Draft V2 Working Document
Universal Remote Console Specification (AIAP-URC) of
the Alternate Interface Access Protocol (AIAP)

Version 4.0, 07/15/2002
Version 4.0 reflects the result
of the V2 Plenary #8 on 06/27/2002.

WARNING

This document is a draft working paper of INCITS/V2, the Information Technology Access Interfaces Technical Committee of the InterNational Committee for Information Technology Standards. It does not represent an official position, recommendation, specification, or standard of INCITS/V2, INCITS, or ANSI. It is subject to change or withdrawal, at any time, without notice. Any implementation, rendition, or model based on the content of this document is done at the risk of the implementer.

ALL RIGHTS RESERVED. This document is provided for information and comment only. Comments on this document should be sent to info-v2@nist.gov. Reproduction or redistribution of this document for information or comment is authorized, only if the entire document, including this notice, is provided. No other use of this document is authorized without written permission from INCITS/V2.

© 1998, 1999, 2000, 2001, 2002 INCITS

Preface

AIAP

The Alternative Interface Access Protocol (AIAP) is a set of standards for the discovery, selection, configuration, and operation of user interfaces and options. These standards could apply to personal devices, stand-alone or networked systems, and services or devices (targets). The AIAP conveys information about user interface content and functionality; user preferences; target capabilities; and user commands. It allows alternative interfaces to be accommodated or constructed, in real-time if necessary, to provide fundamental access to computing services and information regardless of any limitation of the user.

Among the ways that AIAP is currently envisioned to achieve this, are:

1. By using an alternate user interface component instead of the native user interface component.

2. By allowing a person to use a complete alternate user interface (which includes its own alternate input, control and display mechanisms) instead of the native input, control and display mechanisms on the target (a ‘Universal Remote Console’).

3. By allowing the user to cause their characteristics or user interface preferences to be communicated to the target (either directly or by providing a code which the target uses to look up the user preference or characteristics) where the target changes its own user interface behavior based on the user preferences or needs.

4. By allowing the user to cause new user interface software to be determined and downloaded onto the target directly or indirectly.

AIAP-URC

The purpose of the Universal Remote Console Specification of the Alternative Interface Access Protocol (AIAP-URC) is to address the second of these four scenarios. That is, to define a standard interconnection protocol that allows users to control a mass-market device/service (target) from another device. A key purpose of this specification is to address the needs of people with disabilities to control mass-market products from special Assistive Technologies (AT) (such as is called for in recent government and industry initiatives).

The user interacts with the target through the Universal Remote Console (URC). The URC may be a dedicated device, but will more often be a feature running on a computer, a cell phone, an Assistive Technology, or other device. (This functionality is also associated with the term “Accessor”, although accessor is a more general term that also includes alternate interface components).

The key to this approach is that the target projects an abstract version of its user interface using the AIAP-URC specified XML-based language to URC devices connected to it via a network protocol. This abstract version of the user interface must contain no assumptions as to the presentation mode (visual, auditory, or tactile) of the user interface. (Hinting to facilitate particular presentations may be provided, but the presentations in all modes must be comprehensible without use of the hints.) The AIAP standard defines the requirements for the underlying network to facilitate the interaction between the URC and the target. The URC software takes the abstract user interface (UI) and renders it as a concrete UI on the user’s remote console device. The concrete UI may be visual, speech-based, braille-based, or in some other form.

The burden on the target manufacturer is relatively light if their product is network controllable: The manufacturer just has to commission one abstract UI for their product. This one abstract UI can then accommodate the needs of a wide range of users with a variety of devices chosen to meet their preferences and abilities. Examples include someone watching television and using a URC as a “remote control” to their entertainment center; or someone turning the home security system on or off from their bedroom or from their office; or someone with a disability using a URC as an alternate interface to a product they cannot otherwise access.

If the manufacturer wishes to provide customized concrete UIs to optimize aesthetics and usability for certain classes of users or devices, the manufacturer may provide a concrete UI in addition to the abstract UI.

The “Universal” in “Universal Remote Console” refers to the fact that the user’s URC will work with all targets whose abstract UI complies with the AIAP-URC specification.

