 MSG_OOB Out-of-band data.

12495 MSG_PEEK Leave received data in queue.

12496 MSG_TRUNC Normal data truncated.

12497 MSG_WAITALL Attempt to fill the read buffer. |

12498 The <sys/socket.h> header shall define the following macros, with distinct integer values:

12499 AF_INET Internet domain sockets for use with IPv4 addresses. |

12500 IP6 AF_INET6 Internet domain sockets for use with IPv6 addresses. |

12501 AF_UNIX UNIX domain sockets. |

12502 AF_UNSPEC Unspecified . |

12503 The <sys/socket.h> header shall define the following macros, with distinct integer values:

12504 SHUT_RD Disables further receive operations. |

Base Definitions, Issue 6 353

<sys/socket.h> Headers

12505 SHUT_RDWR Disables further send and receive operations. |

12506 SHUT_WR Disables further send operations. |

12507 The following shall be declared as functions and may also be defined as macros. Function |
12508 prototypes shall be provided. |

12509 int accept(int, struct sockaddr *restrict, socklen_t *restrict);
12510 int bind(int, const struct sockaddr *, socklen_t);
12511 int connect(int, const struct sockaddr *, socklen_t);
12512 int getpeername(int, struct sockaddr *restrict, socklen_t *restrict);
12513 int getsockname(int, struct sockaddr *restrict, socklen_t *restrict);
12514 int getsockopt(int, int, int, void *restrict, socklen_t *restrict);
12515 int listen(int, int);
12516 ssize_t recv(int, void *, size_t, int);
12517 ssize_t recvfrom(int, void *restrict, size_t, int,
12518 struct sockaddr *restrict, socklen_t *restrict);
12519 ssize_t recvmsg(int, struct msghdr *, int);
12520 ssize_t send(int, const void *, size_t, int);
12521 ssize_t sendmsg(int, const struct msghdr *, int);
12522 ssize_t sendto(int, const void *, size_t, int, const struct sockaddr *,
12523 socklen_t);
12524 int setsockopt(int, int, int, const void *, socklen_t);
12525 int shutdown(int, int);
12526 int socket(int, int, int);
12527 int socketpair(int, int, int, int[2]); |

12528 Inclusion of <sys/socket.h> may also make visible all symbols from <sys/uio.h>. |

12529 APPLICATION USAGE
12530 To forestall portability problems, it is recommended that applications not use values larger than |
12531 231 −1 for the socklen_t type. |

12532 The sockaddr_storage structure solves the problem of declaring storage for automatic variables
12533 which is both large enough and aligned enough for storing the socket address data structure of
12534 any family. For example, code with a file descriptor and without the context of the address
12535 family can pass a pointer to a variable of this type, where a pointer to a socket address structure
12536 is expected in calls such as getpeername(), and determine the address family by accessing the
12537 received content after the call.

12538 The example below illustrates a data structure which aligns on a 64-bit boundary. An |
12539 implementation-defined field _ss_align following _ss_pad1 is used to force a 64-bit alignment |
12540 which covers proper alignment good enough for needs of at least sockaddr_in6 (IPv6) and |
12541 sockaddr_in (IPv4) address data structures. The size of padding field _ss_pad1 depends on the |
12542 chosen alignment boundary. The size of padding field _ss_pad2 depends on the value of overall |
12543 size chosen for the total size of the structure. This size and alignment are represented in the |
12544 above example by implementation-defined (not required) constants _SS_MAXSIZE (chosen |
12545 value 128) and _SS_ALIGNMENT (with chosen value 8). Constants _SS_PAD1SIZE (derived |
12546 value 6) and _SS_PAD2SIZE (derived value 112) are also for illustration and not required. The |
12547 implementation-defined definitions and structure field names above start with an underscore to |
12548 denote implementation private name space. Portable code is not expected to access or reference |
12549 those fields or constants. |

12550 /*
12551 * Desired design of maximum size and alignment.
12552 */

354 Technical Standard (2001) (Draft April 13, 2001)

Headers <sys/socket.h>

12553 #define _SS_MAXSIZE 128
12554 /* Implementation-defined maximum size. */
12555 #define _SS_ALIGNSIZE (sizeof(int64_t))
12556 /* Implementation-defined desired alignment. */

12557 /*
12558 * Definitions used for sockaddr_storage structure paddings design.
12559 */
12560 #define _SS_PAD1SIZE (_SS_ALIGNSIZE − sizeof(sa_family_t))
12561 #define _SS_PAD2SIZE (_SS_MAXSIZE − (sizeof(sa_family_t)+
12562 _SS_PAD1SIZE + _SS_ALIGNSIZE))
12563 struct sockaddr_storage {
12564 sa_family_t ss_family; /* Address family. */
12565 /*
12566 * Following fields are implementation-defined. */
12567 */
12568 char _ss_pad1[_SS_PAD1SIZE];
12569 /* 6-byte pad; this is to make implementation-defined
12570 pad up to alignment field that follows explicit in
12571 the data structure. */
12572 int64_t _ss_align; /* Field to force desired structure
12573 storage alignment. */
12574 char _ss_pad2[_SS_PAD2SIZE];
12575 /* 112-byte pad to achieve desired size,
12576 _SS_MAXSIZE value minus size of ss_family
12577 __ss_pad1, __ss_align fields is 112. */
12578 };

12579 RATIONALE |
12580 None.

12581 FUTURE DIRECTIONS
12582 None.

12583 SEE ALSO
12584 <sys/uio.h>, the System Interfaces volume of IEEE Std 1003.1-200x, accept(), bind(), connect(),
12585 getpeername(), getsockname(), getsockopt (), listen(), recv(), recvfrom(), recvmsg(), send(),
12586 sendmsg(), sendto(), setsockopt (), shutdown(), socket(), socketpair ()

12587 CHANGE HISTORY
12588 First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

12589 The restrict keyword is added to the prototypes for accept(), getpeername(), getsockname(),
12590 getsockopt (), and recvfrom().

Base Definitions, Issue 6 355

<sys/stat.h> Headers

12591 NAME
12592 sys/stat.h — data returned by the stat() function

12593 SYNOPSIS
12594 #include <sys/stat.h>

12595 DESCRIPTION
12596 The <sys/stat.h> header shall define the structure of the data returned by the functions fstat(),
12597 lstat(), and stat().

12598 The stat structure shall contain at least the following members:

12599 dev_t st_dev ID of device containing file.
12600 ino_t st_ino File serial number.
12601 mode_t st_mode Mode of file (see below).
12602 nlink_t st_nlink Number of hard links to the file.
12603 uid_t st_uid User ID of file.
12604 gid_t st_gid Group ID of file.
12605 XSI dev_t st_rdev Device ID (if file is character or block special).
12606 off_t st_size For regular files, the file size in bytes.
12607 For symbolic links, the length in bytes of the
12608 pathname contained in the symbolic link. |
12609 SHM For a shared memory object, the length in bytes. |
12610 TYM For a typed memory object, the length in bytes. |
12611 For other file types, the use of this field is |
12612 unspecified
12613 time_t st_atime Time of last access.
12614 time_t st_mtime Time of last data modification.
12615 time_t st_ctime Time of last status change.
12616 XSI blksize_t st_blksize A file system-specific preferred I/O block size for
12617 this object. In some file system types, this may
12618 vary from file to file.
12619 blkcnt_t st_blocks Number of blocks allocated for this object.
12620

12621 File serial number and device ID taken together uniquely identify the file within the system. The
12622 blkcnt_t, blksize_t, dev_t, ino_t, mode_t, nlink_t, uid_t, gid_t, off_t, and time_t types shall be
12623 defined as described in <sys/types.h>. Times shall be given in seconds since the Epoch.

12624 Unless otherwise specified, the structure members st_mode, st_ino , st_dev , st_uid , st_gid , st_atime ,
12625 st_ctime, and st_mtime shall have meaningful values for all file types defined in
12626 IEEE Std 1003.1-200x.

12627 For symbolic links, the st_mode member shall contain meaningful information, which can be
12628 used with the file type macros described below, that take a mode argument. The st_size member |
12629 shall contain the length, in bytes, of the pathname contained in the symbolic link. File mode bits |
12630 and the contents of the remaining members of the stat structure are unspecified. The value
12631 returned in the st_size field shall be the length of the contents of the symbolic link, and shall not
12632 count a trailing null if one is present.

12633 The following symbolic names for the values of type mode_t shall also be defined.

12634 File type:

12635 XSI S_IFMT Type of file.

12636 S_IFBLK Block special.

356 Technical Standard (2001) (Draft April 13, 2001)

Headers <sys/stat.h>

12637 S_IFCHR Character special.

12638 S_IFIFO FIFO special.

12639 S_IFREG Regular.

12640 S_IFDIR Directory.

12641 S_IFLNK Symbolic link.

12642 S_IFSOCK Socket.

12643 File mode bits:

12644 S_IRWXU Read, write, execute/search by owner.

12645 S_IRUSR Read permission, owner.

12646 S_IWUSR Write permission, owner.

12647 S_IXUSR Execute/search permission, owner.

12648 S_IRWXG Read, write, execute/search by group.

12649 S_IRGRP Read permission, group.

12650 S_IWGRP Write permission, group.

12651 S_IXGRP Execute/search permission, group.

12652 S_IRWXO Read, write, execute/search by others.

12653 S_IROTH Read permission, others.

12654 S_IWOTH Write permission, others.

12655 S_IXOTH Execute/search permission, others.

12656 S_ISUID Set-user-ID on execution.

12657 S_ISGID Set-group-ID on execution.

12658 XSI S_ISVTX On directories, restricted deletion flag.

12659 The bits defined by S_IRUSR, S_IWUSR, S_IXUSR, S_IRGRP, S_IWGRP, S_IXGRP, S_IROTH,
12660 XSI S_IWOTH, S_IXOTH, S_ISUID, S_ISGID, and S_ISVTXshall be unique.

12661 S_IRWXU is the bitwise-inclusive OR of S_IRUSR, S_IWUSR, and S_IXUSR.

12662 S_IRWXG is the bitwise-inclusive OR of S_IRGRP, S_IWGRP, and S_IXGRP.

12663 S_IRWXO is the bitwise-inclusive OR of S_IROTH, S_IWOTH, and S_IXOTH.

12664 Implementations may OR other implementation-defined bits into S_IRWXU, S_IRWXG, and
12665 S_IRWXO, but they shall not overlap any of the other bits defined in this volume of
12666 IEEE Std 1003.1-200x. The file permission bits are defined to be those corresponding to the
12667 bitwise-inclusive OR of S_IRWXU, S_IRWXG, and S_IRWXO.

12668 The following macros shall be provided to test whether a file is of the specified type. The value
12669 m supplied to the macros is the value of st_mode from a stat structure. The macro shall evaluate
12670 to a non-zero value if the test is true; 0 if the test is false.

12671 S_ISBLK(m) Test for a block special file.

12672 S_ISCHR(m) Test for a character special file.

Base Definitions, Issue 6 357

<sys/stat.h> Headers

12673 S_ISDIR(m) Test for a directory.

12674 S_ISFIFO(m) Test for a pipe or FIFO special file.

12675 S_ISREG(m) Test for a regular file.

12676 S_ISLNK(m) Test for a symbolic link.

12677 S_ISSOCK(m) Test for a socket.

12678 The implementation may implement message queues, semaphores, or shared memory objects as
12679 distinct file types. The following macros shall be provided to test whether a file is of the
12680 specified type. The value of the buf argument supplied to the macros is a pointer to a stat
12681 structure. The macro shall evaluate to a non-zero value if the specified object is implemented as
12682 a distinct file type and the specified file type is contained in the stat structure referenced by buf.
12683 Otherwise, the macro shall evaluate to zero.

12684 S_TYPEISMQ(buf) Test for a message queue.

12685 S_TYPEISSEM(buf) Test for a semaphore.

12686 S_TYPEISSHM(buf) Test for a shared memory object.

12687 TYM The implementation may implement typed memory objects as distinct file types, and the
12688 following macro shall test whether a file is of the specified type. The value of the buf argument
12689 supplied to the macros is a pointer to a stat structure. The macro shall evaluate to a non-zero
12690 value if the specified object is implemented as a distinct file type and the specified file type is
12691 contained in the stat structure referenced by buf. Otherwise, the macro shall evaluate to zero.

12692 S_TYPEISTMO(buf) Test macro for a typed memory object.
12693

12694 The following shall be declared as functions and may also be defined as macros. Function |
12695 prototypes shall be provided. |

12696 int chmod(const char *, mode_t);
12697 int fchmod(int, mode_t);
12698 int fstat(int, struct stat *);
12699 int lstat(const char *restrict, struct stat *restrict);
12700 int mkdir(const char *, mode_t);
12701 int mkfifo(const char *, mode_t);
12702 XSI int mknod(const char *, mode_t, dev_t);
12703 int stat(const char *restrict, struct stat *restrict);
12704 mode_t umask(mode_t);

12705 APPLICATION USAGE
12706 Use of the macros is recommended for determining the type of a file.

12707 RATIONALE
12708 A conforming C-language application must include <sys/stat.h> for functions that have
12709 arguments or return values of type mode_t, so that symbolic values for that type can be used.
12710 An alternative would be to require that these constants are also defined by including
12711 <sys/types.h>.

12712 The S_ISUID and S_ISGID bits may be cleared on any write, not just on open(), as some historical
12713 implementations do it.

12714 System calls that update the time entry fields in the stat structure must be documented by the
12715 implementors. POSIX-conforming systems should not update the time entry fields for functions
12716 listed in the System Interfaces volume of IEEE Std 1003.1-200x unless the standard requires that

358 Technical Standard (2001) (Draft April 13, 2001)

Headers <sys/stat.h>

12717 they do, except in the case of documented extensions to the standard.

12718 Note that st_dev must be unique within a Local Area Network (LAN) in a ‘‘system’’ made up of
12719 multiple computers’ file systems connected by a LAN.

12720 Networked implementations of a POSIX-conforming system must guarantee that all files visible
12721 within the file tree (including parts of the tree that may be remotely mounted from other
12722 machines on the network) on each individual processor are uniquely identified by the
12723 combination of the st_ino and st_dev fields.

12724 FUTURE DIRECTIONS
12725 No new S_IFMT symbolic names for the file type values of mode_t will be defined by
12726 IEEE Std 1003.1-200x; if new file types are required, they will only be testable through S_ISxx()
12727 macros instead.

12728 SEE ALSO
12729 <sys/types.h>, the System Interfaces volume of IEEE Std 1003.1-200x, chmod(), fchmod(), fstat(),
12730 lstat(), mkdir(), mkfifo (), mknod(), stat(), umask()

12731 CHANGE HISTORY
12732 First released in Issue 1. Derived from Issue 1 of the SVID.

12733 Issue 5
12734 The DESCRIPTION is updated for alignment with POSIX Realtime Extension.

12735 The type of st_blksize is changed from long to blksize_t; the type of st_blocks is changed from
12736 long to blkcnt_t.

12737 Issue 6
12738 The S_TYPEISMQ(), S_TYPEISSEM(), and S_TYPEISSHM() macros are unconditionally
12739 mandated.

12740 The Open Group Corrigendum U035/4 is applied. In the DESCRIPTION, the types blksize_t
12741 and blkcnt_t have been described.

12742 The following new requirements on POSIX implementations derive from alignment with the
12743 Single UNIX Specification:

12744 • The dev_t, ino_t, mode_t, nlink_t, uid_t, gid_t, off_t, and time_t types are mandated.

12745 S_IFSOCK and S_ISSOCK are added for sockets.

12746 The description of stat structure members is changed to reflect contents when file type is a
12747 symbolic link.

12748 The test macro S_TYPEISTMO is added for alignment with IEEE Std 1003.1j-2000.

12749 The restrict keyword is added to the prototypes for lstat() and stat().

12750 The lstat() function is now mandatory.

Base Definitions, Issue 6 359

<sys/statvfs.h> Headers

12751 NAME
12752 sys/statvfs.h — VFS File System information structure

12753 SYNOPSIS
12754 XSI #include <sys/statvfs.h>
12755

12756 DESCRIPTION
12757 The <sys/statvfs.h> header shall define the statvfs structure that includes at least the following
12758 members:

12759 unsigned long f_bsize File system block size.
12760 unsigned long f_frsize Fundamental file system block size.
12761 fsblkcnt_t f_blocks Total number of blocks on file system in units of f_frsize.
12762 fsblkcnt_t f_bfree Total number of free blocks.
12763 fsblkcnt_t f_bavail Number of free blocks available to
12764 non-privileged process.
12765 fsfilcnt_t f_files Total number of file serial numbers.
12766 fsfilcnt_t f_ffree Total number of free file serial numbers.
12767 fsfilcnt_t f_favail Number of file serial numbers available to
12768 non-privileged process.
12769 unsigned long f_fsid File system ID.
12770 unsigned long f_flag Bit mask of f_flag values.
12771 unsigned long f_namemax Maximum filename length.

12772 The fsblkcnt_t and fsfilcnt_t types shall be defined as described in <sys/types.h>.

12773 The following flags for the f_flag member shall be defined:

12774 ST_RDONLY Read-only file system.
12775 ST_NOSUID Does not support setuid/setgid semantics.

12776 The following shall be declared as functions and may also be defined as macros. Function |
12777 prototypes shall be provided. |

12778 int statvfs(const char *restrict, struct statvfs *restrict);
12779 int fstatvfs(int, struct statvfs *);

12780 APPLICATION USAGE
12781 None.

12782 RATIONALE
12783 None.

12784 FUTURE DIRECTIONS
12785 None.

12786 SEE ALSO
12787 <sys/types.h>, the System Interfaces volume of IEEE Std 1003.1-200x, fstatvfs (), statvfs()

12788 CHANGE HISTORY
12789 First released in Issue 4, Version 2.

12790 Issue 5
12791 The type of f_blocks , f_bfree, and f_bavail is changed from unsigned long to fsblkcnt_t; the type
12792 of f_files , f_ffree , and f_favail is changed from unsigned long to fsfilcnt_t.

360 Technical Standard (2001) (Draft April 13, 2001)

Headers <sys/statvfs.h>

12793 Issue 6
12794 The Open Group Corrigendum U035/5 is applied. In the DESCRIPTION, the types fsblkcnt_t
12795 and fsfilcnt_t have been described.

12796 The restrict keyword is added to the prototype for statvfs().

Base Definitions, Issue 6 361

<sys/time.h> Headers

12797 NAME
12798 sys/time.h — time types

12799 SYNOPSIS
12800 XSI #include <sys/time.h>
12801

12802 DESCRIPTION
12803 The <sys/time.h> header shall define the timeval structure that includes at least the following
12804 members:

12805 time_t tv_sec Seconds.
12806 suseconds_t tv_usec Microseconds.

12807 The <sys/time.h> header shall define the itimerval structure that includes at least the following
12808 members:

12809 struct timeval it_interval Timer interval.
12810 struct timeval it_value Current value.