Table of Contents

91
Scope

92
Normative References

93
Compliance

94
Terms, Definitions, Acronyms and Abbreviated Terms

94.1
AAIML

104.2
AAIML Document

104.3
AAIML Model

104.4
Abstract interactor

104.5
AIAP

104.6
AIAP-URC

104.7
Alternate/Abstract Interface Markup Language (AAIML)

104.8
Attribute

104.9
Cascading Style Sheets

104.10
Concrete interactor

104.11
Content

104.12
Control Phase

104.13
CSS

114.14
Discovery Phase

114.15
ECMAScript

114.16
Element

114.17
Extensible Markup Language (XML)

114.18
Extensible Stylesheet Language (XSL)

114.19
Extensible Stylesheet Language: Transformations (XSLT)

114.20
Flexible XML Processing Profile (FXPP)

114.21
FXPP

114.22
Group

114.23
Guard

114.24
GUI

114.25
Interactor

114.26
Markup

114.27
Method

124.28
Property

124.29
Session

124.30
Subgroup

124.31
Tag

124.32
Target

124.33
Target Object

124.34
UI

124.35
Unicode

124.36
Uniform Resource Identifier (URI)

124.37
Universal Remote Console (URC)

124.38
UTF-8

124.39
XML

124.40
XML Parser

134.41
XML Schema

134.42
XSL

134.43
XSLT

135
Components of the Standard

136
Requirements for Underlying Network Layers

146.1
Requirements for Discovery

146.2
Requirements for Localization

146.3
Requirements for a Distributed Object Model

156.4
Requirements for Programmatic Control

156.5
Requirements for Security

157
Alternate & Abstract Interface Markup Language (AAIML)

167.1
AAIML Documents

167.2
AAIML Model Distribution and Synchronization

177.3
URC State Variables

177.4
Target State Variables

177.5
Scripting

187.6
AAIML Model Top-Level Structure

197.7
General Help Text

197.8
Groups

217.9
Guards

227.10
Group and Interactor Properties

227.10.1
featureclass

237.11
Text

237.12
AAIML Interactors

257.12.1
INIT scriptlet

257.12.2
SET scriptlet

257.13
Input Interactors

267.13.1
command

267.13.2
stringselection

277.13.3
booleanselection

277.13.4
numberselection

287.13.5
textentry

287.13.6
ordering

297.13.7
association

307.13.8
datetimeentry

317.14
Output Interactors

317.14.1
textout

327.14.2
matrix

337.14.3
announcement

347.14.4
gradation

348
Presentation-Specific Information

359
Universal Remote Console

359.1
User Preferences

359.2
Scripting Engine

359.3
Target Object

359.4
UI Selection

369.5
URC Specific Help Text

369.6
Dynamic Updates

369.7
Discovery

3610
Requirements for the Target

3610.1
Target Properties for Discovery

3710.2
AAIML Model

3710.3
Timed Events

3710.4
Loss of Connection

3811
Appendix A: Consistency with Other Standards

3812
Appendix B: ECMAScript Syntax for Accessing Interactor Properties from INIT and SET Scriptlets

3812.1
All Interactors

3812.2
All Input Interactors

3812.3
command

3812.4
stringselection

3912.5
booleanselection

3912.6
numberselection

3912.7
textentry

3912.8
ordering

3912.9
association

4012.10
datetimeentry

4012.11
textout

4012.12
matrix

4012.13
announcement

4012.14
gradation

4013
Appendix C: XML Schema for AAIML

1 Scope

The AIAP-URC specification comprises four areas:

5. requirements for underlying network layers

6. description of the XML-based language representation (AAIML) for representing the abstract user interface

7. requirements for Universal Remote Console (URC)

8. requirements for the target

2 Normative References

W3C XML Specification: http://www.w3.org/XML/

UTF-8: http://search.ietf.org/rfc/rfc2279.txt?number=2279

ISO 639:1988 - Code for the representation of names of languages

ISO 8601:2000 – Data elements and interchange formats – Information technology – Representation of dates and times

ISO/IEC 16262:1998 – Information Technology – ECMAScript Language Specification http://www.ecma.ch/stand/ECMA-262.htm

IETF RFC 1766: 1995 -Tags for the Identification of Languages -http://www.ietf.org/rfc/rfc1766.txt?number=1766
IETF RFC 2277: 1998 - IETF Policy on Character Sets and Languages - http://www.ietf.org/rfc/rfc2277.txt?number=2277

3 Compliance

Systems claiming compliance with this AIAP-URC specification shall implement all mandatory requirements of this standard. Systems shall state which options they have implemented.

4 Terms, Definitions, Acronyms and Abbreviated Terms

Editorial notes:

[To be updated upon the acceptance of terminology]

[Check for other acronyms used in this document.]

[Source of acronym should be listed in parentheses.]

[Definition of MIME needed.]

[Definition of AAIML needed]

[Editors’ note: check compliance with ANSDIT, http://www.ncits.org/tc_home/k5htm/ANSDIT.htm]

4.1 AAIML

Acronym for Alternate/Abstract Interface Markup Language.

4.2 AAIML Document

An AAIML document is an AAIML model that is represented as a text file for the purpose of storing, caching or transportation. An AAIML document is a well-formed XML document.

4.3 AAIML Model

An AAIML model is an abstract UI specification that describes the target’s UI in AAIML over the duration of a session. In general it is a tree structure, with the AAIML elements as nodes, and their relationships as arcs. The AAIML model is transferred from the target to the URC at the beginning of the session.

4.4 Abstract interactor

An interactor that describes the selection, input, or output for a user interaction, without constraining the concrete form of the interaction.

4.5 AIAP

Acronym for Alternate Interface Access Protocol.

4.6 AIAP-URC

Acronym for Alternate Interface Access Protocol Universal Remote Console.

4.7 Alternate/Abstract Interface Markup Language (AAIML)

The Alternate & Abstract Interface Markup Language (AAIML) is the vehicle by which the target conveys its abstract user interface description to the URC in the control phase, i.e. after a session has been opened between the URC and the target. The abstract UI description is presentation independent and must include all features and functions the target provides via its default (built-in) user interface.

4.8 Attribute

A property of an XML element, defined within the element’s start-tag.

4.9 Cascading Style Sheets

A simple styling language for formatting XML elements.

4.10 Concrete interactor

An interactor that describes the selection, input, or output for a user interaction, and includes information on the visual or non-visual realization of that interaction, for example a listbox or a particular speech grammar.

4.11 Content

All data between an element’s start-tag and end-tag. May be made up of nested elements and text.

4.12 Control Phase

The control phase is the time period in the URC-target communication exchange when the URC controls the target via AAIML.

4.13 CSS

Acronym for Cascading Style Sheets.

4.14 Discovery Phase

The discovery phase initializes the URC to locate and identify all available targets.

4.15 ECMAScript

A standardized (ISO/IEC 16262) version of JScript/JavaScript. Scripting augments the declarative nature of XML to provide a representation for expressions and procedural logic.

4.16 Element

The fundamental logical unit of an XML document: It has name, appearing in the start-tag and end-tag, sometimes attributes, and usually content.

4.17 Extensible Markup Language (XML)

A meta-markup language that provides a format for describing structured data. Has no fixed tag set or application semantics.

4.18 Extensible Stylesheet Language (XSL)

A specification for transforming (XSLT) and formatting XML documents (XSL-FO).

4.19 Extensible Stylesheet Language: Transformations (XSLT)

An XML-based language for transforming one class of XML document to another.

4.20 Flexible XML Processing Profile (FXPP)

http://www.upnp.org/draft-goland-fxpp-01.txt
4.21 FXPP

Acronym for Flexible XML Processing Profile.

4.22 Group

An AAIML element that may contain logically related commands and subgroups.

4.23 Guard

A set of attributes of a group or abstract interactor that provides a conditional expression that determines at any time whether that group or interactor is available to the user, available only in a non-editable form, or unavailable.

4.24 GUI

Acronym for Graphical User Interface.

4.25 Interactor

An abstract or concrete user interface element that describes a choice for the user to make, some input to obtain from the user, or some output to convey to the user.

4.26 Markup

Structural information stored in the same stream as the content.

4.27 Method

A function exposed by an object.

4.28 Property

A characteristic or state information exposed by the object model of a target

4.29 Session

A continuous period over which a user is engaged with the target.

4.30 Subgroup

A group contained within a group. The tagging for a subgroup is no different from that of a group.

4.31 Tag

In hypermedia, a language element in a markup language used for structuring data, text, or objects; for example: start-tags and end-tags. These tags are set off from the surrounding text by wrapping them in angle brackets '<' and '>'.

4.32 Target

The target is a device (e.g. VCR) or service (e.g. online phone directory) that the user wishes to use.

4.33 Target Object

Component on the Universal Remote Console serving as proxy object of the target. In particular, the target object provides access to the target’s state variables, abstract user interface description, and functions.

4.34 UI

Acronym for User Interface.

4.35 Unicode

A standard for representing characters from languages around the world.

4.36 Uniform Resource Identifier (URI)

Naming system for all the resources on the Web. Includes URLs (Uniform Resource Locators), URNs (Uniform Resource Names) and future resource categories.

4.37 Universal Remote Console (URC)

The URC is a device or software through which the user accesses a target. The URC complies with the AIAP-URC specification and is capable of rendering any AAIML specified user interface. It is “universal” in the sense that it can be used to control any AIAP-URC compliant target. It is assumed that users will choose a URC capable of meeting their personal interaction requirements.

4.38 UTF-8

An encoding of Unicode that is backwardly compatible with ASCII. Specified in RFC 2279.

4.39 XML

Acronym for extensible Markup Language.

4.40 XML Parser

A processor that reads an XML document and converts it into an object model that an application may navigate through.

4.41 XML Schema

An XML schema defines the syntax of a custom markup language. Specifies the permissible elements along with their ordering, content datatypes, and attributes.

4.42 XSL

Acronym for eXtensible Stylesheet Language.