12811 The time_t and suseconds_t types shall be defined as described in <sys/types.h>.

12812 The fd_set type shall be defined as described in <sys/select.h>. |

12813 The <sys/time.h> header shall define the following values for the which argument of getitimer()
12814 and setitimer():

12815 ITIMER_REAL Decrements in real time.

12816 ITIMER_VIRTUAL Decrements in process virtual time.

12817 ITIMER_PROF Decrements both in process virtual time and when the system is running
12818 on behalf of the process.

12819 The following shall be defined as described in <sys/select.h>: |

12820 FD_CLR() ||
12821 FD_ISSET() ||
12822 FD_SET() ||
12823 FD_ZERO() ||
12824 FD_SETSIZE() ||

12825 The following shall be declared as functions and may also be defined as macros. Function |
12826 prototypes shall be provided. |

12827 int getitimer(int, struct itimerval *);
12828 int gettimeofday(struct timeval *restrict, void *restrict); |
12829 int select(int, fd_set *restrict, fd_set *restrict, fd_set *restrict, |
12830 struct timeval *restrict);
12831 int setitimer(int, const struct itimerval *restrict,
12832 struct itimerval *restrict);
12833 int utimes(const char *, const struct timeval [2]); (LEGACY)

12834 Inclusion of the <sys/time.h> header may make visible all symbols from the <sys/select.h>
12835 header.

362 Technical Standard (2001) (Draft April 13, 2001)

Headers <sys/time.h>

12836 APPLICATION USAGE
12837 None.

12838 RATIONALE
12839 None.

12840 FUTURE DIRECTIONS
12841 None.

12842 SEE ALSO
12843 <sys/types.h>, the System Interfaces volume of IEEE Std 1003.1-200x, getitimer(), gettimeofday (),
12844 select(), setitimer()

12845 CHANGE HISTORY
12846 First released in Issue 4, Version 2.

12847 Issue 5
12848 The type of tv_usec is changed from long to suseconds_t.

12849 Issue 6
12850 The restrict keyword is added to the prototypes for gettimeofday (), select(), and setitimer(). |

12851 The note is added that inclusion of this header may also make symbols visible from |
12852 <sys/socket.h>. |

12853 The utimes() function is marked LEGACY. |

Base Definitions, Issue 6 363

<sys/timeb.h> Headers

12854 NAME
12855 sys/timeb.h — additional definitions for date and time

12856 SYNOPSIS
12857 XSI #include <sys/timeb.h>
12858

12859 DESCRIPTION
12860 The <sys/timeb.h> header shall define the timeb structure that includes at least the following
12861 members:

12862 time_t time The seconds portion of the current time.
12863 unsigned short millitm The milliseconds portion of the current time.
12864 short timezone The local timezone in minutes west of Greenwich.
12865 short dstflag TRUE if Daylight Savings Time is in effect.

12866 The time_t type shall be defined as described in <sys/types.h>.

12867 The following shall be declared as a function and may also be defined as a macro. A function |
12868 prototype shall be provided. |

12869 int ftime(struct timeb *); (LEGACY)

12870 APPLICATION USAGE
12871 None.

12872 RATIONALE
12873 None.

12874 FUTURE DIRECTIONS
12875 None.

12876 SEE ALSO
12877 <sys/types.h>, <time.h>

CHANGE12878 HISTORY
12879 First released in Issue 4, Version 2.

12880 Issue 6
12881 The ftime() function is marked LEGACY.

364 Technical Standard (2001) (Draft April 13, 2001)

Headers <sys/times.h>

12882 NAME
12883 sys/times.h — file access and modification times structure

12884 SYNOPSIS
12885 #include <sys/times.h>

12886 DESCRIPTION
12887 The <sys/times.h> header shall define the structure tms, which is returned by times() and
12888 includes at least the following members:

12889 clock_t tms_utime User CPU time.
12890 clock_t tms_stime System CPU time.
12891 clock_t tms_cutime User CPU time of terminated child processes.
12892 clock_t tms_cstime System CPU time of terminated child processes.

12893 The clock_t type shall be defined as described in <sys/types.h>.

12894 The following shall be declared as a function and may also be defined as a macro. A function |
12895 prototype shall be provided. |

12896 clock_t times(struct tms *);

12897 APPLICATION USAGE
12898 None.

12899 RATIONALE
12900 None.

12901 FUTURE DIRECTIONS
12902 None.

12903 SEE ALSO
12904 <sys/types.h>, the System Interfaces volume of IEEE Std 1003.1-200x, times()

12905 CHANGE HISTORY
12906 First released in Issue 1. Derived from Issue 1 of the SVID.

Base Definitions, Issue 6 365

<sys/types.h> Headers

12907 NAME
12908 sys/types.h — data types

12909 SYNOPSIS
12910 #include <sys/types.h>

12911 DESCRIPTION
12912 The <sys/types.h> header shall include definitions for at least the following types:

12913 blkcnt_t Used for file block counts.

12914 blksize_t Used for block sizes.

12915 XSI clock_t Used for system times in clock ticks or CLOCKS_PER_SEC; see
12916 <time.h>.

12917 TMR clockid_t Used for clock ID type in the clock and timer functions.

12918 dev_t Used for device IDs.

12919 XSI fsblkcnt_t Used for file system block counts.

12920 XSI fsfilcnt_t Used for file system file counts.

12921 gid_t Used for group IDs.

12922 XSI id_t Used as a general identifier; can be used to contain at least a pid_t,
12923 uid_t, or gid_t.

12924 ino_t Used for file serial numbers.

12925 XSI key_t Used for XSI interprocess communication.

12926 mode_t Used for some file attributes.

12927 nlink_t Used for link counts.

12928 off_t Used for file sizes.

12929 pid_t Used for process IDs and process group IDs.

12930 THR pthread_attr_t Used to identify a thread attribute object.

12931 BAR pthread_barrier_t Used to identify a barrier.

12932 BAR pthread_barrierattr_t Used to define a barrier attributes object.

12933 THR pthread_cond_t Used for condition variables.

12934 THR pthread_condattr_t Used to identify a condition attribute object.

12935 THR pthread_key_t Used for thread-specific data keys.

12936 THR pthread_mutex_t Used for mutexes.

12937 THR pthread_mutexattr_t Used to identify a mutex attribute object.

12938 THR pthread_once_t Used for dynamic package initialization.

12939 THR pthread_rwlock_t Used for read-write locks.

12940 THR pthread_rwlockattr_t Used for read-write lock attributes.

12941 SPI pthread_spinlock_t Used to identify a spin lock.

12942 THR pthread_t Used to identify a thread.

366 Technical Standard (2001) (Draft April 13, 2001)

Headers <sys/types.h>

12943 size_t Used for sizes of objects.

12944 ssize_t Used for a count of bytes or an error indication.

12945 XSI suseconds_t Used for time in microseconds

12946 time_t Used for time in seconds.

12947 TMR timer_t Used for timer ID returned by timer_create().

12948 uid_t Used for user IDs.

12949 XSI useconds_t Used for time in microseconds.

12950 All of the types shall be defined as arithmetic types of an appropriate length, with the following
12951 exceptions:

12952 XSI key_t
12953 THR pthread_attr_t
12954 BAR pthread_barrier_t
12955 pthread_barrierattr_t
12956 THR pthread_cond_t
12957 pthread_condattr_t
12958 pthread_key_t
12959 pthread_mutex_t
12960 pthread_mutexattr_t
12961 pthread_once_t
12962 pthread_rwlock_t
12963 pthread_rwlockattr_t
12964 SPI pthread_spinlock_t
12965 TRC trace_attr_t
12966 trace_event_id_t
12967 TRC TEF trace_event_set_t
12968 TRC trace_id_t
12969

12970 Additionally:

12971 • mode_t shall be an integer type. |

12972 • nlink_t, uid_t, gid_t, and id_t shall be integer types. |

12973 • blkcnt_t and off_t shall be signed integer types. |

12974 XSI • fsblkcnt_t, fsfilcnt_t, andino_t shall be defined as unsigned integer types.

12975 • size_t shall be an unsigned integer type.

12976 • blksize_t, pid_t, and ssize_t shall be signed integer types. |

12977 • time_t and clock_t shall be integer or real-floating types. |

12978 XSI The type ssize_t shall be capable of storing values at least in the range [−1, {SSIZE_MAX}]. The
12979 type useconds_t shall be an unsigned integer type capable of storing values at least in the range
12980 [0, 1 000 000]. The type suseconds_t shall be a signed integer type capable of storing values at
12981 least in the range [−1, 1 000 000].

12982 The implementation shall support one or more programming environments in which the widths |
12983 of blksize_t, pid_t, size_t, ssize_t, suseconds_t, and useconds_t are no greater than the width of |
12984 type long. The names of these programming environments can be obtained using the confstr() |
12985 function or the getconf utility. |

Base Definitions, Issue 6 367

<sys/types.h> Headers

12986 There are no defined comparison or assignment operators for the following types: |

12987 THR pthread_attr_t
12988 BAR pthread_barrier_t
12989 pthread_barrierattr_t
12990 THR pthread_cond_t
12991 pthread_condattr_t
12992 pthread_mutex_t
12993 pthread_mutexattr_t
12994 pthread_rwlock_t
12995 pthread_rwlockattr_t
12996 SPI pthread_spinlock_t
12997 TRC trace_attr_t
12998

12999 APPLICATION USAGE
13000 None.

13001 RATIONALE
13002 None.

13003 FUTURE DIRECTIONS
13004 None.

13005 SEE ALSO
13006 <time.h>, the System Interfaces volume of IEEE Std 1003.1-200x, confstr(), the Shell and Utilities |
13007 volume of IEEE Std 1003.1-200x, getconf |

13008 CHANGE HISTORY
13009 First released in Issue 1. Derived from Issue 1 of the SVID.

13010 Issue 5
13011 The clockid_t and timer_t types are defined for alignment with the POSIX Realtime Extension.

13012 The types blkcnt_t, blksize_t, fsblkcnt_t, fsfilcnt_t, and suseconds_t are added.

13013 Large File System extensions are added.

13014 Updated for alignment with the POSIX Threads Extension.

13015 Issue 6
13016 The pthread_barrier_t, pthread_barrierattr_t, and pthread_spinlock_t types are added for
13017 alignment with IEEE Std 1003.1j-2000.

13018 The margin code is changed from XSI to THR for the pthread_rwlock_t and
13019 pthread_rwlockattr_t types as Read-Write Locks have been absorbed into the POSIX Threads
13020 option. The threads types are now marked THR.

368 Technical Standard (2001) (Draft April 13, 2001)

Headers <sys/uio.h>

13021 NAME
13022 sys/uio.h — definitions for vector I/O operations

13023 SYNOPSIS
13024 XSI #include <sys/uio.h>
13025

13026 DESCRIPTION
13027 The <sys/uio.h> header shall define the iovec structure that includes at least the following
13028 members:

13029 void *iov_base Base address of a memory region for input or output.
13030 size_t iov_len The size of the memory pointed to by iov_base.

13031 The <sys/uio.h> header uses the iovec structure for scatter/gather I/O.

13032 The ssize_t and size_t types shall be defined as described in <sys/types.h>.

13033 The following shall be declared as functions and may also be defined as macros. Function |
13034 prototypes shall be provided. |

13035 ssize_t readv(int, const struct iovec *, int);
13036 ssize_t writev(int, const struct iovec *, int);

13037 APPLICATION USAGE
13038 The implementation can put a limit on the number of scatter/gather elements which can be
13039 processed in one call. The symbol {IOV_MAX} defined in <limits.h> should always be used to
13040 learn about the limits instead of assuming a fixed value.

13041 RATIONALE
13042 Traditionally, the maximum number of scatter/gather elements the system can process in one
13043 call were described by the symbolic value {UIO_MAXIOV}. In IEEE Std 1003.1-200x this value
13044 was replaced by the constant {IOV_MAX} which can be found in <limits.h>.

13045 FUTURE DIRECTIONS
13046 None.

13047 SEE ALSO
13048 <limits.h>, <sys/types.h>, the System Interfaces volume of IEEE Std 1003.1-200x, read(), write()

13049 CHANGE HISTORY
13050 First released in Issue 4, Version 2.

13051 Issue 6
13052 Text referring to scatter/gather I/O is added to the DESCRIPTION.

Base Definitions, Issue 6 369

<sys/un.h> Headers

13053 NAME
13054 sys/un.h — definitions for UNIX domain sockets

13055 SYNOPSIS
13056 #include <sys/un.h>

13057 DESCRIPTION
13058 The <sys/un.h> header shall define the sockaddr_un structure that includes at least the
13059 following members:

13060 sa_family_t sun_family Address family.
13061 char sun_path[] Socket pathname. |

13062 The sockaddr_un structure is used to store addresses for UNIX domain sockets. Values of this |
13063 type shall be cast by applications to struct sockaddr for use with socket functions.

13064 The sa_family_t type shall be defined as described in <sys/socket.h>.

13065 APPLICATION USAGE
13066 The size of sun_path has intentionally been left undefined. This is because different
13067 implementations use different sizes. For example, BSD4.3 uses a size of 108, and BSD4.4 uses a
13068 size of 104. Since most implementations originate from BSD versions, the size is typically in the
13069 range 92 to 108.

13070 Applications should not assume a particular length for sun_path or assume that it can hold
13071 _POSIX_PATH_MAX characters (255).

13072 RATIONALE
13073 None.

13074 FUTURE DIRECTIONS
13075 None.

13076 SEE ALSO
13077 <sys/socket.h>, the System Interfaces volume of IEEE Std 1003.1-200x, bind(), socket(),
13078 socketpair ()

13079 CHANGE HISTORY
13080 First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

370 Technical Standard (2001) (Draft April 13, 2001)

Headers <sys/utsname.h>

13081 NAME
13082 sys/utsname.h — system name structure

13083 SYNOPSIS
13084 #include <sys/utsname.h>

13085 DESCRIPTION
13086 The <sys/utsname.h> header shall define the structure utsname which shall include at least the
13087 following members:

13088 char sysname[] Name of this implementation of the operating system.
13089 char nodename[] Name of this node within an implementation-defined
13090 communications network.
13091 char release[] Current release level of this implementation.
13092 char version[] Current version level of this release.
13093 char machine[] Name of the hardware type on which the system is running.

13094 The character arrays are of unspecified size, but the data stored in them shall be terminated by a
13095 null byte.

13096 The following shall be declared as a function and may also be defined as a macro:

13097 int uname(struct utsname *);

13098 APPLICATION USAGE
13099 None.

13100 RATIONALE
13101 None.

13102 FUTURE DIRECTIONS
13103 None.

13104 SEE ALSO
13105 The System Interfaces volume of IEEE Std 1003.1-200x, uname()

13106 CHANGE HISTORY
13107 First released in Issue 1. Derived from Issue 1 of the SVID.

Base Definitions, Issue 6 371

<sys/wait.h> Headers

13108 NAME
13109 sys/wait.h — declarations for waiting

13110 SYNOPSIS
13111 #include <sys/wait.h>

13112 DESCRIPTION
13113 The <sys/wait.h> header shall define the following symbolic constants for use with waitpid ():

13114 WNOHANG Do not hang if no status is available; return immediately.

13115 WUNTRACED Report status of stopped child process.

13116 The <sys/wait.h> header shall define the following macros for analysis of process status values:

13117 WEXITSTATUS Return exit status.

13118 XSI WIFCONTINUED True if child has been continued

13119 WIFEXITED True if child exited normally.

13120 WIFSIGNALED True if child exited due to uncaught signal.

13121 WIFSTOPPED True if child is currently stopped.

13122 WSTOPSIG Return signal number that caused process to stop.

13123 WTERMSIG Return signal number that caused process to terminate.

13124 XSI The following symbolic constants shall be defined as possible values for the options argument to
13125 waitid ():

13126 WEXITED Wait for processes that have exited.

13127 WSTOPPED Status is returned for any child that has stopped upon receipt of a signal.

13128 WCONTINUED Status is returned for any child that was stopped and has been continued.

13129 WNOHANG Return immediately if there are no children to wait for.

13130 WNOWAIT Keep the process whose status is returned in infop in a waitable state.

13131 The type idtype_t shall be defined as an enumeration type whose possible values shall include
13132 at least the following:

13133 P_ALL |
13134 P_PID |
13135 P_PGID |

13136

13137 The id_t and pid_t types shall be defined as described in <sys/types.h>.

13138 XSI The siginfo_t type shall be defined as described in <signal.h>.

13139 The rusage structure shall be defined as described in <sys/resource.h>.

13140 Inclusion of the <sys/wait.h> header may also make visible all symbols from <signal.h> and
13141 <sys/resource.h>.

13142 The following shall be declared as functions and may also be defined as macros. Function |
13143 prototypes shall be provided. |

13144 pid_t wait(int *);
13145 XSI int waitid(idtype_t, id_t, siginfo_t *, int);
13146 pid_t waitpid(pid_t, int *, int);

372 Technical Standard (2001) (Draft April 13, 2001)

Headers <sys/wait.h>

13147 APPLICATION USAGE
13148 None.

13149 RATIONALE
13150 None.

13151 FUTURE DIRECTIONS
13152 None.

13153 SEE ALSO
13154 <signal.h>, <sys/resource.h>, <sys/types.h>, <sys/wait.h>, the System Interfaces volume of
13155 IEEE Std 1003.1-200x, wait(), waitid ()

13156 CHANGE HISTORY
13157 First released in Issue 3.

13158 Entry included for alignment with the POSIX.1-1988 standard.

13159 Issue 6
13160 The wait3() function is removed.

Base Definitions, Issue 6 373

<syslog.h> Headers

13161 NAME
13162 syslog — definitions for system error logging

13163 SYNOPSIS
13164 XSI #include <syslog.h>
13165

13166 DESCRIPTION
13167 The <syslog.h> header shall define the following symbolic constants, zero or more of which may
13168 be OR’ed together to form the logopt option of openlog ():

13169 LOG_PID Log the process ID with each message.

13170 LOG_CONS Log to the system console on error.

13171 LOG_NDELAY Connect to syslog daemon immediately.

13172 LOG_ODELAY Delay open until syslog() is called.

13173 LOG_NOWAIT Do not wait for child processes.

13174 The following symbolic constants shall be defined as possible values of the facility argument to
13175 openlog ():

13176 LOG_KERN Reserved for message generated by the system.

13177 LOG_USER Message generated by a process.

13178 LOG_MAIL Reserved for message generated by mail system.

13179 LOG_NEWS Reserved for message generated by news system.

13180 LOG_UUCP Reserved for message generated by UUCP system.

13181 LOG_DAEMON Reserved for message generated by system daemon.

13182 LOG_AUTH Reserved for message generated by authorization daemon.

13183 LOG_CRON Reserved for message generated by the clock daemon.

13184 LOG_LPR Reserved for message generated by printer system.

13185 LOG_LOCAL0 Reserved for local use.

13186 LOG_LOCAL1 Reserved for local use.

13187 LOG_LOCAL2 Reserved for local use.

13188 LOG_LOCAL3 Reserved for local use.

13189 LOG_LOCAL4 Reserved for local use.

13190 LOG_LOCAL5 Reserved for local use.

13191 LOG_LOCAL6 Reserved for local use.

13192 LOG_LOCAL7 Reserved for local use.

13193 The following shall be declared as macros for constructing the maskpri argument to setlogmask ().
13194 The following macros expand to an expression of type int when the argument pri is an
13195 expression of type int:

13196 LOG_MASK(pri) A mask for priority pri .

13197 The following constants shall be defined as possible values for the priority argument of syslog():

374 Technical Standard (2001) (Draft April 13, 2001)

Headers <syslog.h>

13198 LOG_EMERG A panic condition was reported to all processes.

13199 LOG_ALERT A condition that should be corrected immediately.

13200 LOG_CRIT A critical condition.

13201 LOG_ERR An error message.

13202 LOG_WARNING A warning message.

13203 LOG_NOTICE A condition requiring special handling.

13204 LOG_INFO A general information message.

13205 LOG_DEBUG A message useful for debugging programs.

13206 The following shall be declared as functions and may also be defined as macros. Function |
13207 prototypes shall be provided. |

13208 void closelog(void);
13209 void openlog(const char *, int, int);
13210 int setlogmask(int);
13211 void syslog(int, const char *, ...);

13212 APPLICATION USAGE
13213 None.

13214 RATIONALE
13215 None.

13216 FUTURE DIRECTIONS
13217 None.

13218 SEE ALSO
13219 The System Interfaces volume of IEEE Std 1003.1-200x, closelog ()

13220 CHANGE HISTORY
13221 First released in Issue 4, Version 2.

13222 Issue 5
13223 Moved to X/Open UNIX to BASE.

Base Definitions, Issue 6 375

<tar.h> Headers

13224 NAME
13225 tar.h — extended tar definitions

13226 SYNOPSIS
13227 #include <tar.h>

13228 DESCRIPTION
13229 The <tar.h> header shall define header block definitions as follows.

13230 General definitions:
13231 __
13232 Name Description Value__
13233 TMAGIC "ustar" ustar plus null byte.
13234 TMAGLEN 6 Length of the above.
13235 TVERSION "00" 00 without a null byte.
13236 TVERSLEN 2 Length of the above.__LL

L
L
L
L
L

LL
L
L
L
L
L

LL
L
L
L
L
L

LL
L
L
L
L
L

13237 Typeflag field definitions:
13238 __
13239 Name Description Value__
13240 REGTYPE ’0’ Regular file.
13241 AREGTYPE ’\0’ Regular file.
13242 LNKTYPE ’1’ Link.
13243 SYMTYPE ’2’ Symbolic link.
13244 CHRTYPE ’3’ Character special.
13245 BLKTYPE ’4’ Block special.
13246 DIRTYPE ’5’ Directory.
13247 FIFOTYPE ’6’ FIFO special.
13248 CONTTYPE ’7’ Reserved.__LL

L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

13249 Mode field bit definitions (octal):
13250 __
13251 Name Description Value__
13252 TSUID 04000 Set UID on execution.
13253 TSGID 02000 Set GID on execution.
13254 XSI TSVTX 01000 On directories, restricted deletion flag.
13255 TUREAD 00400 Read by owner.
13256 TUWRITE 00200 Write by owner special.
13257 TUEXEC 00100 Execute/search by owner.
13258 TGREAD 00040 Read by group.
13259 TGWRITE 00020 Write by group.
13260 TGEXEC 00010 Execute/search by group.
13261 TOREAD 00004 Read by other.
13262 TOWRITE 00002 Write by other.
13263 TOEXEC 00001 Execute/search by other.__L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

376 Technical Standard (2001) (Draft April 13, 2001)

Headers <tar.h>

13264 APPLICATION USAGE
13265 None.

13266 RATIONALE
13267 None.

13268 FUTURE DIRECTIONS
13269 None.

13270 SEE ALSO
13271 The Shell and Utilities volume of IEEE Std 1003.1-200x, pax

13272 CHANGE HISTORY
13273 First released in Issue 3. Derived from the entry in the POSIX.1-1988 standard.

13274 Issue 6
13275 The SEE ALSO section now refers to pax since the Shell and Utilities volume of
13276 IEEE Std 1003.1-200x no longer contains the tar utility.

Base Definitions, Issue 6 377

<termios.h> Headers

13277 NAME
13278 termios.h — define values for termios

13279 SYNOPSIS
13280 #include <termios.h>

13281 DESCRIPTION
13282 The <termios.h> header contains the definitions used by the terminal I/O interfaces (see
13283 Chapter 11 (on page 183) for the structures and names defined).

13284 The termios Structure

13285 The following data types shall be defined through typedef:

13286 cc_t Used for terminal special characters.

13287 speed_t Used for terminal baud rates.

13288 tcflag_t Used for terminal modes.

13289 The above types shall be all unsigned integer types.

13290 The implementation shall support one or more programming environments in which the widths |
13291 of cc_t, speed_t, and tcflag_t are no greater than the width of type long. The names of these |
13292 programming environments can be obtained using the confstr() function or the getconf utility. |

13293 The termios structure shall be defined, and shall include at least the following members: |

13294 tcflag_t c_iflag Input modes.
13295 tcflag_t c_oflag Output modes.
13296 tcflag_t c_cflag Control modes.
13297 tcflag_t c_lflag Local modes.
13298 cc_t c_cc[NCCS] Control characters.

13299 A definition shall be provided for:

13300 NCCS Size of the array c_cc for control characters.

13301 The following subscript names for the array c_cc shall be defined:
13302 __
13303 Subscript Usage
13304 Canonical Mode Non-Canonical Mode Description__
13305 VEOF EOF character.
13306 VEOL EOL character.
13307 VERASE ERASE character.
13308 VINTR VINTR INTR character.
13309 VKILL KILL character.
13310 VMIN MIN value.
13311 VQUIT VQUIT QUIT character.
13312 VSTART VSTART START character.
13313 VSTOP VSTOP STOP character.
13314 VSUSP VSUSP SUSP character.
13315 VTIME TIME value.__L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

13316 The subscript values shall be unique, except that the VMIN and VTIME subscripts may have the
13317 same values as the VEOF and VEOL subscripts, respectively.

13318 The following flags shall be provided.

378 Technical Standard (2001) (Draft April 13, 2001)

Headers <termios.h>

13319 Input Modes

13320 The c_iflag field describes the basic terminal input control:

13321 BRKINT Signal interrupt on break.

13322 ICRNL Map CR to NL on input.

13323 IGNBRK Ignore break condition.

13324 IGNCR Ignore CR.

13325 IGNPAR Ignore characters with parity errors.

13326 INLCR Map NL to CR on input.

13327 INPCK Enable input parity check.

13328 ISTRIP Strip character.

13329 XSI IXANY Enable any character to restart output.

13330 IXOFF Enable start/stop input control.

13331 IXON Enable start/stop output control.

13332 PARMRK Mark parity errors.

13333 Output Modes

13334 The c_oflag field specifies the system treatment of output:

13335 OPOST Post-process output.

13336 XSI ONLCR Map NL to CR-NL on output.

13337 OCRNL Map CR to NL on output.

13338 ONOCR No CR output at column 0.

13339 ONLRET NL performs CR function.

13340 OFILL Use fill characters for delay.

13341 NLDLY Select newline delays:

13342 NL0 <newline> type 0.

13343 NL1 <newline> type 1.

13344 CRDLY Select carriage-return delays:

13345 CR0 Carriage-return delay type 0.

13346 CR1 Carriage-return delay type 1.

13347 CR2 Carriage-return delay type 2.

13348 CR3 Carriage-return delay type 3.

13349 TABDLY Select horizontal-tab delays:

13350 TAB0 Horizontal-tab delay type 0.

13351 TAB1 Horizontal-tab delay type 1.

13352 TAB2 Horizontal-tab delay type 2.

Base Definitions, Issue 6 379

<termios.h> Headers

13353 TAB3 Expand tabs to spaces.

13354 BSDLY Select backspace delays:

13355 BS0 Backspace-delay type 0.

13356 BS1 Backspace-delay type 1.

13357 VTDLY Select vertical-tab delays:

13358 VT0 Vertical-tab delay type 0.

13359 VT1 Vertical-tab delay type 1.

13360 FFDLY Select form-feed delays:

13361 FF0 Form-feed delay type 0.

13362 FF1 Form-feed delay type 1.

13363 Baud Rate Selection

13364 The input and output baud rates are stored in the termios structure. These are the valid values
13365 for objects of type speed_t. The following values shall be defined, but not all baud rates need be
13366 supported by the underlying hardware.

13367 B0 Hang up

13368 B50 50 baud

13369 B75 75 baud

13370 B110 110 baud

13371 B134 134.5 baud

13372 B150 150 baud

13373 B200 200 baud

13374 B300 300 baud

13375 B600 600 baud

13376 B1200 1200 baud

13377 B1800 1800 baud

13378 B2400 2400 baud

13379 B4800 4800 baud

13380 B9600 9600 baud

13381 B19200 19200 baud

13382 B38400 38400 baud

380 Technical Standard (2001) (Draft April 13, 2001)

Headers <termios.h>

13383 Control Modes

13384 The c_cflag field describes the hardware control of the terminal; not all values specified are
13385 required to be supported by the underlying hardware:

13386 CSIZE Character size:

13387 CS5 5 bits

13388 CS6 6 bits

13389 CS7 7 bits

13390 CS8 8 bits

13391 CSTOPB Send two stop bits, else one.

13392 CREAD Enable receiver.

13393 PARENB Parity enable.

13394 PARODD Odd parity, else even.

13395 HUPCL Hang up on last close.

13396 CLOCAL Ignore modem status lines.

13397 The implementation shall support the functionality associated with the symbols CS7, CS8, |
13398 CSTOPB, PARODD, and PARENB. |

13399 Local Modes

13400 The c_lflag field of the argument structure is used to control various terminal functions:

13401 ECHO Enable echo.

13402 ECHOE Echo erase character as error-correcting backspace.

13403 ECHOK Echo KILL.

13404 ECHONL Echo NL.

13405 ICANON Canonical input (erase and kill processing).

13406 IEXTEN Enable extended input character processing.

13407 ISIG Enable signals.

13408 NOFLSH Disable flush after interrupt or quit.

13409 TOSTOP Send SIGTTOU for background output.

13410 Attribute Selection

13411 The following symbolic constants for use with tcsetattr() are defined:

13412 TCSANOW Change attributes immediately.

13413 TCSADRAIN Change attributes when output has drained.

13414 TCSAFLUSH Change attributes when output has drained; also flush pending input.

Base Definitions, Issue 6 381

<termios.h> Headers

13415 Line Control

13416 The following symbolic constants for use with tcflush() shall be defined:

13417 TCIFLUSH Flush pending input. Flush untransmitted output.

13418 TCIOFLUSH Flush both pending input and untransmitted output.

13419 TCOFLUSH Flush untransmitted output.

13420 The following symbolic constants for use with tcflow () shall be defined:

13421 TCIOFF Transmit a STOP character, intended to suspend input data.

13422 TCION Transmit a START character, intended to restart input data.

13423 TCOOFF Suspend output.

13424 TCOON Restart output.

13425 The following shall be declared as functions and may also be defined as macros. Function |
13426 prototypes shall be provided. |

13427 speed_t cfgetispeed(const struct termios *);
13428 speed_t cfgetospeed(const struct termios *);
13429 int cfsetispeed(struct termios *, speed_t);
13430 int cfsetospeed(struct termios *, speed_t);
13431 int tcdrain(int);
13432 int tcflow(int, int);
13433 int tcflush(int, int);
13434 int tcgetattr(int, struct termios *);
13435 XSI pid_t tcgetsid(int);
13436 int tcsendbreak(int, int);
13437 int tcsetattr(int, int, const struct termios *); |

13438 APPLICATION USAGE |
13439 The following names are reserved for XSI-conformant systems to use as an extension to the
13440 above; therefore strictly conforming applications shall not use them:

13441 CBAUD EXTB VDSUSP
13442 DEFECHO FLUSHO VLNEXT
13443 ECHOCTL LOBLK VREPRINT
13444 ECHOKE PENDIN VSTATUS
13445 ECHOPRT SWTCH VWERASE
13446 EXTA VDISCARD

13447 RATIONALE
13448 None.

13449 FUTURE DIRECTIONS
13450 None.

13451 SEE ALSO
13452 The System Interfaces volume of IEEE Std 1003.1-200x, cfgetispeed(), cfgetospeed(), cfsetispeed(),
13453 cfsetospeed(), getconf(), tcdrain(), tcflow (), tcflush(), tcgetattr(), tcgetsid(), tcsendbreak(), tcsetattr(), |
13454 the Shell and Utilities volume of IEEE Std 1003.1-200x, getconf, Chapter 11 (on page 183) |

382 Technical Standard (2001) (Draft April 13, 2001)

Headers <termios.h>

13455 CHANGE HISTORY
13456 First released in Issue 3.

13457 Entry included for alignment with the ISO POSIX-1 standard.

13458 Issue 6
13459 The LEGACY symbols IUCLC, ULCUC, and XCASE are removed. |

13460 FIPS 151-2 requirements for the symbols CS7, CS8, CSTOPB, PARODD, and PARENB are |
13461 reaffirmed. |

Base Definitions, Issue 6 383

<tgmath.h> Headers

13462 NAME
13463 tgmath.h — type-generic macros

13464 SYNOPSIS
13465 #include <tgmath.h>

13466 DESCRIPTION
13467 CX The functionality described on this reference page is aligned with the ISO C standard. Any
13468 conflict between the requirements described here and the ISO C standard is unintentional. This
13469 volume of IEEE Std 1003.1-200x defers to the ISO C standard.

13470 The <tgmath.h> header shall include the headers <math.h> and <complex.h> and shall define
13471 several type-generic macros.

13472 Of the functions contained within the <math.h> and <complex.h> headers without an f (float) or
13473 l (long double) suffix, several have one or more parameters whose corresponding real type is
13474 double. For each such function, except modf(), there shall be a corresponding type-generic
13475 macro. The parameters whose corresponding real type is double in the function synopsis are
13476 generic parameters. Use of the macro invokes a function whose corresponding real type and
13477 type domain are determined by the arguments for the generic parameters.

13478 Use of the macro invokes a function whose generic parameters have the corresponding real type
13479 determined as follows:

13480 • First, if any argument for generic parameters has type long double, the type determined is
13481 long double.

13482 • Otherwise, if any argument for generic parameters has type double or is of integer type, the
13483 type determined is double.

13484 • Otherwise, the type determined is float.

13485 For each unsuffixed function in the <math.h> header for which there is a function in the
13486 <complex.h> header with the same name except for a c prefix, the corresponding type-generic
13487 macro (for both functions) has the same name as the function in the <math.h> header. The
13488 corresponding type-generic macro for fabs() and cabs() is fabs().

___ |
13489 <math.h> <complex.h> Type-Generic |
13490 Function Function Macro |___ |
13491 acos() cacos() acos() |
13492 asin() casin() asin() |
13493 atan() catan() atan() |
13494 acosh() cacosh() acosh() |
13495 asinh() casinh() asinh() |
13496 atanh() catanh () atanh() |
13497 cos() ccos() cos() |
13498 sin() csin() sin() |
13499 tan() ctan() tan() |
13500 cosh() ccosh() cosh() |
13501 sinh() csinh() sinh() |
13502 tanh() ctanh() tanh() |
13503 exp() cexp() exp() |
13504 log() clog() log() |
13505 pow() cpow() pow() |
13506 sqrt() csqrt() sqrt() |
13507 fabs() cabs() fabs() |___ |LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

|LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

|LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

|LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

|

384 Technical Standard (2001) (Draft April 13, 2001)

Headers <tgmath.h>

13508 If at least one argument for a generic parameter is complex, then use of the macro invokes a
13509 complex function; otherwise, use of the macro invokes a real function.

13510 For each unsuffixed function in the <math.h> header without a c-prefixed counterpart in the
13511 <complex.h> header, the corresponding type-generic macro has the same name as the function.
13512 These type-generic macros are:

13513 atan2() ||
13514 cbrt() ||
13515 ceil() ||
13516 copysign() ||
13517 erf() ||
13518 erfc() ||
13519 exp2() ||
13520 expm1() ||
13521 fdim() ||
13522 floor () ||

fma() ||
fmax() ||
fmin() ||
fmod() ||
frexp() ||
hypot() ||
ilogb () ||
ldexp() ||
lgamma() ||
llrint() ||

llround() ||
log10 () ||
log1p () ||
log2 () ||
logb() ||
lrint() ||
lround() ||
nearbyint() ||
nextafter() ||
nexttoward() ||

remainder() ||
remquo() ||
rint() ||
round() ||
scalbn() ||
scalbln() ||
tgamma() ||
trunc() ||

|

13523 If all arguments for generic parameters are real, then use of the macro invokes a real function;
13524 otherwise, use of the macro results in undefined behavior.

13525 For each unsuffixed function in the <complex.h> header that is not a c-prefixed counterpart to a
13526 function in the <math.h> header, the corresponding type-generic macro has the same name as
13527 the function. These type-generic macros are:

13528 carg() |
13529 cimag() |
13530 conj() |
13531 cproj() |
13532 creal() |

13533 Use of the macro with any real or complex argument invokes a complex function.

13534 APPLICATION USAGE
13535 With the declarations:

13536 #include <tgmath.h>
13537 int n;
13538 float f;
13539 double d;
13540 long double ld;
13541 float complex fc;
13542 double complex dc;
13543 long double complex ldc;

13544 functions invoked by use of type-generic macros are shown in the following table: |
13545 ___ ||
13546 Macro Use Invokes ||___ ||LL ||LL ||LL ||
13547 exp(n) exp(n), the function |
13548 acosh(f) acoshf(f)
13549 sin(d) sin(d), the function
13550 atan(ld) atanl(ld)___L

L
L
L
L

L
L
L
L
L

L
L
L
L
L

Base Definitions, Issue 6 385

<tgmath.h> Headers

13551 ___ |
13552 Macro Use Invokes |___ |LL |LL |LL |
13553 log(fc) clogf(fc)
13554 sqrt(dc) csqrt(dc)
13555 pow(ldc,f) cpowl(ldc, f)
13556 remainder(n,n) remainder(n, n), the function
13557 nextafter(d,f) nextafter(d, f), the function
13558 nexttoward(f,ld) nexttowardf(f, ld)
13559 copysign(n,ld) copysignl(n, ld)
13560 ceil(fc) Undefined behavior
13561 rint(dc) Undefined behavior
13562 fmax(ldc,ld) Undefined behavior
13563 carg(n) carg(n), the function
13564 cproj(f) cprojf(f)
13565 creal(d) creal(d), the function
13566 cimag(ld) cimagl(ld)
13567 cabs(fc) cabsf(fc)
13568 carg(dc) carg(dc), the function
13569 cproj(ldc) cprojl(ldc)___LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

13570 RATIONALE |
13571 Type-generic macros allow calling a function whose type is determined by the argument type, as
13572 is the case for C operators such as ’+’ and ’*’ . For example, with a type-generic cos() macro,
13573 the expression cos((float)x) will have type float. This feature enables writing more portably
13574 efficient code and alleviates need for awkward casting and suffixing in the process of porting or
13575 adjusting precision. Generic math functions are a widely appreciated feature of Fortran.

13576 The only arguments that affect the type resolution are the arguments corresponding to the
13577 parameters that have type double in the synopsis. Hence the type of a type-generic call to
13578 nexttoward(), whose second parameter is long double in the synopsis, is determined solely by
13579 the type of the first argument.

13580 The term ‘‘type-generic’’ was chosen over the proposed alternatives of intrinsic and overloading.
13581 The term is more specific than intrinsic, which already is widely used with a more general
13582 meaning, and reflects a closer match to Fortran’s generic functions than to C++ overloading.

13583 The macros are placed in their own header in order not to silently break old programs that
13584 include the <math.h> header; for example, with:

13585 printf ("%e", sin(x))

13586 modf(double, double *) is excluded because no way was seen to make it safe without
13587 complicating the type resolution.

13588 The implementation might, as an extension, endow appropriate ones of the macros that
13589 IEEE Std 1003.1-200x specifies only for real arguments with the ability to invoke the complex
13590 functions.

13591 IEEE Std 1003.1-200x does not prescribe any particular implementation mechanism for generic
13592 macros. It could be implemented simply with built-in macros. The generic macro for sqrt(), for
13593 example, could be implemented with:

13594 #undef sqrt
13595 #define sqrt(x) __BUILTIN_GENERIC_sqrt(x)

13596 Generic macros are designed for a useful level of consistency with C++ overloaded math
13597 functions.

386 Technical Standard (2001) (Draft April 13, 2001)

Headers <tgmath.h>

13598 The great majority of existing C programs are expected to be unaffected when the <tgmath.h>
13599 header is included instead of the <math.h> or <complex.h> headers. Generic macros are similar
13600 to the ISO/IEC 9899: 1999 standard library masking macros, though the semantic types of return
13601 values differ.

13602 The ability to overload on integer as well as floating types would have been useful for some
13603 functions; for example, copysign(). Overloading with different numbers of arguments would
13604 have allowed reusing names; for example, remainder() for remquo(). However, these facilities
13605 would have complicated the specification; and their natural consistent use, such as for a floating
13606 abs() or a two-argument atan(), would have introduced further inconsistencies with the
13607 ISO/IEC 9899: 1999 standard for insufficient benefit.

13608 The ISO C standard in no way limits the implementation’s options for efficiency, including
13609 inlining library functions.