4.43 XSLT

Acronym for eXtensible Stylesheet Language: Transformations

5 Components of the Standard

This section is incomplete.

The discovery phase initializes the URC to locate and identify all available targets. The standard defines text-based target properties which can be accessed by any URC prior to opening a session with them (see 10.1 Target Properties for Discovery). The discovery phase uses discovery and object dissemination functionalities implemented in an underlying networking environment layer.

The control phase is the time period in the URC-target communication exchange when the URC controls the target via AAIML.

6 Requirements for Underlying Network Layers

This AIAP-URC specification assumes underlying network layers that provide discovery, localization, object distribution and synchronization, programmatic control, and security. Rather than requiring any particular device architecture the standard assumes the availability of these services in the described functionality. (Universal Plug and Play, Jini/Java are two such architectures.)

[image: image1]
Figure 1: Information transfer in the discovery phase.
Long description: On the left side there is a symbol labeled “User”, and a box labeled “Universal Remote Console (URC)”. On the right side there is a box labeled “Target Device/Service”. An arrow originates from the target, pointing to the URC. The arrow is labeled “Target Properties” and indicates that the target exposes its properties to URCs in the discovery phase.

[image: image2]
Figure 2: Information transfer in the control phase.
Long description: Long description: On the left side there is a symbol labeled “User”, and a box labeled “Universal Remote Console (URC)”. On the right side there is a box labeled “Target Device/Service”. An arrow labeled “Abstract UI (AAIML)” originates from the target and points to the URC. A second arrow, labeled “Synchronized Target State Variables” has tips on both ends, to the URC and to the target. A third arrow, labeled “Remote Procedure Calls (RPCs)”, originates from the URC and points to the target.

6.1 Requirements for Discovery

This section is incomplete.

During the discovery phase, the underlying network must provide information about all available targets to a URC (see 10.1 Target Properties for Discovery). The underlying network must have support for providing static and dynamic information of targets.

Available targets are V2 compliant targets (services and/or devices???) that advertise their service to the underlying network of the URC.

The underlying network must support invoking a target’s locator functions from a URC in the discovery phase (see 10.1 Target Properties for Discovery).

6.2 Requirements for Localization

This section is incomplete.

The target may have several UI versions available for the URC, each for a different language/country combination. However, only one version is sent to the URC.

The URC requests an AAIML model for a particular language/locale by using a language preference mechanism provided by the underlying networking environment layer. The URC would send an ordered list of preferred languages to the target, and the target would do its best to accommodate its preferences. The coding schema for the language preferences must comply with IETF RFC 2277, “IETF Policy on Character Sets and Languages,” with reference to RFC 1766, “Tags for the Identification of Languages.”

If the URC does not provide language preferences, or the target cannot provide any of the preferred languages, the target shall use English as the default language.

6.3 Requirements for a Distributed Object Model

This section is incomplete.

This specification builds upon a distributed object implementation provided by an underlying networking layer. Implementors of AIAP-URC may either use an existing (middleware) solution for a distributed object model, or implement their own version.

At the beginning of a control session, the target provides the initial description of its abstract UI in the form of an AAIML model. The transfer mechanism must preserve the ordering of all items within the model, including those within individual groups and interactors. During the session, the target may modify the AAIML model and propagate it to the URC. This involves distribution and synchronization mechanisms to be provided by underlying networking layers. If the AAIML model is static, some URCs may cache it for the next session.

One possible implementation may employ AAIML documents where documents may reside on the target or elsewhere, for example on a local server, or on the Internet. In cases where the UI changes and the target dynamically modifies the AAIML model, then there will be multiple documents over time. A target provides the URI of an initial AAIML document and during the session may optionally provide the URI of additional or replacement AAIML documents via an event notification.

The target’s state is described by a set of variables, the target state variables (see section 7.4 Target State Variables for further description of these variables). When opening a session with a URC, the target transfers the values of its state variables to the URC. When the target changes the value of a target state variable, this change must be communicated to the URC. Similarly, when the value of a target state variable on the URC changes, this change must be communicated to the target.

Events may be employed to facilitate the propagation of state variable changes from the target to the URC and vice versa.

6.4 Requirements for Programmatic Control

This section is incomplete. It will specify the capability for programmatic control required of a target in order to be controllable using AIAP-URC.

6.5 Requirements for Security

This section is incomplete.

Security is important to AIAP. A certain level of security must be provided by the underlying networking layers. The details of how these layers provide security, and the demands made by AIAP of these layers, are yet to be specified and will be described here. AIAP itself will also include security mechanisms as required. This is yet to be specified.

7 Alternate & Abstract Interface Markup Language (AAIML)

The Alternate & Abstract Interface Markup Language (AAIML) is the vehicle by which the target conveys its abstract user interface description to the URC in the control phase, i.e. after a session has been opened between the URC and the target. The abstract UI description is presentation independent and must include all features and functions the target provides via its default (built-in) user interface. AAIML is not intended to be used for conveying target properties (such as the target name) to the URC, as used in the target discovery phase, before the control phase.