13610 FUTURE DIRECTIONS
13611 None.

13612 SEE ALSO
13613 <math.h>, <complex.h>, the System Interfaces volume of IEEE Std 1003.1-200x, cabs(), fabs(),
13614 modf()

13615 CHANGE HISTORY
13616 First released in Issue 6. Included for alignment with the ISO/IEC 9899: 1999 standard.

Base Definitions, Issue 6 387

<time.h> Headers

13617 NAME
13618 time.h — time types

13619 SYNOPSIS
13620 #include <time.h>

13621 DESCRIPTION
13622 CX Some of the functionality described on this reference page extends the ISO C standard.
13623 Applications shall define the appropriate feature test macro (see the System Interfaces volume of
13624 IEEE Std 1003.1-200x, Section 2.2, The Compilation Environment) to enable the visibility of these
13625 symbols in this header.

13626 The <time.h> header shall declare the structure tm, which shall include at least the following
13627 members:

13628 int tm_sec Seconds [0,60].
13629 int tm_min Minutes [0,59].
13630 int tm_hour Hour [0,23].
13631 int tm_mday Day of month [1,31].
13632 int tm_mon Month of year [0,11].
13633 int tm_year Years since 1900.
13634 int tm_wday Day of week [0,6] (Sunday =0).
13635 int tm_yday Day of year [0,365].
13636 int tm_isdst Daylight savings flag.

13637 The value of tm_isdst shall be positive if Daylight Saving Time is in effect, 0 if Daylight Saving
13638 Time is not in effect, and negative if the information is not available.

13639 The <time.h> header shall define the following symbolic names:

13640 NULL Null pointer constant.

13641 CLOCKS_PER_SEC A number used to convert the value returned by the clock () function into
13642 seconds.

13643 TMR|CPT CLOCK_PROCESS_CPUTIME_ID
13644 The identifier of the CPU-time clock associated with the process making a
13645 clock () or timer*() function call.

13646 TMR|TCT CLOCK_THREAD_CPUTIME_ID
13647 The identifier of the CPU-time clock associated with the thread making a
13648 clock () or timer*() function call.

13649 TMR The <time.h> header shall declare the structure timespec, which has at least the following
13650 members:

13651 time_t tv_sec Seconds.
13652 long tv_nsec Nanoseconds.

13653 The <time.h> header shall also declare the itimerspec structure, which has at least the following
13654 members:

13655 struct timespec it_interval Timer period.
13656 struct timespec it_value Timer expiration.

13657 The following manifest constants shall be defined:

13658 CLOCK_REALTIME The identifier of the system-wide realtime clock.

13659 TIMER_ABSTIME Flag indicating time is absolute with respect to the clock associated with a
13660 timer.

388 Technical Standard (2001) (Draft April 13, 2001)

Headers <time.h>

13661 MON CLOCK_MONOTONIC
13662 The identifier for the system-wide monotonic clock, which is defined as a
13663 clock whose value cannot be set via clock_settime() and which cannot
13664 have backward clock jumps. The maximum possible clock jump shall be
13665 implementation-defined.

13666 TMR The clock_t, size_t, time_t, clockid_t, and timer_t types shall be defined as described in
13667 <sys/types.h>.

13668 XSI Although the value of CLOCKS_PER_SEC is required to be 1 million on all XSI-conformant
13669 systems, it may be variable on other systems, and it should not be assumed that
13670 CLOCKS_PER_SEC is a compile-time constant.

13671 XSI The <time.h> header shall provide a declaration for getdate_err .

13672 The following shall be declared as functions and may also be defined as macros. Function |
13673 prototypes shall be provided. |

13674 char *asctime(const struct tm *);
13675 TSF char *asctime_r(const struct tm *restrict, char *restrict);
13676 clock_t clock(void);
13677 CPT int clock_getcpuclockid(pid_t, clockid_t *);
13678 TMR int clock_getres(clockid_t, struct timespec *);
13679 int clock_gettime(clockid_t, struct timespec *);
13680 CS int clock_nanosleep(clockid_t, int, const struct timespec *,
13681 struct timespec *);
13682 TMR int clock_settime(clockid_t, const struct timespec *);
13683 char *ctime(const time_t *);
13684 TSF char *ctime_r(const time_t *, char *);
13685 double difftime(time_t, time_t);
13686 XSI struct tm *getdate(const char *);
13687 struct tm *gmtime(const time_t *);
13688 TSF struct tm *gmtime_r(const time_t *restrict, struct tm *restrict); |
13689 struct tm *localtime(const time_t *);
13690 TSF struct tm *localtime_r(const time_t *restrict, struct tm *restrict);
13691 time_t mktime(struct tm *);
13692 TMR int nanosleep(const struct timespec *, struct timespec *);
13693 size_t strftime(char *restrict, size_t, const char *restrict,
13694 const struct tm *restrict);
13695 XSI char *strptime(const char *restrict, const char *restrict,
13696 struct tm *restrict);
13697 time_t time(time_t *);
13698 TMR int timer_create(clockid_t, struct sigevent *restrict,
13699 timer_t *restrict);
13700 int timer_delete(timer_t);
13701 int timer_gettime(timer_t, struct itimerspec *);
13702 int timer_getoverrun(timer_t);
13703 int timer_settime(timer_t, int, const struct itimerspec *restrict,
13704 struct itimerspec *restrict);
13705 CX void tzset(void);
13706

13707 The following shall be declared as variables:

13708 XSI extern int daylight;
13709 extern long timezone;

Base Definitions, Issue 6 389

<time.h> Headers

13710 CX extern char *tzname[];
13711

13712 CX Inclusion of the <time.h> header may make visible all symbols from the <signal.h> header.

13713 APPLICATION USAGE
13714 The range [0,60] for tm_sec allows for the occasional leap second.

13715 tm_year is a signed value; therefore, years before 1900 may be represented.

13716 To obtain the number of clock ticks per second returned by the times() function, applications
13717 should call sysconf(_SC_CLK_TCK).

13718 RATIONALE
13719 The range [0,60] seconds allows for positive or negative leap seconds. The formal definition of
13720 UTC does not permit double leap seconds, so all mention of double leap seconds has been
13721 removed, and the range shortened from the former [0,61] seconds seen in previous versions of
13722 POSIX.

13723 FUTURE DIRECTIONS
13724 None.

13725 SEE ALSO
13726 <sys/types.h>, the System Interfaces volume of IEEE Std 1003.1-200x, asctime(), clock (),
13727 clock_getcpuclockid(), clock_getres(), clock_nanosleep(), ctime(), difftime (), getdate(), gmtime(),
13728 localtime (), mktime(), nanosleep(), strftime(), strptime(), sysconf(), time(), timer_create(),
13729 timer_delete(), timer_getoverrun(), tzname , tzset(), utime()

13730 CHANGE HISTORY
13731 First released in Issue 1. Derived from Issue 1 of the SVID.

13732 Issue 5
13733 The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
13734 Threads Extension.

13735 Issue 6
13736 The Open Group Corrigendum U035/6 is applied. In the DESCRIPTION, the types clockid_t
13737 and timer_t have been described.

13738 The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

13739 • The POSIX timer-related functions are now marked as part of the Timers option.

13740 The symbolic name CLK_TCK is removed. Application usage is added describing how its
13741 equivalent functionality can be obtained using sysconf().

13742 The clock_getcpuclockid() function and manifest constants CLOCK_PROCESS_CPUTIME_ID and
13743 CLOCK_THREAD_CPUTIME_ID are added for alignment with IEEE Std 1003.1d-1999.

13744 The manifest constant CLOCK_MONOTONIC and the clock_nanosleep() function are added for
13745 alignment with IEEE Std 1003.1j-2000.

13746 The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

13747 • The range for seconds is changed from [0,61] to [0,60].

13748 • The restrict keyword is added to the prototypes for asctime_r(), gmtime_r(), localtime_r (),
13749 strftime(), strptime(), timer_create(), and timer_settime().

13750 IEEE PASC Interpretation 1003.1 #84 is applied adding the statement that symbols from the
13751 <signal.h> header may be made visible when the <time.h> header is included.

390 Technical Standard (2001) (Draft April 13, 2001)

Headers <time.h>

13752 Extensions beyond the ISO C standard are now marked.

Base Definitions, Issue 6 391

<trace.h> Headers

13753 NAME
13754 trace.h — tracing

13755 SYNOPSIS
13756 TRC #include <trace.h> |
13757 |

13758 DESCRIPTION
13759 The <trace.h> header shall define the posix_trace_event_info structure that includes at least the
13760 following members:

13761 trace_event_id_t posix_event_id
13762 pid_t posix_pid
13763 void *posix_prog_address
13764 int posix_truncation_status
13765 struct timespec posix_timestamp
13766 THR pthread_t posix_thread_id
13767

13768 The <trace.h> header shall define the posix_trace_status_info structure that includes at least the
13769 following members:

13770 int posix_stream_status
13771 int posix_stream_full_status
13772 int posix_stream_overrun_status
13773 TRL int posix_stream_flush_status
13774 int posix_stream_flush_error
13775 int posix_log_overrun_status
13776 int posix_log_full_status
13777

13778 The <trace.h> header shall define the following symbols:

13779 POSIX_TRACE_RUNNING
13780 POSIX_TRACE_SUSPENDED
13781 POSIX_TRACE_FULL
13782 POSIX_TRACE_NOT_FULL
13783 POSIX_TRACE_NO_OVERRUN
13784 POSIX_TRACE_OVERRUN
13785 TRL POSIX_TRACE_FLUSHING
13786 POSIX_TRACE_NOT_FLUSHING
13787 POSIX_TRACE_NOT_TRUNCATED
13788 POSIX_TRACE_TRUNCATED_READ
13789 POSIX_TRACE_TRUNCATED_RECORD
13790 TRL POSIX_TRACE_FLUSH
13791 POSIX_TRACE_LOOP
13792 POSIX_TRACE_UNTIL_FULL
13793 TRI POSIX_TRACE_CLOSE_FOR_CHILD
13794 POSIX_TRACE_INHERITED
13795 TRL POSIX_TRACE_APPEND
13796 POSIX_TRACE_LOOP
13797 POSIX_TRACE_UNTIL_FULL
13798 TEF POSIX_TRACE_FILTER
13799 TRL POSIX_TRACE_FLUSH_START
13800 POSIX_TRACE_FLUSH_STOP
13801 POSIX_TRACE_OVERFLOW

392 Technical Standard (2001) (Draft April 13, 2001)

Headers <trace.h>

13802 POSIX_TRACE_RESUME
13803 POSIX_TRACE_START
13804 POSIX_TRACE_STOP
13805 POSIX_TRACE_UNNAMED_USER_EVENT

13806 The following types shall be defined as described in <sys/types.h>:

13807 trace_attr_t
13808 trace_id_t
13809 trace_event_id_t
13810 TEF trace_event_set_t
13811

13812 The following shall be declared as functions and may also be defined as macros. Function |
13813 prototypes shall be provided. |

13814 int posix_trace_attr_destroy(trace_attr_t *);
13815 int posix_trace_attr_getclockres(const trace_attr_t *,
13816 struct timespec *);
13817 int posix_trace_attr_getcreatetime(const trace_attr_t *,
13818 struct timespec *);
13819 int posix_trace_attr_getgenversion(const trace_attr_t *, char *);
13820 TRI int posix_trace_attr_getinherited(const trace_attr_t *restrict,
13821 int *restrict);
13822 TRL int posix_trace_attr_getlogfullpolicy(const trace_attr_t *restrict,
13823 int *restrict);
13824 int posix_trace_attr_getlogsize(const trace_attr_t *restrict,
13825 size_t *restrict);
13826 int posix_trace_attr_getmaxdatasize(const trace_attr_t *restrict,
13827 size_t *restrict);
13828 int posix_trace_attr_getmaxsystemeventsize(const trace_attr_t *restrict,
13829 size_t *restrict);
13830 int posix_trace_attr_getmaxusereventsize(const trace_attr_t *restrict,
13831 size_t, size_t *restrict);
13832 int posix_trace_attr_getname(const trace_attr_t *, char *);
13833 int posix_trace_attr_getstreamfullpolicy(const trace_attr_t *restrict,
13834 int *restrict);
13835 int posix_trace_attr_getstreamsize(const trace_attr_t *restrict,
13836 size_t *restrict);
13837 int posix_trace_attr_init(trace_attr_t *);
13838 TRI int posix_trace_attr_setinherited(trace_attr_t *, int);
13839 TRL int posix_trace_attr_setlogfullpolicy(trace_attr_t *, int);
13840 int posix_trace_attr_setlogsize(trace_attr_t *, size_t);
13841 int posix_trace_attr_setmaxdatasize(trace_attr_t *, size_t);
13842 int posix_trace_attr_setname(trace_attr_t *, const char *);
13843 int posix_trace_attr_setstreamsize(trace_attr_t *, size_t);
13844 int posix_trace_attr_setstreamfullpolicy(trace_attr_t *, int);
13845 int posix_trace_clear(trace_id_t);
13846 TRL int posix_trace_close(trace_id_t);
13847 int posix_trace_create(pid_t, const trace_attr_t *restrict,
13848 trace_id_t *restrict);
13849 TRL int posix_trace_create_withlog(pid_t, const trace_attr_t *restrict,
13850 int, trace_id_t *restrict);
13851 void posix_trace_event(trace_event_id_t, const void *restrict, size_t);

Base Definitions, Issue 6 393

<trace.h> Headers

13852 int posix_trace_eventid_equal(trace_id_t, trace_event_id_t, |
13853 trace_event_id_t); |
13854 int posix_trace_eventid_get_name(trace_id_t, trace_event_id_t, char *); |
13855 int posix_trace_eventid_open(const char *restrict, |
13856 trace_event_id_t *restrict);
13857 int posix_trace_eventtypelist_getnext_id(trace_id_t,
13858 trace_event_id_t *restrict, int *restrict); |
13859 int posix_trace_eventtypelist_rewind(trace_id_t); |
13860 TEF int posix_trace_eventset_add(trace_event_id_t, trace_event_set_t *);
13861 int posix_trace_eventset_del(trace_event_id_t, trace_event_set_t *);
13862 int posix_trace_eventset_empty(trace_event_set_t *);
13863 int posix_trace_eventset_fill(trace_event_set_t *, int);
13864 int posix_trace_eventset_ismember(trace_event_id_t,
13865 const trace_event_set_t *restrict, int *restrict);
13866 int posix_trace_flush(trace_id_t);
13867 int posix_trace_get_attr(trace_id_t, trace_attr_t *);
13868 TEF int posix_trace_get_filter(trace_id_t, trace_event_set_t *);
13869 int posix_trace_get_status(trace_id_t,
13870 struct posix_trace_status_info *);
13871 int posix_trace_getnext_event(trace_id_t,
13872 struct posix_trace_event_info *restrict , void *restrict,
13873 size_t, size_t *restrict, int *restrict);
13874 TRL int posix_trace_open(int, trace_id_t *);
13875 int posix_trace_rewind(trace_id_t);
13876 TEF int posix_trace_set_filter(trace_id_t, const trace_event_set_t *, int);
13877 int posix_trace_shutdown(trace_id_t);
13878 int posix_trace_start(trace_id_t);
13879 int posix_trace_stop(trace_id_t);
13880 TMO int posix_trace_timedgetnext_event(trace_id_t,
13881 struct posix_trace_event_info *restrict, void *restrict,
13882 size_t, size_t *restrict, int *restrict,
13883 const struct timespec *restrict);
13884 TEF int posix_trace_trid_eventid_open(trace_id_t, const char *restrict,
13885 trace_event_id_t *restrict); |
13886 int posix_trace_trygetnext_event(trace_id_t, |
13887 struct posix_trace_event_info *restrict, void *restrict, size_t,
13888 size_t *restrict, int *restrict);

13889 APPLICATION USAGE
13890 None.

13891 RATIONALE
13892 None.

13893 FUTURE DIRECTIONS
13894 None.

13895 SEE ALSO
13896 <sys/types.h>, the System Interfaces volume of IEEE Std 1003.1-200x, Section 2.11, Tracing, the
13897 System Interfaces volume of IEEE Std 1003.1-200x, posix_trace_attr_destroy (),
13898 posix_trace_attr_getclockres(), posix_trace_attr_getcreatetime(), posix_trace_attr_getgenversion(),
13899 posix_trace_attr_getinherited(), posix_trace_attr_getlogfullpolicy(), posix_trace_attr_getlogsize(),
13900 posix_trace_attr_getmaxdatasize(), posix_trace_attr_getmaxsystemeventsize(),
13901 posix_trace_attr_getmaxusereventsize(), posix_trace_attr_getname(),

394 Technical Standard (2001) (Draft April 13, 2001)

Headers <trace.h>

13902 posix_trace_attr_getstreamfullpolicy(), posix_trace_attr_getstreamsize(), posix_trace_attr_init(),
13903 posix_trace_attr_setinherited(), posix_trace_attr_setlogfullpolicy(), posix_trace_attr_setlogsize(),
13904 posix_trace_attr_setmaxdatasize(), posix_trace_attr_setname(), posix_trace_attr_setstreamsize(),
13905 posix_trace_attr_setstreamfullpolicy(), posix_trace_clear(), posix_trace_close(), posix_trace_create(),
13906 posix_trace_create_withlog(), posix_trace_event(), posix_trace_eventid_equal(),
13907 posix_trace_eventid_get_name(), posix_trace_eventid_open(), posix_trace_eventtypelist_getnext_id(),
13908 posix_trace_eventtypelist_rewind(), posix_trace_eventset_add(), posix_trace_eventset_del(),
13909 posix_trace_eventset_empty(), posix_trace_eventset_fill(), posix_trace_eventset_ismember(),
13910 posix_trace_flush(), posix_trace_get_attr(), posix_trace_get_filter(), posix_trace_get_status(),
13911 posix_trace_getnext_event(), posix_trace_open(), posix_trace_rewind(), posix_trace_set_filter(),
13912 posix_trace_shutdown(), posix_trace_start(), posix_trace_stop(), posix_trace_timedgetnext_event(),
13913 posix_trace_trid_eventid_open(), posix_trace_trygetnext_event()

13914 CHANGE HISTORY
13915 First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

~

Base Definitions, Issue 6 395

<ucontext.h> Headers

13916 NAME
13917 ucontext.h — user context

13918 SYNOPSIS
13919 XSI #include <ucontext.h>
13920

13921 DESCRIPTION
13922 The <ucontext.h> header shall define the mcontext_t type through typedef.

13923 The <ucontext.h> header shall define the ucontext_t type as a structure that shall include at least
13924 the following members:

13925 ucontext_t *uc_link Pointer to the context that is resumed
13926 when this context returns.
13927 sigset_t uc_sigmask The set of signals that are blocked when this
13928 context is active.
13929 stack_t uc_stack The stack used by this context.
13930 mcontext_t uc_mcontext A machine-specific representation of the saved
13931 context.