AAIML is an XML based language. Markup in XML is case sensitive. In AAIML, all tag and attribute names are lowercase for consistency. In general, text to be displayed to the user is given as content of AAIML elements, i.e. plain text embraced by AAIML tags. AAIML tags and their attributes are generally intended to provide structural and control information regarding the abstract UI.

Tags and attributes are not localizable, i.e. their names and values are identical for all international language versions of the UI. UI versions for different international languages will have different content (text contained in AAIML elements). As with all XML based languages, white space characters immediately surrounding tags are non-significant.

An AAIML model is an abstract UI specification that describes the target’s UI in AAIML over the duration of a session. In general it is a tree structure, with the AAIML elements as nodes, and their relationships as arcs. The AAIML model is transferred from the target to the URC at the beginning of the session.

Editorial note: If we decide to make use of the graph structure made possible by XML Schema definitions, we should revise the above paragraph.

Targets may have a static or dynamic UI. With a static UI, the AAIML model does not change over the whole session. With a dynamic UI, the AAIML model may change during a session. Changes in the AAIML model may include the modification of element content, the modification of element attributes, and the deletion or addition of elements. At different times during the session, the user will interact with different parts of the AAIML model, resulting in appropriate state changes on the URC and on the target.

7.1 AAIML Documents

An AAIML document is an AAIML model that is represented as a text file for the purpose of storing, caching or transportation. An AAIML document is a well-formed XML document.

The header of an AAIML document indicates the XML version it uses, and what encoding scheme was used for encoding Unicode characters.

 <?xml version="1.0" encoding="UTF-8" ?>

The XML version used in an AAIML document must be “1.0”.

“UTF-8” must be used for encoding of AAIML documents. UTF-8 is an efficient encoding of Unicode that allows the file encoding of AAIML text content given in many of the world’s languages, while being backward compatible with ASCII.

When given in an AAIML document, the aaiml element (the root element of the AAIML model) may have an optional attribute docid="docid", where docid is a string identifying this particular document.

Editorial note: The concept of document ids relates to a specific mechanism for AAIML model distribution and synchronization, and should probably not be part of chapter 7. Details of how to interpret the document id still to be specified; cf. 6.3 Requirements for a Distributed Object Model.

7.2 AAIML Model Distribution and Synchronization

The AAIML specification does not define how the AAIML model is transferred from the target to the URC at the beginning of a session, or how AAIML model changes are propagated from the target to the URC. It is up to the underlying networking layers of the target and URC implementation to provide a mechanism for initial model distribution and subsequent synchronization over the session period. The assumption here is that the model is shared and updated with the URC with virtually no time delay. Targets with a static UI don’t need to implement an update mechanism for the AAIML model.

One possible mechanism for model distribution and synchronization is to provide multiple AAIML document over time. Later documents may thus add elements to an older one, or replace it partially or entirely (cf. section 6.3 Requirements for a Distributed Object Model.]

7.3 URC State Variables

In an AAIML model, ECMAScript global variables are used to reflect the state of the URC. The set of global variables contained in an AAIML model are collectively referred to as “URC state variables”. URC state variables persist over the session, and are shared by all elements in the AAIML model. However, if a URC has sessions open with different targets at the same time (i.e. several AAIML models are present on the URC, one for each target), the URC must keep the URC state variables separate for each target.

URC state variables may be of any type defined in ECMAScript.

URC state variables may impact the UI dynamically, and may be changed programmatically, triggered by certain user actions.

Please note that, although called “global variables” in ECMAScript, URC state variables are local to the URC, and not shared with the target and other URCs connected to the target. If variables need to be shared between the URC and the target, use target state variables (see section 7.4 Target State Variables).

7.4 Target State Variables

Target state variables are used to reflect the state of the target during a session. An AAIML model may reference a target state variable as part of a global ECMAScript object Target, which is part of the AAIML runtime environment on the URC. For example, the code fragment Target.mode refers to the target state variable mode.

Target state variables may be of any type defined in ECMAScript.

As with URC state variables, target state variables may impact the UI dynamically, and may be changed programmatically. Changes may be triggered by user actions on the URC, or events on the target. The difference is that target state variables are shared between the target and a URC. A target may or may not share its target state variables across different URCs that have open sessions with the target at the same time. For example, target variables would be shared for a TV that allows several users to remotely control its current channel and volume. If one user changes the channel, the others see the new channel, too. A different example would be an electronic building directory maintaining multiple (but separate) sessions with different users.