13932 The types sigset_t and stack_t shall be defined as in <signal.h>.

13933 The following shall be declared as functions and may also be defined as macros, Function |
13934 prototypes shall be provided. |

13935 int getcontext(ucontext_t *);
13936 int setcontext(const ucontext_t *);
13937 void makecontext(ucontext_t *, void (*)(void), int, ...);
13938 int swapcontext(ucontext_t *restrict, const ucontext_t *restrict);

13939 APPLICATION USAGE
13940 None.

13941 RATIONALE
13942 None.

13943 FUTURE DIRECTIONS
13944 None.

13945 SEE ALSO
13946 <signal.h>, the System Interfaces volume of IEEE Std 1003.1-200x, getcontext(), makecontext(),
13947 sigaction (), sigprocmask (), sigaltstack ()

13948 CHANGE HISTORY
13949 First released in Issue 4, Version 2.

396 Technical Standard (2001) (Draft April 13, 2001)

Headers <ulimit.h>

13950 NAME
13951 ulimit.h — ulimit commands

13952 SYNOPSIS
13953 XSI #include <ulimit.h>
13954

13955 DESCRIPTION
13956 The <ulimit.h> header shall define the symbolic constants used by the ulimit() function.

13957 Symbolic constants:

13958 UL_GETFSIZE Get maximum file size.

13959 UL_SETFSIZE Set maximum file size.

13960 The following shall be declared as a function and may also be defined as a macro. A function |
13961 prototype shall be provided. |

13962 long ulimit(int, ...);

13963 APPLICATION USAGE
13964 None.

13965 RATIONALE
13966 None.

13967 FUTURE DIRECTIONS
13968 None.

13969 SEE ALSO
13970 The System Interfaces volume of IEEE Std 1003.1-200x, ulimit()

13971 CHANGE HISTORY
13972 First released in Issue 3.

Base Definitions, Issue 6 397

<unistd.h> Headers

13973 NAME
13974 unistd.h — standard symbolic constants and types

13975 SYNOPSIS
13976 #include <unistd.h>

13977 DESCRIPTION
13978 The <unistd.h> header defines miscellaneous symbolic constants and types, and declares
13979 miscellaneous functions. The actual value of the constants are unspecified except as shown. The
13980 contents of this header are shown below.

13981 Version Test Macros

13982 The following symbolic constants shall be defined:

13983 _POSIX_VERSION
13984 Integer value indicating version of IEEE Std 1003.1 (C-language binding) to which the |
13985 implementation conforms. For implementations conforming to IEEE Std 1003.1-200x, the |
13986 value shall be 200xxxL. |

13987 _POSIX2_VERSION
13988 Integer value indicating version of the Shell and Utilities volume of IEEE Std 1003.1 to |
13989 which the implementation conforms. For implementations conforming to |
13990 IEEE Std 1003.1-200x, the value shall be 200xxxL. |

13991 The following symbolic constant shall be defined only if the implementation supports the XSI |
13992 option; see Section 2.1.4 (on page 19). |

13993 XSI _XOPEN_VERSION |
13994 Integer value indicating version of the X/Open Portability Guide to which the
13995 implementation conforms. The value shall be 600.

13996 Constants for Options and Option Groups |

13997 The following symbolic constants, if defined in <unistd.h>, shall have a value of −1, 0, or greater,
13998 unless otherwise specified below. If these are undefined, the fpathconf (), pathconf (), or sysconf() |
13999 functions can be used to determine whether the option is provided for a particular invocation of |
14000 the application.

14001 If a symbolic constant is defined with the value −1, the option is not supported. Headers, data
14002 types, and function interfaces required only for the option need not be supplied. An application
14003 that attempts to use anything associated only with the option is considered to be requiring an
14004 extension.

14005 If a symbolic constant is defined with a value greater than zero, the option shall always be
14006 supported when the application is executed. All headers, data types, and functions shall be
14007 present and shall operate as specified.

14008 If a symbolic constant is defined with the value zero, all headers, data types, and functions shall |
14009 be present. The application can check at runtime to see whether the option is supported by |
14010 calling fpathconf (), pathconf (), or sysconf() with the indicated name parameter. |

14011 Unless explicitly specified otherwise, the behavior of functions associated with an unsupported
14012 option is unspecified, and an application that uses such functions without first checking |
14013 fpathconf (), pathconf (), or sysconf() is considered to be requiring an extension. |

14014 For conformance requirements, refer to Chapter 2 (on page 15).

398 Technical Standard (2001) (Draft April 13, 2001)

Headers <unistd.h>

14015 ADV _POSIX_ADVISORY_INFO
14016 The implementation supports the Advisory Information option. If this symbol has a value |
14017 other than −1 or 0, it shall have the value 200xxxL. |

14018 AIO _POSIX_ASYNCHRONOUS_IO
14019 The implementation supports the Asynchronous Input and Output option. If this symbol |
14020 has a value other than −1 or 0, it shall have the value 200xxxL. |

14021 BAR _POSIX_BARRIERS
14022 The implementation supports the Barriers option. If this symbol has a value other than −1 or |
14023 0, it shall have the value 200xxxL. |

14024 _POSIX_CHOWN_RESTRICTED
14025 The use of chown() and fchown() is restricted to a process with appropriate privileges, and
14026 to changing the group ID of a file only to the effective group ID of the process or to one of |
14027 its supplementary group IDs. This symbol shall always be set to a value other than −1. |

14028 CS _POSIX_CLOCK_SELECTION
14029 The implementation supports the Clock Selection option. If this symbol has a value other |
14030 than −1 or 0, it shall have the value 200xxxL. |

14031 CPT _POSIX_CPUTIME
14032 The implementation supports the Process CPU-Time Clocks option. If this symbol has a |
14033 value other than −1 or 0, it shall have the value 200xxxL. |

14034 FSC _POSIX_FSYNC
14035 The implementation supports the File Synchronization option. If this symbol has a value |
14036 other than −1 or 0, it shall have the value 200xxxL. |

14037 _POSIX_JOB_CONTROL
14038 The implementation supports job control. This symbol shall always be set to a value greater |
14039 than zero. |

14040 MF _POSIX_MAPPED_FILES
14041 The implementation supports the Memory Mapped Files option. If this symbol has a value |
14042 other than −1 or 0, it shall have the value 200xxxL. |

14043 ML _POSIX_MEMLOCK
14044 The implementation supports the Process Memory Locking option. If this symbol has a |
14045 value other than −1 or 0, it shall have the value 200xxxL. |

14046 MLR _POSIX_MEMLOCK_RANGE
14047 The implementation supports the Range Memory Locking option. If this symbol has a value |
14048 other than −1 or 0, it shall have the value 200xxxL. |

14049 MPR _POSIX_MEMORY_PROTECTION
14050 The implementation supports the Memory Protection option. If this symbol has a value |
14051 other than −1 or 0, it shall have the value 200xxxL. |

14052 MSG _POSIX_MESSAGE_PASSING
14053 The implementation supports the Message Passing option. If this symbol has a value other |
14054 than −1 or 0, it shall have the value 200xxxL. |

14055 MON _POSIX_MONOTONIC_CLOCK
14056 The implementation supports the Monotonic Clock option. If this symbol has a value other |
14057 than −1 or 0, it shall have the value 200xxxL. |

14058 _POSIX_NO_TRUNC
14059 Pathname components longer than {NAME_MAX} generate an error. This symbol shall |

Base Definitions, Issue 6 399

<unistd.h> Headers

14060 always be set to a value other than −1. |

14061 PIO _POSIX_PRIORITIZED_IO
14062 The implementation supports the Prioritized Input and Output option. If this symbol has a |
14063 value other than −1 or 0, it shall have the value 200xxxL. |

14064 PS _POSIX_PRIORITY_SCHEDULING
14065 The implementation supports the Process Scheduling option. If this symbol has a value |
14066 other than −1 or 0, it shall have the value 200xxxL. |

14067 RS _POSIX_RAW_SOCKETS |
14068 The implementation supports the Raw Sockets option. If this symbol has a value other than |
14069 −1 or 0, it shall have the value 200xxxL. |

14070 THR _POSIX_READER_WRITER_LOCKS
14071 The implementation supports the Read-Write Locks option. This is always set to a value
14072 greater than zero if the Threads option is supported. If this symbol has a value other than −1 |
14073 or 0, it shall have the value 200xxxL. |

14074 RTS _POSIX_REALTIME_SIGNALS
14075 The implementation supports the Realtime Signals Extension option. If this symbol has a |
14076 value other than −1 or 0, it shall have the value 200xxxL. |

14077 _POSIX_REGEXP
14078 The implementation supports the Regular Expression Handling option. This symbol shall |
14079 always be set to a value greater than zero. |

14080 _POSIX_SAVED_IDS
14081 Each process has a saved set-user-ID and a saved set-group-ID. This symbol shall always |
14082 be set to a value greater than zero. |

14083 SEM _POSIX_SEMAPHORES
14084 The implementation supports the Semaphores option. If this symbol has a value other than |
14085 −1 or 0, it shall have the value 200xxxL. |

14086 SHM _POSIX_SHARED_MEMORY_OBJECTS
14087 The implementation supports the Shared Memory Objects option. If this symbol has a value |
14088 other than −1 or 0, it shall have the value 200xxxL. |

14089 _POSIX_SHELL
14090 The implementation supports the POSIX shell. This symbol shall always be set to a value |
14091 greater than zero. |

14092 SPN _POSIX_SPAWN
14093 The implementation supports the Spawn option. If this symbol has a value other than −1 or |
14094 0, it shall have the value 200xxxL. |

14095 SPI _POSIX_SPIN_LOCKS
14096 The implementation supports the Spin Locks option. If this symbol has a value other than |
14097 −1 or 0, it shall have the value 200xxxL. |

14098 SS _POSIX_SPORADIC_SERVER
14099 The implementation supports the Process Sporadic Server option. If this symbol has a value |
14100 other than −1 or 0, it shall have the value 200xxxL. |

14101 SIO _POSIX_SYNCHRONIZED_IO
14102 The implementation supports the Synchronized Input and Output option. If this symbol |
14103 has a value other than −1 or 0, it shall have the value 200xxxL. |

400 Technical Standard (2001) (Draft April 13, 2001)

Headers <unistd.h>

14104 TSA _POSIX_THREAD_ATTR_STACKADDR
14105 The implementation supports the Thread Stack Address Attribute option. If this symbol |
14106 has a value other than −1 or 0, it shall have the value 200xxxL. |

14107 TSS _POSIX_THREAD_ATTR_STACKSIZE
14108 The implementation supports the Thread Stack Address Size option. If this symbol has a |
14109 value other than −1 or 0, it shall have the value 200xxxL. |

14110 TCT _POSIX_THREAD_CPUTIME
14111 The implementation supports the Thread CPU-Time Clocks option. If this symbol has a |
14112 value other than −1 or 0, it shall have the value 200xxxL. |

14113 TPI _POSIX_THREAD_PRIO_INHERIT
14114 The implementation supports the Thread Priority Inheritance option. If this symbol has a |
14115 value other than −1 or 0, it shall have the value 200xxxL. |

14116 TPP _POSIX_THREAD_PRIO_PROTECT
14117 The implementation supports the Thread Priority Protection option. If this symbol has a |
14118 value other than −1 or 0, it shall have the value 200xxxL. |

14119 TPS _POSIX_THREAD_PRIORITY_SCHEDULING
14120 The implementation supports the Thread Execution Scheduling option. If this symbol has a |
14121 value other than −1 or 0, it shall have the value 200xxxL. |

14122 TSH _POSIX_THREAD_PROCESS_SHARED
14123 The implementation supports the Thread Process-Shared Synchronization option. If this |
14124 symbol has a value other than −1 or 0, it shall have the value 200xxxL. |

14125 TSF _POSIX_THREAD_SAFE_FUNCTIONS
14126 The implementation supports the Thread-Safe Functions option. If this symbol has a value |
14127 other than −1 or 0, it shall have the value 200xxxL. |

14128 TSP _POSIX_THREAD_SPORADIC_SERVER
14129 The implementation supports the Thread Sporadic Server option. If this symbol has a value |
14130 other than −1 or 0, it shall have the value 200xxxL. |

14131 THR _POSIX_THREADS
14132 The implementation supports the Threads option. If this symbol has a value other than −1 |
14133 or 0, it shall have the value 200xxxL. |

14134 TMO _POSIX_TIMEOUTS
14135 The implementation supports the Timeouts option. If this symbol has a value other than −1 |
14136 or 0, it shall have the value 200xxxL. |

14137 TMR _POSIX_TIMERS |
14138 The implementation supports the Timers option. If this symbol has a value other than −1 or |
14139 0, it shall have the value 200xxxL. |

14140 TRC _POSIX_TRACE
14141 The implementation supports the Trace option. If this symbol has a value other than −1 or 0, |
14142 it shall have the value 200xxxL. |

14143 TEF _POSIX_TRACE_EVENT_FILTER
14144 The implementation supports the Trace Event Filter option. If this symbol has a value other |
14145 than −1 or 0, it shall have the value 200xxxL. |

14146 TRI _POSIX_TRACE_INHERIT
14147 The implementation supports the Trace Inherit option. If this symbol has a value other than |
14148 −1 or 0, it shall have the value 200xxxL. |

Base Definitions, Issue 6 401

<unistd.h> Headers

14149 TRL _POSIX_TRACE_LOG |
14150 The implementation supports the Trace Log option. If this symbol has a value other than −1 |
14151 or 0, it shall have the value 200xxxL. |

14152 TYM _POSIX_TYPED_MEMORY_OBJECTS
14153 The implementation supports the Typed Memory Objects option. If this symbol has a value |
14154 other than −1 or 0, it shall have the value 200xxxL. |

14155 _POSIX_VDISABLE
14156 This symbol shall be defined to be the value of a character that shall disable terminal special |
14157 character handling as described in <termios.h>. This symbol shall always be set to a value |
14158 other than −1. |

14159 _POSIX2_C_BIND
14160 The implementation supports the C-Language Binding option. This symbol shall always |
14161 have the value 200xxxL. |

14162 CD _POSIX2_C_DEV
14163 The implementation supports the C-Language Development Utilities option. If this symbol |
14164 has a value other than −1 or 0, it shall have the value 200xxxL. |

14165 _POSIX2_CHAR_TERM
14166 The implementation supports at least one terminal type.

14167 FD _POSIX2_FORT_DEV
14168 The implementation supports the FORTRAN Development Utilities option. If this symbol |
14169 has a value other than −1 or 0, it shall have the value 200xxxL. |

14170 FR _POSIX2_FORT_RUN
14171 The implementation supports the FORTRAN Runtime Utilities option. If this symbol has a |
14172 value other than −1 or 0, it shall have the value 200xxxL. |

14173 _POSIX2_LOCALEDEF
14174 The implementation supports the creation of locales by the localedef utility. If this symbol |
14175 has a value other than −1 or 0, it shall have the value 200xxxL. |

14176 BE _POSIX2_PBS
14177 The implementation supports the Batch Environment Services and Utilities option. If this |
14178 symbol has a value other than −1 or 0, it shall have the value 200xxxL. |

14179 BE _POSIX2_PBS_ACCOUNTING
14180 The implementation supports the Batch Accounting option. If this symbol has a value other |
14181 than −1 or 0, it shall have the value 200xxxL. |

14182 BE _POSIX2_PBS_CHECKPOINT
14183 The implementation supports the Batch Checkpoint/Restart option. If this symbol has a |
14184 value other than −1 or 0, it shall have the value 200xxxL. |

14185 BE _POSIX2_PBS_LOCATE
14186 The implementation supports the Locate Batch Job Request option. If this symbol has a |
14187 value other than −1 or 0, it shall have the value 200xxxL. |

14188 BE _POSIX2_PBS_MESSAGE
14189 The implementation supports the Batch Job Message Request option. If this symbol has a |
14190 value other than −1 or 0, it shall have the value 200xxxL. |

14191 BE _POSIX2_PBS_TRACK
14192 The implementation supports the Track Batch Job Request option. If this symbol has a value |
14193 other than −1 or 0, it shall have the value 200xxxL. |

402 Technical Standard (2001) (Draft April 13, 2001)

Headers <unistd.h>

14194 SD _POSIX2_SW_DEV
14195 The implementation supports the Software Development Utilities option. If this symbol has |
14196 a value other than −1 or 0, it shall have the value 200xxxL. |

14197 UP _POSIX2_UPE
14198 The implementation supports the User Portability Utilities option. If this symbol has a value |
14199 other than −1 or 0, it shall have the value 200xxxL. |

14200 _V6_ILP32_OFF32
14201 The implementation provides a C-language compilation environment with 32-bit int, long,
14202 pointer, and off_t types.

14203 _V6_ILP32_OFFBIG
14204 The implementation provides a C-language compilation environment with 32-bit int, long,
14205 and pointer types and an off_t type using at least 64 bits.

14206 _V6_LP64_OFF64
14207 The implementation provides a C-language compilation environment with 32-bit int and
14208 64-bit long, pointer, and off_t types.

14209 _V6_LPBIG_OFFBIG
14210 The implementation provides a C-language compilation environment with an int type
14211 using at least 32 bits and long, pointer, and off_t types using at least 64 bits.

14212 XSI _XBS5_ILP32_OFF32 (LEGACY)
14213 The implementation provides a C-language compilation environment with 32-bit int, long,
14214 pointer, and off_t types.

14215 XSI _XBS5_ILP32_OFFBIG (LEGACY)
14216 The implementation provides a C-language compilation environment with 32-bit int, long,
14217 and pointer types and an off_t type using at least 64 bits.

14218 XSI _XBS5_LP64_OFF64 (LEGACY)
14219 The implementation provides a C-language compilation environment with 32-bit int and
14220 64-bit long, pointer, and off_t types.

14221 XSI _XBS5_LPBIG_OFFBIG (LEGACY)
14222 The implementation provides a C-language compilation environment with an int type
14223 using at least 32 bits and long, pointer, and off_t types using at least 64 bits.

14224 XSI _XOPEN_CRYPT
14225 The implementation supports the X/Open Encryption Option Group.

14226 _XOPEN_ENH_I18N
14227 The implementation supports the Issue 4, Version 2 Enhanced Internationalization Option |
14228 Group. This symbol shall always be set to a value other than −1. |

14229 _XOPEN_LEGACY
14230 The implementation supports the Legacy Option Group.

14231 _XOPEN_REALTIME
14232 The implementation supports the X/Open Realtime Option Group.

14233 _XOPEN_REALTIME_THREADS
14234 The implementation supports the X/Open Realtime Threads Option Group.

14235 _XOPEN_SHM
14236 The implementation supports the Issue 4, Version 2 Shared Memory Option Group. This |
14237 symbol shall always be set to a value other than −1. |

Base Definitions, Issue 6 403

<unistd.h> Headers

14238 _XOPEN_STREAMS
14239 The implementation supports the XSI STREAMS Option Group. |

14240 XSI _XOPEN_UNIX |
14241 The implementation supports the XSI extension. |

14242 Execution-Time Symbolic Constants |

14243 If any of the following constants are not defined in the <unistd.h> header, the value shall vary
14244 depending on the file to which it is applied.

14245 If any of the following constants are defined to have value −1 in the <unistd.h> header, the
14246 implementation shall not provide the option on any file; if any are defined to have a value other
14247 than −1 in the <unistd.h> header, the implementation shall provide the option on all applicable
14248 files.

14249 All of the following constants, whether defined in <unistd.h> or not, may be queried with
14250 respect to a specific file using the pathconf () or fpathconf () functions:

14251 _POSIX_ASYNC_IO
14252 Asynchronous input or output operations may be performed for the associated file.

14253 _POSIX_PRIO_IO
14254 Prioritized input or output operations may be performed for the associated file.

14255 _POSIX_SYNC_IO
14256 Synchronized input or output operations may be performed for the associated file.

14257 Constants for Functions

14258 The following symbolic constant shall be defined:

14259 NULL Null pointer

14260 The following symbolic constants shall be defined for the access() function:

14261 F_OK Test for existence of file.

14262 R_OK Test for read permission.

14263 W_OK Test for write permission.

14264 X_OK Test for execute (search) permission.

14265 The constants F_OK, R_OK, W_OK, and X_OK and the expressions R_OK|W_OK, R_OK|X_OK,
14266 and R_OK|W_OK|X_OK shall all have distinct values.