Note that the AAIML specification does not specify how the distribution and synchronization of target state variables across the network is implemented. This is up to the networking environment layers of the target and URC implementation. The AAIML specification assumes that the values of the target state variables of an AAIML model are transferred from the target to the URC when opening a session. After that, changes on a target state variable, initiated by the target, are propagated to the URC with virtually no time delay. In the same way, changes on a target state variable, initiated by the URC, are propagated to the target.

7.5 Scripting

The concept of scripting is used in AAIML to express dynamic properties of the target’s UI (depending on the URC and target state variables), to bind user actions to state changes on the URC and target, and for arbitrary computations involving data types such as numbers, strings, Booleans, Dates, and arrays.

Scriptlets are pieces of ECMAScript code that are to be dynamically interpreted. For example, they may be used for dynamic element content, or attribute values in an AAIML model. An expression is a scriptlet that evaluates to a value. If there are multiple statements that appear in the scriptlet, it is the last one evaluated that counts, including expressions evaluated in carrying out a statement. In this AAIML specification, an attribute value or element content is specified as an expression if its value is to be dynamically evaluated following the ECMAScript syntax.

Scriptlets may only contain references to: (1) URC state variables, (2) target state variables, (3) functions of the target API, and (4) interactor properties on an abstract level (i.e. scriptlets have no knowledge about concrete interactor implementation).

Scriptlet references to URC state variables

Scriptlets may read and modify the values of URC state variables in the same way as global variables are used in ECMAScript. For example, flag is a reference to the URC state variable flag.

Scriptlet references to target state variables

Scriptlets may read and modify the values of target state variables. Target state variables can be accessed from scriptlets as properties of the global object Target, which is provided by the URC runtime environment. For example, Target.EndOfTape refers to the target state variable EndOfTape.

Scriptlet references to a function of the target’s API

A scriptlet may directly call a function (and get the return value) that is part of the target’s public API, via the global object Target. For example, Target.Play() would invoke the Play function on the target.

Scriptlet references to interactor properties

Properties of an AAIML interactor can only be accessed from scriptlets that are part of the interactor itself, and are used for initialization, evaluation, and action triggering pertaining to the interactor. There are two types of scriptlets used for this purpose: the INIT and the SET scriptlet (see sections7.12.1 INIT scriptlet, and 7.12.2 SET scriptlet).

An INIT or SET scriptlet may only access specified properties of the interactor they are assigned to (no cross-interactor property accessing is allowed). Interactor properties that contain localizable text are not accessible from the scriptlets. In particular the output interactors only provide access to the general properties 'id' and 'active'. Only properties reflecting the result of an input interactor may be modified from the scriptlets (write access), the others may only be read (read access).

Within an INIT or SET scriptlet, the keyword this refers to the interactor they are assigned to. For example, this.active only yields true if the corresponding interactor is currently active. Appendix B: ECMAScript Syntax for Accessing Interactor Properties from INIT and SET Scriptlets contains a detailed table of available interactor properties.

7.6 AAIML Model Top-Level Structure

An AAIML model has a structure containing XML elements within one another. At the top level of this structure there is one aaiml element as root.

<aaiml xmlns="aaiml" version="1.0">

...

</aaiml>

The aaiml root may contain general help text (see section 7.7 General Help Text), groups which may be nested (see section 7.8 Groups), and interactors (see section 7.12 AAIML Interactors). Groups may contain one or more interactors. Interactors do not contain other interactors or groups.

The order in which groups and interactors appear within an AAIML model is significant. It must represent a reasonable order in which a user could interact with those elements.

The xmlns attribute provides a reference to the XML namespace that is used throughout the model as the default namespace. This means that all elements contained in aaiml are automatically identified as elements of the aaiml namespace, if not otherwise specified. If the xmlns attribute is not used, then elements’ namespaces must be specified as part of their tag names, for example, <aaiml:group> for the AAIML group element.

Editorial note: Once we have an XML Schema definition for AAIML the xmlns attribute should point to it.

The version attribute defines the version of AAIML that is used in the model. At present the only valid value for the version attribute is “1.0”.

For future extensibility, URCs shall ignore in an AAIML model (a) any unknown elements and their subelements and content, and (b) any unknown attributes and their values. There is one exception to this rule: If the unknown element contains an attribute ignore=”false”, then the execution should be aborted with an appropriate error message to the user.

7.7 General Help Text

An AAIML model may optionally include help text describing general concepts related to the target, its controls and the information it presents. Specific help text is associated with individual interactors, and may link to the general help text.

Items of general help are tagged as

<helptext>

..

</helptext>

General help text has the mandatory attribute:

id=”id”

This allows reference to the text from other help text.

7.8 Groups

An AAIML model contains a sequence of zero or more top-level groups. A group contains a set of related items, each of which is an interactor or a subgroup. Items in a group should be semantically related from the user’s perspective. Groups may recursively contain other groups; thus, groups are hierarchical. The tagging for a group is

<group>

. .