14267 The following symbolic constants shall be defined for the confstr() function:

14268 _CS_POSIX_PATH |
14269 This is the value for the PATH environment variable that finds all standard utilities. |

14270 _CS_POSIX_V6_ILP32_OFF32_CFLAGS |
14271 If sysconf(_SC_V6_ILP32_OFF32) returns −1, the meaning of this value is unspecified.
14272 Otherwise, this value is the set of initial options to be given to the cc and c99 utilities to
14273 build an application using a programming model with 32-bit int, long, pointer, and off_t
14274 types. |

14275 _CS_POSIX_V6_ILP32_OFF32_LDFLAGS |
14276 If sysconf(_SC_V6_ILP32_OFF32) returns −1, the meaning of this value is unspecified.
14277 Otherwise, this value is the set of final options to be given to the cc and c99 utilities to build
14278 an application using a programming model with 32-bit int, long, pointer, and off_t types. |

404 Technical Standard (2001) (Draft April 13, 2001)

Headers <unistd.h>

14279 _CS_POSIX_V6_ILP32_OFF32_LIBS |
14280 If sysconf(_SC_V6_ILP32_OFF32) returns −1, the meaning of this value is unspecified.
14281 Otherwise, this value is the set of libraries to be given to the cc and c99 utilities to build an
14282 application using a programming model with 32-bit int, long, pointer, and off_t types. |

14283 _CS_POSIX_V6_ILP32_OFF32_LINTFLAGS |
14284 If sysconf(_SC_V6_ILP32_OFF32) returns −1, the meaning of this value is unspecified.
14285 Otherwise, this value is the set of options to be given to the lint utility to check application
14286 source using a programming model with 32-bit int, long, pointer, and off_t types. |

14287 _CS_POSIX_V6_ILP32_OFFBIG_CFLAGS |
14288 If sysconf(_SC_V6_ILP32_OFFBIG) returns −1, the meaning of this value is unspecified.
14289 Otherwise, this value is the set of initial options to be given to the cc and c99 utilities to
14290 build an application using a programming model with 32-bit int, long, and pointer types,
14291 and an off_t type using at least 64 bits. |

14292 _CS_POSIX_V6_ILP32_OFFBIG_LDFLAGS |
14293 If sysconf(_SC_V6_ILP32_OFFBIG) returns −1, the meaning of this value is unspecified.
14294 Otherwise, this value is the set of final options to be given to the cc and c99 utilities to build
14295 an application using a programming model with 32-bit int, long, and pointer types, and an
14296 off_t type using at least 64 bits. |

14297 _CS_POSIX_V6_ILP32_OFFBIG_LIBS |
14298 If sysconf(_SC_V6_ILP32_OFFBIG) returns −1, the meaning of this value is unspecified.
14299 Otherwise, this value is the set of libraries to be given to the cc and c99 utilities to build an
14300 application using a programming model with 32-bit int, long, and pointer types, and an
14301 off_t type using at least 64 bits. |

14302 _CS_POSIX_V6_ILP32_OFFBIG_LINTFLAGS |
14303 If sysconf(_SC_V6_ILP32_OFFBIG) returns −1, the meaning of this value is unspecified.
14304 Otherwise, this value is the set of options to be given to the lint utility to check an
14305 application using a programming model with 32-bit int, long, and pointer types, and an
14306 off_t type using at least 64 bits. |

14307 _CS_POSIX_V6_LP64_OFF64_CFLAGS |
14308 If sysconf(_SC_V6_LP64_OFF64) returns −1, the meaning of this value is unspecified.
14309 Otherwise, this value is the set of initial options to be given to the cc and c99 utilities to
14310 build an application using a programming model with 64-bit int, long, pointer, and off_t
14311 types. |

14312 _CS_POSIX_V6_LP64_OFF64_LDFLAGS |
14313 If sysconf(_SC_V6_LP64_OFF64) returns −1, the meaning of this value is unspecified.
14314 Otherwise, this value is the set of final options to be given to the cc and c99 utilities to build
14315 an application using a programming model with 64-bit int, long, pointer, and off_t types. |

14316 _CS_POSIX_V6_LP64_OFF64_LIBS |
14317 If sysconf(_SC_V6_LP64_OFF64) returns −1, the meaning of this value is unspecified.
14318 Otherwise, this value is the set of libraries to be given to the cc and c99 utilities to build an
14319 application using a programming model with 64-bit int, long, pointer, and off_t types. |

14320 _CS_POSIX_V6_LP64_OFF64_LINTFLAGS |
14321 If sysconf(_SC_V6_LP64_OFF64) returns −1, the meaning of this value is unspecified.
14322 Otherwise, this value is the set of options to be given to the lint utility to check application
14323 source using a programming model with 64-bit int, long, pointer, and off_t types. |

14324 _CS_POSIX_V6_LPBIG_OFFBIG_CFLAGS |
14325 If sysconf(_SC_V6_LPBIG_OFFBIG) returns −1, the meaning of this value is unspecified.

Base Definitions, Issue 6 405

<unistd.h> Headers

14326 Otherwise, this value is the set of initial options to be given to the cc and c99 utilities to
14327 build an application using a programming model with an int type using at least 32 bits and
14328 long, pointer, and off_t types using at least 64 bits. |

14329 _CS_POSIX_V6_LPBIG_OFFBIG_LDFLAGS |
14330 If sysconf(_SC_V6_LPBIG_OFFBIG) returns −1, the meaning of this value is unspecified.
14331 Otherwise, this value is the set of final options to be given to the cc and c99 utilities to build
14332 an application using a programming model with an int type using at least 32 bits and long,
14333 pointer, and off_t types using at least 64 bits. |

14334 _CS_POSIX_V6_LPBIG_OFFBIG_LIBS |
14335 If sysconf(_SC_V6_LPBIG_OFFBIG) returns −1, the meaning of this value is unspecified.
14336 Otherwise, this value is the set of libraries to be given to the cc and c99 utilities to build an
14337 application using a programming model with an int type using at least 32 bits and long,
14338 pointer, and off_t types using at least 64 bits. |

14339 _CS_POSIX_V6_LPBIG_OFFBIG_LINTFLAGS |
14340 If sysconf(_SC_V6_LPBIG_OFFBIG) returns −1, the meaning of this value is unspecified.
14341 Otherwise, this value is the set of options to be given to the lint utility to check application
14342 source using a programming model with an int type using at least 32 bits and long, pointer,
14343 and off_t types using at least 64 bits. |

14344 _CS_V6_WIDTH_RESTRICTED_ENVS |
14345 This value is a <newline>-separated list of names of programming environments supported |
14346 by the implementation in which the widths of the blksize_t, cc_t, mode_t, nfds_t, pid_t, |
14347 ptrdiff_t, size_t, speed_t, ssize_t, suseconds_t, tcflag_t, useconds_t, wchar_t, and wint_t |
14348 types are no greater than the width of type long. |

14349 XSI _CS_XBS5_ILP32_OFF32_CFLAGS (LEGACY)
14350 If sysconf(_SC_XBS5_ILP32_OFF32) returns −1, the meaning of this value is unspecified.
14351 Otherwise, this value is the set of initial options to be given to the cc and c99 utilities to
14352 build an application using a programming model with 32-bit int, long, pointer, and off_t
14353 types.

14354 XSI _CS_XBS5_ILP32_OFF32_LDFLAGS (LEGACY)
14355 If sysconf(_SC_XBS5_ILP32_OFF32) returns −1, the meaning of this value is unspecified.
14356 Otherwise, this value is the set of final options to be given to the cc and c99 utilities to build
14357 an application using a programming model with 32-bit int, long, pointer, and off_t types.

14358 XSI _CS_XBS5_ILP32_OFF32_LIBS (LEGACY)
14359 If sysconf(_SC_XBS5_ILP32_OFF32) returns −1, the meaning of this value is unspecified.
14360 Otherwise, this value is the set of libraries to be given to the cc and c99 utilities to build an
14361 application using a programming model with 32-bit int, long, pointer, and off_t types.

14362 XSI _CS_XBS5_ILP32_OFF32_LINTFLAGS (LEGACY)
14363 If sysconf(_SC_XBS5_ILP32_OFF32) returns −1, the meaning of this value is unspecified.
14364 Otherwise, this value is the set of options to be given to the lint utility to check application
14365 source using a programming model with 32-bit int, long, pointer, and off_t types.

14366 XSI _CS_XBS5_ILP32_OFFBIG_CFLAGS (LEGACY)
14367 If sysconf(_SC_XBS5_ILP32_OFFBIG) returns −1, the meaning of this value is unspecified.
14368 Otherwise, this value is the set of initial options to be given to the cc and c99 utilities to
14369 build an application using a programming model with 32-bit int, long, and pointer types,
14370 and an off_t type using at least 64 bits.

14371 XSI _CS_XBS5_ILP32_OFFBIG_LDFLAGS (LEGACY)
14372 If sysconf(_SC_XBS5_ILP32_OFFBIG) returns −1, the meaning of this value is unspecified.

406 Technical Standard (2001) (Draft April 13, 2001)

Headers <unistd.h>

14373 Otherwise, this value is the set of final options to be given to the cc and c99 utilities to build
14374 an application using a programming model with 32-bit int, long, and pointer types, and an
14375 off_t type using at least 64 bits.

14376 XSI _CS_XBS5_ILP32_OFFBIG_LIBS (LEGACY)
14377 If sysconf(_SC_XBS5_ILP32_OFFBIG) returns −1, the meaning of this value is unspecified.
14378 Otherwise, this value is the set of libraries to be given to the cc and c99 utilities to build an
14379 application using a programming model with 32-bit int, long, and pointer types, and an
14380 off_t type using at least 64 bits.

14381 XSI _CS_XBS5_ILP32_OFFBIG_LINTFLAGS (LEGACY)
14382 If sysconf(_SC_XBS5_ILP32_OFFBIG) returns −1, the meaning of this value is unspecified.
14383 Otherwise, this value is the set of options to be given to the lint utility to check an
14384 application using a programming model with 32-bit int, long, and pointer types, and an
14385 off_t type using at least 64 bits.

14386 XSI _CS_XBS5_LP64_OFF64_CFLAGS (LEGACY)
14387 If sysconf(_SC_XBS5_LP64_OFF64) returns −1, the meaning of this value is unspecified.
14388 Otherwise, this value is the set of initial options to be given to the cc and c99 utilities to
14389 build an application using a programming model with 64-bit int, long, pointer, and off_t
14390 types.

14391 XSI _CS_XBS5_LP64_OFF64_LDFLAGS (LEGACY)
14392 If sysconf(_SC_XBS5_LP64_OFF64) returns −1, the meaning of this value is unspecified.
14393 Otherwise, this value is the set of final options to be given to the cc and c99 utilities to build
14394 an application using a programming model with 64-bit int, long, pointer, and off_t types.

14395 XSI _CS_XBS5_LP64_OFF64_LIBS (LEGACY)
14396 If sysconf(_SC_XBS5_LP64_OFF64) returns −1, the meaning of this value is unspecified.
14397 Otherwise, this value is the set of libraries to be given to the cc and c99 utilities to build an
14398 application using a programming model with 64-bit int, long, pointer, and off_t types.

14399 XSI _CS_XBS5_LP64_OFF64_LINTFLAGS (LEGACY)
14400 If sysconf(_SC_XBS5_LP64_OFF64) returns −1, the meaning of this value is unspecified.
14401 Otherwise, this value is the set of options to be given to the lint utility to check application
14402 source using a programming model with 64-bit int, long, pointer, and off_t types.

14403 XSI _CS_XBS5_LPBIG_OFFBIG_CFLAGS (LEGACY)
14404 If sysconf(_SC_XBS5_LPBIG_OFFBIG) returns −1, the meaning of this value is unspecified.
14405 Otherwise, this value is the set of initial options to be given to the cc and c99 utilities to
14406 build an application using a programming model with an int type using at least 32 bits and
14407 long, pointer, and off_t types using at least 64 bits.

14408 XSI _CS_XBS5_LPBIG_OFFBIG_LDFLAGS (LEGACY)
14409 If sysconf(_SC_XBS5_LPBIG_OFFBIG) returns −1, the meaning of this value is unspecified.
14410 Otherwise, this value is the set of final options to be given to the cc and c99 utilities to build
14411 an application using a programming model with an int type using at least 32 bits and long,
14412 pointer, and off_t types using at least 64 bits.

14413 XSI _CS_XBS5_LPBIG_OFFBIG_LIBS (LEGACY)
14414 If sysconf(_SC_XBS5_LPBIG_OFFBIG) returns −1, the meaning of this value is unspecified.
14415 Otherwise, this value is the set of libraries to be given to the cc and c99 utilities to build an
14416 application using a programming model with an int type using at least 32 bits and long,
14417 pointer, and off_t types using at least 64 bits.

14418 XSI _CS_XBS5_LPBIG_OFFBIG_LINTFLAGS (LEGACY)
14419 If sysconf(_SC_XBS5_LPBIG_OFFBIG) returns −1, the meaning of this value is unspecified.

Base Definitions, Issue 6 407

<unistd.h> Headers

14420 Otherwise, this value is the set of options to be given to the lint utility to check application
14421 source using a programming model with an int type using at least 32 bits and long, pointer,
14422 and off_t types using at least 64 bits.

14423 The following symbolic constants shall be defined for the lseek() and fcntl() functions and shall |
14424 have distinct values: |

14425 SEEK_CUR Set file offset to current plus offset .

14426 SEEK_END Set file offset to EOF plus offset .

14427 SEEK_SET Set file offset to offset .

14428 The following symbolic constants shall be defined as possible values for the function argument
14429 to the lockf () function:

14430 F_LOCK Lock a section for exclusive use.

14431 F_TEST Test section for locks by other processes.

14432 F_TLOCK Test and lock a section for exclusive use.

14433 F_ULOCK Unlock locked sections.

14434 The following symbolic constants shall be defined for pathconf ():

14435 ADV _PC_ALLOC_SIZE_MIN
14436 AIO _PC_ASYNC_IO
14437 _PC_CHOWN_RESTRICTED
14438 _PC_FILESIZEBITS
14439 _PC_LINK_MAX
14440 _PC_MAX_CANON
14441 _PC_MAX_INPUT
14442 _PC_NAME_MAX
14443 _PC_NO_TRUNC
14444 _PC_PATH_MAX
14445 _PC_PIPE_BUF
14446 _PC_PRIO_IO
14447 ADV _PC_REC_INCR_XFER_SIZE
14448 _PC_REC_MAX_XFER_SIZE
14449 _PC_REC_MIN_XFER_SIZE
14450 _PC_REC_XFER_ALIGN
14451 _PC_SYNC_IO
14452 _PC_VDISABLE

14453 The following symbolic constants shall be defined for sysconf():

14454 _SC_2_C_BIND
14455 _SC_2_C_DEV
14456 _SC_2_C_VERSION
14457 _SC_2_CHAR_TIME |
14458 _SC_2_FORT_DEV |
14459 _SC_2_FORT_RUN
14460 _SC_2_LOCALEDEF
14461 _SC_2_PBS
14462 _SC_2_PBS_ACCOUNTING
14463 _SC_2_PBS_CHECKPOINT
14464 _SC_2_PBS_LOCATE
14465 _SC_2_PBS_MESSAGE

408 Technical Standard (2001) (Draft April 13, 2001)

Headers <unistd.h>

14466 _SC_2_PBS_TRACK
14467 _SC_2_SW_DEV
14468 _SC_2_UPE
14469 _SC_2_VERSION
14470 _SC_ADVISORY_INFO |
14471 _SC_ARG_MAX |
14472 _SC_AIO_LISTIO_MAX
14473 _SC_AIO_MAX
14474 _SC_AIO_PRIO_DELTA_MAX
14475 _SC_ASYNCHRONOUS_IO
14476 XSI _SC_ATEXIT_MAX
14477 BAR _SC_BARRIERS
14478 _SC_BASE
14479 _SC_BC_BASE_MAX
14480 _SC_BC_DIM_MAX
14481 _SC_BC_SCALE_MAX
14482 _SC_BC_STRING_MAX
14483 _SC_C_LANG_SUPPORT
14484 _SC_C_LANG_SUPPORT_R
14485 _SC_CHILD_MAX
14486 _SC_CLK_TCK
14487 CS _SC_CLOCK_SELECTION
14488 _SC_COLL_WEIGHTS_MAX
14489 _SC_CPUTIME |
14490 _SC_DELAYTIMER_MAX |
14491 _SC_DEVICE_IO
14492 _SC_DEVICE_SPECIFIC
14493 _SC_DEVICE_SPECIFIC_R
14494 _SC_EXPR_NEST_MAX
14495 _SC_FD_MGMT
14496 _SC_FIFO
14497 _SC_FILE_ATTRIBUTES
14498 _SC_FILE_LOCKING
14499 _SC_FILE_SYSTEM
14500 _SC_FSYNC
14501 _SC_GETGR_R_SIZE_MAX
14502 _SC_GETPW_R_SIZE_MAX
14503 _SC_HOST_NAME_MAX |
14504 XSI _SC_IOV_MAX |
14505 _SC_JOB_CONTROL
14506 _SC_LINE_MAX
14507 _SC_LOGIN_NAME_MAX
14508 _SC_MAPPED_FILES
14509 _SC_MEMLOCK
14510 _SC_MEMLOCK_RANGE
14511 _SC_MEMORY_PROTECTION
14512 _SC_MESSAGE_PASSING
14513 MON _SC_MONOTONIC_CLOCK
14514 _SC_MQ_OPEN_MAX
14515 _SC_MQ_PRIO_MAX
14516 _SC_MULTIPLE_PROCESS
14517 _SC_NETWORKING

Base Definitions, Issue 6 409

<unistd.h> Headers

14518 _SC_NGROUPS_MAX
14519 _SC_OPEN_MAX
14520 XSI _SC_PAGE_SIZE
14521 _SC_PAGESIZE
14522 _SC_PIPE
14523 _SC_PRIORITIZED_IO
14524 _SC_PRIORITY_SCHEDULING
14525 _SC_RE_DUP_MAX
14526 THR _SC_READER_WRITER_LOCKS
14527 _SC_REALTIME_SIGNALS
14528 _SC_REGEXP
14529 _SC_RTSIG_MAX
14530 _SC_SAVED_IDS
14531 _SC_SEMAPHORES
14532 _SC_SEM_NSEMS_MAX
14533 _SC_SEM_VALUE_MAX
14534 _SC_SHARED_MEMORY_OBJECTS
14535 _SC_SHELL
14536 _SC_SIGNALS
14537 _SC_SIGQUEUE_MAX
14538 _SC_SINGLE_PROCESS
14539 _SC_SPAWN |
14540 SPI _SC_SPIN_LOCKS |
14541 _SC_SPORADIC_SERVER |
14542 _SC_STREAM_MAX |
14543 _SC_SYNCHRONIZED_IO
14544 _SC_SYSTEM_DATABASE
14545 _SC_SYSTEM_DATABASE_R
14546 _SC_THREAD_ATTR_STACKADDR
14547 _SC_THREAD_ATTR_STACKSIZE
14548 _SC_THREAD_CPUTIME |
14549 _SC_THREAD_DESTRUCTOR_ITERATIONS |
14550 _SC_THREAD_KEYS_MAX
14551 _SC_THREAD_PRIO_INHERIT
14552 _SC_THREAD_PRIO_PROTECT
14553 _SC_THREAD_PRIORITY_SCHEDULING
14554 _SC_THREAD_PROCESS_SHARED
14555 _SC_THREAD_SAFE_FUNCTIONS
14556 _SC_THREAD_SPORADIC_SERVER |
14557 _SC_THREAD_STACK_MIN |
14558 _SC_THREAD_THREADS_MAX
14559 _SC_TIMEOUTS |
14560 _SC_THREADS |
14561 _SC_TIMER_MAX
14562 _SC_TIMERS
14563 TRC _SC_TRACE
14564 TEF _SC_TRACE_EVENT_FILTER
14565 TRI _SC_TRACE_INHERIT |
14566 TRL _SC_TRACE_LOG |
14567 _SC_TTY_NAME_MAX |
14568 TYM _SC_TYPED_MEMORY_OBJECTS
14569 _SC_TZNAME_MAX

410 Technical Standard (2001) (Draft April 13, 2001)

Headers <unistd.h>

14570 _SC_USER_GROUPS
14571 _SC_USER_GROUPS_R
14572 _SC_V6_ILP32_OFF32
14573 _SC_V6_ILP32_OFFBIG
14574 _SC_V6_LP64_OFF64
14575 _SC_V6_LPBIG_OFFBIG
14576 _SC_VERSION
14577 XSI _SC_XBS5_ILP32_OFF32 (LEGACY)
14578 _SC_XBS5_ILP32_OFFBIG (LEGACY)
14579 _SC_XBS5_LP64_OFF64 (LEGACY)
14580 _SC_XBS5_LPBIG_OFFBIG (LEGACY)
14581 _SC_XOPEN_CRYPT
14582 _SC_XOPEN_ENH_I18N
14583 _SC_XOPEN_LEGACY
14584 _SC_XOPEN_REALTIME
14585 _SC_XOPEN_REALTIME_THREADS
14586 _SC_XOPEN_SHM
14587 _SC_XOPEN_STREAMS
14588 _SC_XOPEN_UNIX
14589 _SC_XOPEN_VERSION
14590 _SC_XOPEN_XCU_VERSION
14591

14592 The two constants _SC_PAGESIZE and _SC_PAGE_SIZE may be defined to have the same
14593 value.

14594 The following symbolic constants shall be defined for file streams:

14595 STDERR_FILENO File number of stderr; 2.

14596 STDIN_FILENO File number of stdin ; 0.

14597 STDOUT_FILENO File number of stdout ; 1.

14598 Type Definitions

14599 The size_t, ssize_t, uid_t, gid_t, off_t, and pid_t types shall be defined as described in
14600 <sys/types.h>.

14601 The useconds_t type shall be defined as described in <sys/types.h>.

14602 The intptr_t type shall be defined as described in <inttypes.h>. |

14603 Declarations

14604 The following shall be declared as functions and may also be defined as macros. Function |
14605 prototypes shall be provided. |

14606 int access(const char *, int);
14607 unsigned alarm(unsigned);
14608 int chdir(const char *);
14609 int chown(const char *, uid_t, gid_t);
14610 int close(int);
14611 size_t confstr(int, char *, size_t);
14612 XSI char *crypt(const char *, const char *);
14613 char *ctermid(char *);
14614 int dup(int);

Base Definitions, Issue 6 411

<unistd.h> Headers

14615 int dup2(int, int);
14616 XSI void encrypt(char[64], int);
14617 int execl(const char *, const char *, ...);
14618 int execle(const char *, const char *, ...);
14619 int execlp(const char *, const char *, ...);
14620 int execv(const char *, char *const []);
14621 int execve(const char *, char *const [], char *const []);
14622 int execvp(const char *, char *const []);
14623 void _exit(int);
14624 int fchown(int, uid_t, gid_t);
14625 XSI int fchdir(int);
14626 SIO int fdatasync(int);
14627 pid_t fork(void);
14628 long fpathconf(int, int);
14629 int fsync(int);
14630 int ftruncate(int, off_t);
14631 char *getcwd(char *, size_t);
14632 gid_t getegid(void);
14633 uid_t geteuid(void);
14634 gid_t getgid(void);
14635 int getgroups(int, gid_t []);
14636 XSI long gethostid(void);
14637 int gethostname(char *, size_t); |
14638 char *getlogin(void); |
14639 int getlogin_r(char *, size_t);
14640 int getopt(int, char * const [], const char *);
14641 XSI pid_t getpgid(pid_t);
14642 pid_t getpgrp(void);
14643 pid_t getpid(void);
14644 pid_t getppid(void);
14645 XSI pid_t getsid(pid_t);
14646 uid_t getuid(void);
14647 XSI char *getwd(char *); (LEGACY)
14648 int isatty(int);
14649 XSI int lchown(const char *, uid_t, gid_t);
14650 int link(const char *, const char *);
14651 XSI int lockf(int, int, off_t);
14652 off_t lseek(int, off_t, int);
14653 XSI int nice(int);
14654 long pathconf(const char *, int);
14655 int pause(void);
14656 int pipe(int [2]);
14657 XSI ssize_t pread(int, void *, size_t, off_t);
14658 ssize_t pwrite(int, const void *, size_t, off_t);
14659 ssize_t read(int, void *, size_t);
14660 ssize_t readlink(const char *restrict, char *restrict, size_t);
14661 int rmdir(const char *);
14662 int setegid(gid_t);
14663 int seteuid(uid_t);
14664 int setgid(gid_t);

412 Technical Standard (2001) (Draft April 13, 2001)

Headers <unistd.h>

14665 int setpgid(pid_t, pid_t);
14666 XSI pid_t setpgrp(void);
14667 int setregid(gid_t, gid_t);
14668 int setreuid(uid_t, uid_t);
14669 pid_t setsid(void);
14670 int setuid(uid_t);
14671 unsigned sleep(unsigned);
14672 XSI void swab(const void *restrict, void *restrict, ssize_t);
14673 int symlink(const char *, const char *);
14674 void sync(void);
14675 long sysconf(int);
14676 pid_t tcgetpgrp(int);
14677 int tcsetpgrp(int, pid_t);
14678 XSI int truncate(const char *, off_t);
14679 char *ttyname(int);
14680 int ttyname_r(int, char *, size_t);
14681 XSI useconds_t ualarm(useconds_t, useconds_t);
14682 int unlink(const char *);
14683 XSI int usleep(useconds_t);
14684 pid_t vfork(void);
14685 ssize_t write(int, const void *, size_t);

14686 Implementations may also include the pthread_atfork() prototype as defined in <pthread.h> (on
14687 page 286).

14688 The following external variables shall be declared:

14689 extern char *optarg;
14690 extern int optind, opterr, optopt;

14691 APPLICATION USAGE
14692 IEEE Std 1003.1-200x only describes the behavior of systems that claim conformance to it. |
14693 However, application developers who want to write applications that adapt to other versions of |
14694 IEEE Std 1003.1 (or to systems that do not conform to any POSIX standard) may find it useful to |
14695 code them so as to conditionally compile different code depending on the value of |
14696 _POSIX_VERSION, for example. |

14697 #if _POSIX_VERSION == 200xxxL |
14698 /* Use the newer function that copes with large files. */ |
14699 off_t pos=ftello(fp); |
14700 #else |
14701 /* Either this is an old version of POSIX, or _POSIX_VERSION is |
14702 not even defined, so use the traditional function. */ |
14703 long pos=ftell(fp); |
14704 #endif |

14705 Earlier versions of IEEE Std 1003.1 and of the Single UNIX Specification can be identified by the |
14706 following macros: |

14707 POSIX.1-1988 standard |
14708 _POSIX_VERSION= =198808L |

14709 POSIX.1-1990 standard |
14710 _POSIX_VERSION= =199009L |

14711 ISO POSIX-1: 1996 standard |
14712 _POSIX_VERSION= =199506L |

Base Definitions, Issue 6 413

<unistd.h> Headers

14713 Single UNIX Specification, Version 1 |
14714 _XOPEN_UNIX and _XOPEN_VERSION= =4 |

14715 Single UNIX Specification, Version 2 |
14716 _XOPEN_UNIX and _XOPEN_VERSION= =500 |

14717 IEEE Std 1003.1-200x does not make any attempt to define application binary interaction with |
14718 the underlying operating system. However, application developers may find it useful to query |
14719 _SC_VERSION at runtime via sysconf() to determine whether the current version of the |
14720 operating system supports the necessary functionality as in the following program fragment: |

14721 if (sysconf(_SC_VERSION) < 200xxxL) { |
14722 fprintf(stderr, "POSIX.1-200x system required, terminating \n"); |
14723 exit(1); |
14724 } |

14725 RATIONALE |
14726 As IEEE Std 1003.1-200x evolved, certain options became sufficiently standardized that it was
14727 concluded that simply requiring one of the option choices was simpler than retaining the option.
14728 However, for backwards compatibility, the option flags (with required constant values) are
14729 retained.

14730 Version Test Macros

14731 The standard developers considered altering the definition of _POSIX_VERSION and removing
14732 _SC_VERSION from the specification of sysconf() since the utility to an application was deemed
14733 by some to be minimal, and since the implementation of the functionality is potentially |
14734 problematic. However, they recognized that support for existing application binaries is a |
14735 concern to manufacturers, application developers, and the users of implementations conforming |
14736 to IEEE Std 1003.1-200x. |

14737 While the example using _SC_VERSION in the APPLICATION USAGE section does not provide |
14738 the greatest degree of imaginable utility to the application developer or user, it is arguably better |
14739 than a core dump or some other equally obscure result. (It is also possible for implementations |
14740 to encode and recognize application binaries compiled in various POSIX.1-conforming |
14741 environments, and modify the semantics of the underlying system to conform to the |
14742 expectations of the application.) For the reasons outlined in the preceding paragraphs and in the |
14743 APPLICATION USAGE section, the standard developers elected to retain the _POSIX_VERSION |
14744 and _SC_VERSION functionality. |

14745 Compile-Time Symbolic Constants for System-Wide Options

14746 IEEE Std 1003.1-200x now includes support in certain areas for the newly adopted policy
14747 governing options and stubs.

14748 This policy provides flexibility for implementations in how they support options. It also
14749 specifies how conforming applications can adapt to different implementations that support
14750 different sets of options. It allows the following:

14751 1. If an implementation has no interest in supporting an option, it does not have to provide
14752 anything associated with that option beyond the announcement that it does not support it.

14753 2. An implementation can support a partial or incompatible version of an option (as a non-
14754 standard extension) as long as it does not claim to support the option.

14755 3. An application can determine whether the option is supported. A strictly conforming
14756 application must check this announcement mechanism before first using anything
14757 associated with the option.

414 Technical Standard (2001) (Draft April 13, 2001)

Headers <unistd.h>

14758 There is an important implication of this policy. IEEE Std 1003.1-200x cannot dictate the
14759 behavior of interfaces associated with an option when the implementation does not claim to
14760 support the option. In particular, it cannot require that a function associated with an
14761 unsupported option will fail if it does not perform as specified. However, this policy does not
14762 prevent a standard from requiring certain functions to always be present, but that they shall
14763 always fail on some implementations. The setpgid() function in the POSIX.1-1990 standard, for
14764 example, is considered appropriate.

14765 The POSIX standards include various options, and the C language binding support for an option
14766 implies that the implementation must supply data types and function interfaces. An application
14767 must be able to discover whether the implementation supports each option.

14768 Any application must consider the following three cases for each option:

14769 1. Option never supported.

14770 The implementation advertises at compile time that the option will never be supported. In
14771 this case, it is not necessary for the implementation to supply any of the data types or
14772 function interfaces that are provided only as part of the option. The implementation might
14773 provide data types and functions that are similar to those defined by IEEE Std 1003.1-200x,
14774 but there is no guarantee for any particular behavior.

14775 2. Option always supported.

14776 The implementation advertises at compile time that the option will always be supported.
14777 In this case, all data types and function interfaces shall be available and shall operate as
14778 specified.

14779 3. Option might or might not be supported.

14780 Some implementations might not provide a mechanism to specify support of options at
14781 compile time. In addition, the implementation might be unable or unwilling to specify
14782 support or non-support at compile time. In either case, any application that might use the
14783 option at runtime must be able to compile and execute. The implementation must provide,
14784 at compile time, all data types and function interfaces that are necessary to allow this. In
14785 this situation, there must be a mechanism that allows the application to query, at runtime,
14786 whether the option is supported. If the application attempts to use the option when it is
14787 not supported, the result is unspecified unless explicitly specified otherwise in
14788 IEEE Std 1003.1-200x.

14789 FUTURE DIRECTIONS
14790 None.

14791 SEE ALSO
14792 <inttypes.h>, <limits.h>, <sys/socket.h>, <sys/types.h>, <termios.h>, <wctype.h>, the System |
14793 Interfaces volume of IEEE Std 1003.1-200x, access(), alarm(), chdir(), chown(), close(), crypt(),
14794 ctermid(), dup(), encrypt(), environ , exec(), exit(), fchdir(), fchown(), fcntl(), fork (), fpathconf (),
14795 fsync(), ftruncate(), getcwd(), getegid(), geteuid(), getgid(), getgroups(), gethostid (), gethostname(),
14796 getlogin (), getpgid(), getpgrp(), getpid(), getppid(), getsid(), getuid(), isatty(), lchown(), link (),
14797 lockf (), lseek(), nice(), pathconf (), pause(), pipe(), read(), readlink (), rmdir(), setgid(), setpgid(),
14798 setpgrp(), setregid(), setreuid(), setsid(), setuid(), sleep(), swab(), symlink(), sync(), sysconf(),
14799 tcgetpgrp(), tcsetpgrp(), truncate(), ttyname(), ualarm(), unlink(), usleep(), vfork (), write()

14800 CHANGE HISTORY
14801 First released in Issue 1. Derived from Issue 1 of the SVID.

Base Definitions, Issue 6 415

<unistd.h> Headers

14802 Issue 5
14803 The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
14804 Threads Extension.

14805 The symbolic constants _XOPEN_REALTIME and _XOPEN_REALTIME_THREADS are added.
14806 _POSIX2_C_BIND, _XOPEN_ENH_I18N, and _XOPEN_SHM must now be set to a value other
14807 than −1 by a conforming implementation.

14808 Large File System extensions are added.

14809 The type of the argument to sbrk() is changed from int to intptr_t.

14810 _XBS_ constants are added to the list of constants for Options and Option Groups, to the list of
14811 constants for the confstr() function, and to the list of constants to the sysconf() function. These
14812 are all marked EX.

14813 Issue 6
14814 _POSIX2_C_VERSION is removed.

14815 The Open Group Corrigendum U026/4 is applied, adding the prototype for fdatasync ().

14816 The Open Group Corrigendum U026/1 is applied, adding the symbols _SC_XOPEN_LEGACY,
14817 _SC_XOPEN_REALTIME, and _SC_XOPEN_REALTIME_THREADS.

14818 The symbols _XOPEN_STREAMS and _SC_XOPEN_STREAMS are added to support the XSI
14819 STREAMS Option Group.

14820 Text in the DESCRIPTION relating to conformance requirements is moved elsewhere in |
14821 IEEE Std 1003.1-200x.

14822 The legacy symbol _SC_PASS_MAX is removed.

14823 The following new requirements on POSIX implementations derive from alignment with the
14824 Single UNIX Specification:

14825 • The _CS_POSIX_* and _CS_XBS5_* constants are added for the confstr() function. |

14826 • The _SC_XBS5_* constants are added for the sysconf() function.

14827 • The symbolic constants F_ULOCK, F_LOCK, F_TLOCK, and F_TEST are added.

14828 • The uid_t, gid_t, off_t, pid_t, and useconds_t types are mandated.

14829 The gethostname() prototype is added for sockets.

14830 New section added for System Wide Options.

14831 Function prototypes for setegid() and seteuid() are added.

14832 Option symbolic constants are added for _POSIX_ADVISORY_INFO, _POSIX_CPUTIME, |
14833 _POSIX_SPAWN, _POSIX_SPORADIC_SERVER, _POSIX_THREAD_CPUTIME,
14834 _POSIX_THREAD_SPORADIC_SERVER, and _POSIX_TIMEOUTS, and pathconf () variables are
14835 added for _PC_ALLOC_SIZE_MIN, _PC_REC_INCR_XFER_SIZE, _PC_REC_MAX_XFER_SIZE,
14836 _PC_REC_MIN_XFER_SIZE, and _PC_REC_XFER_ALIGN for alignment with
14837 IEEE Std 1003.1d-1999. |

14838 The following are added for alignment with IEEE Std 1003.1j-2000:

14839 • Option symbolic constants _POSIX_BARRIERS, _POSIX_CLOCK_SELECTION,
14840 _POSIX_MONOTONIC_CLOCK, _POSIX_READER_WRITER_LOCKS,
14841 _POSIX_SPIN_LOCKS, and _POSIX_TYPED_MEMORY_OBJECTS

416 Technical Standard (2001) (Draft April 13, 2001)

Headers <unistd.h>

14842 • sysconf() variables _SC_BARRIERS, _SC_CLOCK_SELECTION,
14843 _SC_MONOTONIC_CLOCK, _SC_READER_WRITER_LOCKS, _SC_SPIN_LOCKS, and
14844 _SC_TYPED_MEMORY_OBJECTS

14845 The _SC_XBS5 macros associated with the ISO/IEC 9899: 1990 standard are marked LEGACY,
14846 and new equivalent _SC_V6 macros associated with the ISO/IEC 9899: 1999 standard are
14847 introduced.

14848 The getwd() function is marked LEGACY.

14849 The restrict keyword is added to the prototypes for readlink () and swab(). |

14850 Constants for options are now harmonized, so when supported they take the year of approval of
14851 IEEE Std 1003.1-200x as the value.

14852 The following are added for alignment with IEEE Std 1003.1q-2000:

14853 • Optional symbolic constants _POSIX_TRACE, _POSIX_TRACE_EVENT_FILTER,
14854 _POSIX_TRACE_LOG, and _POSIX_TRACE_INHERIT

14855 • The sysconf() symbolic constants _SC_TRACE, _SC_TRACE_EVENT_FILTER,
14856 _SC_TRACE_LOG, and _SC_TRACE_INHERIT.

14857 The brk() and sbrk() legacy functions are removed. |

14858 The Open Group Base Resolution bwg2001-006 is applied, which reworks the XSI versioning |
14859 information. |

14860 The Open Group Base Resolution bwg2001-008 is applied, changing the namelen parameter for |
14861 gethostname() from socklen_t to size_t. |

Base Definitions, Issue 6 417

<utime.h> Headers

14862 NAME
14863 utime.h — access and modification times structure

14864 SYNOPSIS
14865 #include <utime.h>

14866 DESCRIPTION
14867 The <utime.h> header shall declare the structure utimbuf, which shall include the following
14868 members:

14869 time_t actime Access time.
14870 time_t modtime Modification time.

14871 The times shall be measured in seconds since the Epoch.

14872 The type time_t shall be defined as described in <sys/types.h>.

14873 The following shall be declared as a function and may also be defined as a macro. A function |
14874 prototype shall be provided. |

14875 int utime(const char *, const struct utimbuf *);

14876 APPLICATION USAGE
14877 None.

14878 RATIONALE
14879 None.

14880 FUTURE DIRECTIONS
14881 None.

14882 SEE ALSO
14883 <sys/types.h>, the System Interfaces volume of IEEE Std 1003.1-200x, utime()

14884 CHANGE HISTORY
14885 First released in Issue 3.

14886 Issue 6
14887 The following new requirements on POSIX implementations derive from alignment with the
14888 Single UNIX Specification:

14889 • The time_t type is defined.

418 Technical Standard (2001) (Draft April 13, 2001)

Headers <utmpx.h>

14890 NAME
14891 utmpx.h — user accounting database definitions

14892 SYNOPSIS
14893 XSI #include <utmpx.h>
14894

14895 DESCRIPTION
14896 The <utmpx.h> header shall define the utmpx structure that shall include at least the following
14897 members:

14898 char ut_user[] User login name.
14899 char ut_id[] Unspecified initialization process identifier.
14900 char ut_line[] Device name.
14901 pid_t ut_pid Process ID.
14902 short ut_type Type of entry.
14903 struct timeval ut_tv Time entry was made.