</group>

Groups have the mandatory attribute:

 id=”id”
This allows reference to the particular group, and enables specialized presentations as discussed in section 8 Presentation-Specific Information.

Groups may also have optional guard attributes, defined in Section 7.9.

 All groups have the following mandatory element:

<label> . . . </label>
giving the name of the group. The label consists of human readable and localizable text as defined in Section 0.

Note: <label> is different from the id attribute. The content of <label> may be conveyed to the user (it is human comprehensible), whereas id is a unique (machine generated) id for reference in other code parts.

 Optional elements a group may contain are:

<groupdescription> . . . </groupdescription>for a (localizable) text description of the group, as defined in Section 0.

<helptext>…</helptext> for a (localizable) text explanation of concepts specific to the group, and/or help on using the group. Any number of items of <helptext> may be provided.

Group help text has the mandatory attribute:

id=”id”

This allows reference to the text from other help text.

Within a group, the order in which groups and interactors appear is significant. It must represent a reasonable order in which a user could interact with those elements.

7.8.1

7.9 Guards

Portions of the UI – single interactors, or groups - can be dynamically included or excluded, and moved between active and inactive states by using guards. A guard is scripting that ultimately returns the value of a conditional expression. There are two forms of guard, which govern whether that portion of the UI is included (or relevant), or active (editable) at a certain point in time. The guard expression may change over time, thus affecting the portion of the UI presented.

The elements that may have a guard attribute are: group, and interactor.

An included portion is one that must be available to the user. An excluded portion must not be presented to the user. Each portion of the UI is included if no inclusion guard is present or the value of the inclusion guard is true. An inclusion guard is indicated by the attribute:

include=”expr”

For example, a group might have the attribute <group include=”Target.rewinding”> to indicate that this group is only relevant while the target is rewinding.

An active portion is one that the user can control. An inactive portion is one that should be presented to the user, but cannot be altered or controlled by the user. For example, a field in a form may be fixed or editable, depending on other values entered into the form. This concept does not apply to output interactors, which can never be controlled by the user. For this reason activity guards specified for output interactors are ignored. Each portion of the UI is active if no activity guard is present, or if the value of the activity guard is true. An activity guard is indicated by the attribute:

active=”expr”

Users can edit input interactors included in any portion of the UI that is both included and active.

In both of these attributes, expr is an expression or sequence of scripting statements evaluating to a Boolean value.

Guards may be nested (e.g. the group has a guard and an individual interactor has a guard), in which case the resulting value is determined by the AND operation of all nested guard attributes. That means that any ancestor guard that evaluates to false will cause the innermost UI portion to be excluded or made inactive.

The guard construct brings to AAIML the features of conditionality, as in the example above. Sequence and iteration can also be implemented by using guards to control steps through a set of groups, exactly one of which is active at any point in time.

7.10 Group and Interactor Properties

AAIML allows for the assignment of properties to groups and interactors. A URC may allow users to express preferences in relation to these properties and then adapt the generated user interface accordingly.

The following property is defined:

7.10.1 featureclass

The groups and interactors within an AAIML model must be placed in one of three feature classes: "basic", "general" or "full". These have the following meanings:

· "basic": contains those elements which are fundamental to the basic operation of the target.

· "general": contains commonly used elements that are not included in "basic".

· "full": contains all other features that are not included in "basic" or "general". These are less frequently used features.

For example, the "basic" functions for a CD player might be commands to open and close the drawer, and play. The "general" features would be the stop, fast forward and rewind commands, while pause, and the display of the current track number and time could be placed in the "full" class.

All interactors and groups have a default featureclass value of "basic" unless otherwise marked. Groups and interactors can be explicitly marked with a featureclass attribute as follows:

<group featureclass="general" </group> indicates a group of general interactors.

When a group is marked, all elements within that group inherit the group's featureclass value unless explicitly marked with their own featureclass value. For example, if an interactor within a group marked "full" is assigned to the "basic" feature class, it will be considered "basic". The rows and columns of a matrixgroup are classified according to the values of the featureclass attributes of the elements they contain, with "basic" overriding "general" or "full", and "general" overriding "full".

A URC may make use of these feature classes when presenting elements to the user, as described in Section 9.4

 REF _Ref11574992 \h
UI Selection.

7.11 Text

Text is used for labels, descriptions, help text, options, and other output. All text must represent natural language constructs to the user.

The only permitted text formatting is . . . for emphasis, and <parskip/> for a spatial or temporal separation larger than an end of sentence (period, question mark, exclamation mark). Multiple parskips are allowed.

Scriptlets may be included in the text by the subelement <eval>. This may be used for inserting text representations of state variable values, or localized text.