14904 The pid_t type shall be defined through typedef as described in <sys/types.h>.

14905 The timeval structure shall be defined as described in <sys/time.h>.

14906 Inclusion of the <utmpx.h> header may also make visible all symbols from <sys/time.h>.

14907 The following symbolic constants shall be defined as possible values for the ut_type member of
14908 the utmpx structure:

14909 EMPTY No valid user accounting information.

14910 BOOT_TIME Identifies time of system boot.

14911 OLD_TIME Identifies time when system clock changed.

14912 NEW_TIME Identifies time after system clock changed.

14913 USER_PROCESS Identifies a process.

14914 INIT_PROCESS Identifies a process spawned by the init process.

14915 LOGIN_PROCESS Identifies the session leader of a logged in user.

14916 DEAD_PROCESS Identifies a session leader who has exited.

14917 The following shall be declared as functions and may also be defined as macros. Function |
14918 prototypes shall be provided. |

14919 void endutxent(void);
14920 struct utmpx *getutxent(void);
14921 struct utmpx *getutxid(const struct utmpx *);
14922 struct utmpx *getutxline(const struct utmpx *);
14923 struct utmpx *pututxline(const struct utmpx *);
14924 void setutxent(void);

Base Definitions, Issue 6 419

<utmpx.h> Headers

14925 APPLICATION USAGE
14926 None.

14927 RATIONALE
14928 None.

14929 FUTURE DIRECTIONS
14930 None.

14931 SEE ALSO
14932 <sys/time.h>, <sys/types.h>, the System Interfaces volume of IEEE Std 1003.1-200x, endutxent()

14933 CHANGE HISTORY
14934 First released in Issue 4, Version 2.

420 Technical Standard (2001) (Draft April 13, 2001)

Headers <wchar.h>

14935 NAME
14936 wchar.h — wide-character handling |

14937 SYNOPSIS
14938 #include <wchar.h>

14939 DESCRIPTION
14940 CX Some of the functionality described on this reference page extends the ISO C standard.
14941 Applications shall define the appropriate feature test macro (see the System Interfaces volume of
14942 IEEE Std 1003.1-200x, Section 2.2, The Compilation Environment) to enable the visibility of these
14943 symbols in this header.

14944 The <wchar.h> header shall define the following types:

14945 wchar_t As described in <stddef.h>.

14946 wint_t An integer type capable of storing any valid value of wchar_t or WEOF.

14947 XSI wctype_t A scalar type of a data object that can hold values which represent locale-
14948 specific character classification.

14949 mbstate_t An object type other than an array type that can hold the conversion state
14950 information necessary to convert between sequences of (possibly multi-byte)
14951 XSI characters and wide characters. If a codeset is being used such that an
14952 mbstate_t needs to preserve more than 2 levels of reserved state, the results
14953 are unspecified.

14954 XSI FILE As described in <stdio.h>.

14955 size_t As described in <stddef.h>. |

14956 XSI va_list As described in <stdarg.h>. |

14957 The implementation shall support one or more programming environments in which the width |
14958 of wint_t is no greater than the width of type long. The names of these programming |
14959 environments can be obtained using the confstr() function or the getconf utility. |

14960 The following shall be declared as functions and may also be defined as macros. Function |
14961 prototypes shall be provided. |

14962 wint_t btowc(int);
14963 wint_t fgetwc(FILE *);
14964 wchar_t *fgetws(wchar_t *restrict, int, FILE *restrict);
14965 wint_t fputwc(wchar_t, FILE *);
14966 int fputws(const wchar_t *restrict, FILE *restrict);
14967 int fwide(FILE *, int);
14968 int fwprintf(FILE *restrict, const wchar_t *restrict, ...);
14969 int fwscanf(FILE *restrict, const wchar_t *restrict, ...);
14970 wint_t getwc(FILE *);
14971 wint_t getwchar(void);
14972 XSI int iswalnum(wint_t);
14973 int iswalpha(wint_t);
14974 int iswcntrl(wint_t);
14975 int iswctype(wint_t, wctype_t);
14976 int iswdigit(wint_t);
14977 int iswgraph(wint_t);
14978 int iswlower(wint_t);
14979 int iswprint(wint_t);
14980 int iswpunct(wint_t);

Base Definitions, Issue 6 421

<wchar.h> Headers

14981 int iswspace(wint_t);
14982 int iswupper(wint_t);
14983 int iswxdigit(wint_t);
14984 size_t mbrlen(const char *restrict, size_t, mbstate_t *restrict);
14985 size_t mbrtowc(wchar_t *restrict, const char *restrict, size_t,
14986 mbstate_t *restrict);
14987 int mbsinit(const mbstate_t *);
14988 size_t mbsrtowcs(wchar_t *restrict, const char **restrict, size_t,
14989 mbstate_t *restrict);
14990 wint_t putwc(wchar_t, FILE *);
14991 wint_t putwchar(wchar_t);
14992 int swprintf(wchar_t *restrict, size_t,
14993 const wchar_t *restrict, ...);
14994 int swscanf(const wchar_t *restrict,
14995 const wchar_t *restrict, ...);
14996 XSI wint_t towlower(wint_t);
14997 wint_t towupper(wint_t);
14998 wint_t ungetwc(wint_t, FILE *);
14999 int vfwprintf(FILE *restrict, const wchar_t *restrict, va_list);
15000 int vfwscanf(FILE *restrict, const wchar_t *restrict, va_list);
15001 int vwprintf(const wchar_t *restrict, va_list);
15002 int vswprintf(wchar_t *restrict, size_t,
15003 const wchar_t *restrict, va_list);
15004 int vswscanf(const wchar_t *restrict, const wchar_t *restrict,
15005 va_list);
15006 int vwscanf(const wchar_t *restrict, va_list);
15007 size_t wcrtomb(char *restrict, wchar_t, mbstate_t *restrict);
15008 wchar_t *wcscat(wchar_t *restrict, const wchar_t *restrict);
15009 wchar_t *wcschr(const wchar_t *, wchar_t);
15010 int wcscmp(const wchar_t *, const wchar_t *);
15011 int wcscoll(const wchar_t *, const wchar_t *);
15012 wchar_t *wcscpy(wchar_t *restrict, const wchar_t *restrict);
15013 size_t wcscspn(const wchar_t *, const wchar_t *);
15014 size_t wcsftime(wchar_t *restrict, size_t,
15015 const wchar_t *restrict, const struct tm *restrict);
15016 size_t wcslen(const wchar_t *);
15017 wchar_t *wcsncat(wchar_t *restrict, const wchar_t *restrict, size_t);
15018 int wcsncmp(const wchar_t *, const wchar_t *, size_t);
15019 wchar_t *wcsncpy(wchar_t *restrict, const wchar_t *restrict, size_t);
15020 wchar_t *wcspbrk(const wchar_t *, const wchar_t *);
15021 wchar_t *wcsrchr(const wchar_t *, wchar_t);
15022 size_t wcsrtombs(char *restrict, const wchar_t **restrict,
15023 size_t, mbstate_t *restrict);
15024 size_t wcsspn(const wchar_t *, const wchar_t *);
15025 wchar_t *wcsstr(const wchar_t *restrict, const wchar_t *restrict);
15026 double wcstod(const wchar_t *restrict, wchar_t **restrict);
15027 float wcstof(const wchar_t *restrict, wchar_t **restrict);
15028 wchar_t *wcstok(wchar_t *restrict, const wchar_t *restrict,
15029 wchar_t **restrict);
15030 long wcstol(const wchar_t *restrict, wchar_t **restrict, int);
15031 long double wcstold(const wchar_t *restrict, wchar_t **restrict);
15032 long long wcstoll(const wchar_t *restrict, wchar_t **restrict, int);

422 Technical Standard (2001) (Draft April 13, 2001)

Headers <wchar.h>

15033 unsigned long wcstoul(const wchar_t *restrict, wchar_t **restrict, int);
15034 unsigned long long
15035 wcstoull(const wchar_t *restrict, wchar_t **restrict, int);
15036 XSI wchar_t *wcswcs(const wchar_t *, const wchar_t *);
15037 int wcswidth(const wchar_t *, size_t);
15038 size_t wcsxfrm(wchar_t *restrict, const wchar_t *restrict, size_t);
15039 int wctob(wint_t);
15040 XSI wctype_t wctype(const char *);
15041 int wcwidth(wchar_t);
15042 wchar_t *wmemchr(const wchar_t *, wchar_t, size_t);
15043 int wmemcmp(const wchar_t *, const wchar_t *, size_t);
15044 wchar_t *wmemcpy(wchar_t *restrict, const wchar_t *restrict, size_t);
15045 wchar_t *wmemmove(wchar_t *, const wchar_t *, size_t);
15046 wchar_t *wmemset(wchar_t *, wchar_t, size_t);
15047 int wprintf(const wchar_t *restrict, ...);
15048 int wscanf(const wchar_t *restrict, ...);

15049 The <wchar.h> header shall define the following macros:

15050 WCHAR_MAX The maximum value representable by an object of type wchar_t.

15051 WCHAR_MIN The minimum value representable by an object of type wchar_t.

15052 WEOF Constant expression of type wint_t that is returned by several WP functions
15053 to indicate end-of-file.

15054 NULL As described in <stddef.h>.

15055 The tag tm shall be declared as naming an incomplete structure type, the contents of which are
15056 described in the header <time.h>.

15057 CX Inclusion of the <wchar.h> header may make visible all symbols from the headers <ctype.h>,
15058 <stdio.h>, <stdarg.h>, <stdlib.h>, <string.h>, <stddef.h>, and <time.h>.

15059 APPLICATION USAGE
15060 None.

15061 RATIONALE
15062 In the ISO C standard, the symbols referenced as XSI extensions are in <wctype.h>. Their |
15063 presence here is thus an extension. |

15064 FUTURE DIRECTIONS
15065 None.

15066 SEE ALSO
15067 <ctype.h>, <stdarg.h>, <stddef.h>, <stdio.h>, <stdlib.h>, <string.h>, <time.h>, the System
15068 Interfaces volume of IEEE Std 1003.1-200x, btowc(), confstr(), fgetwc(), fgetws(), fputwc(), |
15069 fputws(), fwide(), fwprintf(), fwscanf(), getwc(), getwchar(), iswalnum(), iswalpha (), iswcntrl(),
15070 iswctype(), iswdigit (), iswgraph(), iswlower(), iswprint(), iswpunct(), iswspace(), iswupper(),
15071 iswxdigit (), iswctype(), mbsinit(), mbrlen(), mbrtowc(), mbsrtowcs(), putwc(), putwchar(),
15072 swprintf(), swscanf(), towlower(), towupper(), ungetwc(), vfwprintf (), vfwscanf(), vswprintf(),
15073 vswscanf(), vwscanf(), wcrtomb(), wcsrtombs(), wcscat(), wcschr(), wcscmp(), wcscoll(), wcscpy(),
15074 wcscspn(), wcsftime(), wcslen(), wcsncat(), wcsncmp(), wcsncpy(), wcspbrk(), wcsrchr(), wcsspn(),
15075 wcsstr(), wcstod(), wcstof(), wcstok(), wcstol(), wcstold(), wcstoll (), wcstoul(), wcstoull(), wcswcs(),
15076 wcswidth(), wcsxfrm(), wctob(), wctype(), wcwidth(), wmemchr(), wmemcmp(), wmemcpy(),
15077 wmemmove(), wmemset(), wprintf(), wscanf(), the Shell and Utilities volume of |
15078 IEEE Std 1003.1-200x, getconf |

Base Definitions, Issue 6 423

<wchar.h> Headers

15079 CHANGE HISTORY
15080 First released in Issue 4.

15081 Issue 5
15082 Aligned with the ISO/IEC 9899: 1990/Amendment 1: 1995 (E).

15083 Issue 6
15084 The Open Group Corrigendum U021/10 is applied. The prototypes for wcswidth() and
15085 wcwidth() are marked as extensions.

15086 The Open Group Corrigendum U028/5 is applied, correcting the prototype for the mbsinit()
15087 function.

15088 The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

15089 • Various function prototypes are updated to add the restrict keyword.

15090 • The functions vfwscanf(), vswscanf(), wcstof(), wcstold(), wcstoll (), and wcstoull() are added.

15091 The type wctype_t, the isw*(), to*(), and wctype() functions are marked as XSI extensions.

424 Technical Standard (2001) (Draft April 13, 2001)

Headers <wctype.h>

15092 NAME
15093 wctype.h — wide-character classification and mapping utilities

15094 SYNOPSIS
15095 #include <wctype.h>

15096 DESCRIPTION
15097 CX Some of the functionality described on this reference page extends the ISO C standard.
15098 Applications shall define the appropriate feature test macro (see the System Interfaces volume of
15099 IEEE Std 1003.1-200x, Section 2.2, The Compilation Environment) to enable the visibility of these
15100 symbols in this header.

15101 The <wctype.h> header shall define the following types:

15102 wint_t As described in <wchar.h>.

15103 wctrans_t A scalar type that can hold values which represent locale-specific character
15104 mappings.

15105 wctype_t As described in <wchar.h>.

15106 The following shall be declared as functions and may also be defined as macros. Function |
15107 prototypes shall be provided. |

15108 int iswalnum(wint_t);
15109 int iswalpha(wint_t);
15110 int iswblank(wint_t);
15111 int iswcntrl(wint_t);
15112 int iswdigit(wint_t);
15113 int iswgraph(wint_t);
15114 int iswlower(wint_t);
15115 int iswprint(wint_t);
15116 int iswpunct(wint_t);
15117 int iswspace(wint_t);
15118 int iswupper(wint_t);
15119 int iswxdigit(wint_t);
15120 int iswctype(wint_t, wctype_t);
15121 wint_t towctrans(wint_t, wctrans_t);
15122 wint_t towlower(wint_t);
15123 wint_t towupper(wint_t);
15124 wctrans_t wctrans(const char *);
15125 wctype_t wctype(const char *);

15126 The <wctype.h> header shall define the following macro name:

15127 WEOF Constant expression of type wint_t that is returned by several MSE functions
15128 to indicate end-of-file.

15129 For all functions described in this header that accept an argument of type wint_t, the value is
15130 representable as a wchar_t or equals the value of WEOF. If this argument has any other value,
15131 the behavior is undefined.

15132 The behavior of these functions shall be affected by the LC_CTYPE category of the current locale.

15133 CX Inclusion of the <wctype.h> header may make visible all symbols from the headers <ctype.h>,
15134 <stdio.h>, <stdarg.h>, <stdlib.h>, <string.h>, <stddef.h>, <time.h>, and <wchar.h>.

Base Definitions, Issue 6 425

<wctype.h> Headers

15135 APPLICATION USAGE
15136 None.

15137 RATIONALE
15138 None.

15139 FUTURE DIRECTIONS
15140 None.

15141 SEE ALSO
15142 <locale.h>, <wchar.h>, the System Interfaces volume of IEEE Std 1003.1-200x, iswalnum(),
15143 iswalpha (), iswblank(), iswcntrl(), iswctype(), iswdigit (), iswgraph(), iswlower(), iswprint(),
15144 iswpunct(), iswspace(), iswupper(), iswxdigit (), setlocale (), towctrans(), towlower(), towupper(),
15145 wctrans(), wctype()

15146 CHANGE HISTORY
15147 First released in Issue 5. Derived from the ISO/IEC 9899: 1990/Amendment 1: 1995 (E).

15148 Issue 6
15149 The iswblank() function is added for alignment with the ISO/IEC 9899: 1999 standard.

426 Technical Standard (2001) (Draft April 13, 2001)

Headers <wordexp.h>

15150 NAME
15151 wordexp.h — word-expansion types

15152 SYNOPSIS
15153 #include <wordexp.h>

15154 DESCRIPTION
15155 The <wordexp.h> header shall define the structures and symbolic constants used by the
15156 wordexp() and wordfree() functions.

15157 The structure type wordexp_t shall contain at least the following members:

15158 size_t we_wordc Count of words matched by words.
15159 char **we_wordv Pointer to list of expanded words.
15160 size_t we_offs Slots to reserve at the beginning of we_wordv.

15161 The flags argument to the wordexp() function shall be the bitwise-inclusive OR of the following
15162 flags:

15163 WRDE_APPEND Append words to those previously generated.

15164 WRDE_DOOFFS Number of null pointers to prepend to we_wordv.

15165 WRDE_NOCMD Fail if command substitution is requested.

15166 WRDE_REUSE The pwordexp argument was passed to a previous successful call to
15167 wordexp(), and has not been passed to wordfree(). The result is the same
15168 as if the application had called wordfree() and then called wordexp()
15169 without WRDE_REUSE.

15170 WRDE_SHOWERR Do not redirect stderr to /dev/null.

15171 WRDE_UNDEF Report error on an attempt to expand an undefined shell variable.

15172 The following constants shall be defined as error return values:

15173 WRDE_BADCHAR One of the unquoted characters—<newline>, ’|’ , ’&’ , ’;’ , ’<’ , ’>’ ,
15174 ’(’ , ’)’ , ’{’ , ’}’ —appears in words in an inappropriate context.

15175 WRDE_BADVAL Reference to undefined shell variable when WRDE_UNDEF is set in flags.

15176 WRDE_CMDSUB Command substitution requested when WRDE_NOCMD was set in flags.

15177 WRDE_NOSPACE Attempt to allocate memory failed.

15178 OB XSI WRDE_NOSYS Reserved.

15179 WRDE_SYNTAX Shell syntax error, such as unbalanced parentheses or unterminated
15180 string.

15181 The <wordexp.h> header shall define the following type: |

15182 XSI size_t As described in <stddef.h>. |

15183 The following shall be declared as functions and may also be defined as macros. Function |
15184 prototypes shall be provided. |

15185 int wordexp(const char *restrict, wordexp_t *restrict, int);
15186 void wordfree(wordexp_t *);

15187 The implementation may define additional macros or constants using names beginning with
15188 WRDE_.

Base Definitions, Issue 6 427

<wordexp.h> Headers

15189 APPLICATION USAGE
15190 None.

15191 RATIONALE
15192 None.

15193 FUTURE DIRECTIONS
15194 None.

15195 SEE ALSO
15196 <stddef.h>, the System Interfaces volume of IEEE Std 1003.1-200x, wordexp(), the Shell and |
15197 Utilities volume of IEEE Std 1003.1-200x

15198 CHANGE HISTORY
15199 First released in Issue 4. Derived from the ISO POSIX-2 standard.

15200 Issue 6
15201 The restrict keyword is added to the prototype for wordexp().

15202 The WRDE_NOSYS constant is marked obsolescent.

428 Technical Standard (2001) (Draft April 13, 2001)

	xbdtext.pdf
	1. Introduction
	1.1 Scope
	1.2 Conformance
	1.3 Normative References
	1.4 Terminology
	1.5 Portability

	2. Conformance
	2.1 Implementation Conformance
	2.2 Application Conformance
	2.3 Language-Dependent Services for the C Programming Language
	2.4 Other Language-Related Specifications

	3. Definitions
	A
	D
	J
	O
	S

	4. General Concepts
	5. File Format Notation
	6. Character Set
	6.1 Portable Character Set
	6.2 Character Encoding
	6.3 C Language Wide-Character Codes
	6.4 Character Set Description File

	7. Locale
	7.1 General
	7.2 POSIX Locale-
	7.3 Locale Definition
	7.4 Locale Definition Grammar

	8. Environment Variables
	8.1 Environment Variable Definition
	8.2 Internationalization Variables
	8.3 Other Environment Variables

	9. Regular Expressions
	9.1 Regular Expression Definitions
	9.2 Regular Expression General Requirements
	9.3 Basic Regular Expressions
	9.4 Extended Regular Expressions
	9.5 Regular Expression Grammar

	10. Directory Structure and Devices
	10.1 Directory Structure and Files
	10.2 Output Devices and Terminal Types

	11. General Terminal Interface
	11.1 Interface Characteristics
	11.2 Parameters that Can be Set

	12. Utility Conventions
	12.1 Utility Argument Syntax
	12.2 Utility Syntax Guidelines

	13. Headers
	13.1 Format of Entries
	aio.h
	complex.h
	dirent.h
	errno.h
	fcntl.h
	glob.h
	iconv.h
	langinfo.h
	math.h
	ndbm.h
	poll.h
	regex.h
	sched.h
	sys/ipc.h
	sys/types.h
	syslog.h
	tar.h
	ucontext.h
	wchar.h

	draftCR1: Copyright (c) 2001 IEEE and The Open Group.
	draftCR: This is an unapproved IEEE Standards Draft, subject to change.
	running head: IEEE P1003.1, Draft 6, April 2001/ Open Group Technical Standard, Issue 6