<eval> … </eval> Scriptlet that evaluates to any type

If the scriptlet evaluates to any other type than string, the URC must convert the result to a string representation.

When a target supports several languages, a separate AAIML model is needed for each language.

In a monolingual user interface model, the text just appears as the content of the included tags.

In a multilingual user interface (i.e. an interface where some text appears in different languages to the primary language), text may be qualified by language and country using the following construct <text xml:lang=””> . . . </text>. The values of the attribute are, as specified in the XML specification, language identifiers as defined by [IETF RFC 1766], “Tags for the Identification of Languages,” or its successor on the IETF Standards Track. According to [IETF RFC 2277] the attribute value for the default language is, however, i-default. Note that the notion of the default language is an emergency measure when the URC did not specify language preferences or the target could not accommodate any of the URC’s preferences (cf. 6.2 Requirements for Localization). If the language attribute is omitted or has a value of the empty string, the text is output regardless of user language/locale preferences.

If the xml:lang attribute is applied to any other tag that is part of the AAIML model then it means that all content within the tag is in the specified language. Attribute values are not affected by the xml:lang attribute.

Editorial note: The use of <eval> in text such as labels, options in stringselection, and other control or navigation text means that this text could change dynamically. It is intended to allow functionality such as dynamically changing the unit of measurement and having this change reflected in a set of choices. However, dynamically changing labels, etc., could be confusing to users. Furthermore, UI programmers could misuse this functionality by having a single interactor with changing label and options instead of several separate interactors. To address this, we should provide guidelines for designing UIs with AAIML.

This applies to the following AAIML elements: <label> for all interactors; <option> in stringselection; <label> for <optgroup> in stringselection; <down> and <up> for numberselection; <option> for textentry; <element> in ordering; <element> in association; headers for columns and rows in matrix.

7.12 AAIML Interactors

An abstract interactor describes an interaction with the user without describing the physical characteristics (pure-text; GUI layout, size, color; speech; Braille; etc.) of that interaction. The URC transforms the abstract interactor into a concrete interactor (e.g. a graphic, or auditory, or braille manifestation, depending on the person’s URC device and its configuration).

The AAIML language provides a set of abstract interactors. They are:

Input/Control interactors:

· command

· stringselection

· booleanselection

· numberselection

· textentry

· ordering

· association

· datetimeentry

Output interactors:

· textout

· matrix

· announcement

· gradation.

All interactors have the mandatory attribute

id=”id”

to provide an identifier for the interactor. This enables specialized presentations as discussed in section 8 Presentation-Specific Information. The identifier must be unique within the model, i.e. a group may not have the same id as an interactor.

Editorial note: If we decide to employ XML Schema definitions, the id attribute would also facilitate shared nodes by id reference.

An interactor may have a guard or guards, indicated by the attributes

include="expr"

and active=”expr”

All abstract interactors have the following mandatory element:

<label> . . . </label>

human readable and localizable name of the interactor.

The content of the label element is text, as defined in Section 7.11. This text is used by the URC to identify the interactor to the user.

Note: <label> is different from the id attribute. The content of <label> may be conveyed to the user (it is human comprehensible), whereas id is a unique id for reference in other code parts.

Abstract interactors have one or more subelements of the following form:

<help> . . . </help>: (localizable) help text

Optional attributes of the <help> element are:

 layer=”integer”

 and auto=”true” or auto=”false”.

The layer attribute (an integer) provides information about the help layer, starting with layers “1”, “2”, etc., with increasing level of detail for increasing layer number. Layer 1 help should provide a brief instruction of what the user is supposed to do. Every interactor must provide layer 1 help; the other layers are optional. If the layer attribute is not given, a default value of 1 is used.

The optional auto attribute specifies whether the help text should be presented to the user unsolicited. The default value is false.

Help text may optionally contain links to general help text, as defined in Section 7.7 General Help Text. A link is tagged as

<hlink idref=”id”> .. </hlink>

Help that is specific to the concrete instantiation of an interactor would optionally be provided by the URC itself.

7.12.1 INIT scriptlet

The INIT scriptlet defines initialization actions for an interactor. It is optional for all AAIML interactors.

An INIT scriptlet is specified as subelement of an interactor:

<init> … </init>
contains scriptlet code. Each statement trailed by a semicolon.

The INIT scriptlet may initialize the properties (such as the current result value) of the corresponding interactor, by reading and modifying the values of target state variables and URC state variables. However, it must not access the properties of other interactors.

The URC executes the INIT scriptlet before presenting the interactor to the user. If any of the URC or target state variables referenced in the INIT scriptlet change during the course of the user interaction with other interactors, the URC must repeat execution of the INIT scriptlet.

The INIT scriptlet must be executed for both active and inactive, but not for excluded elements. If an interactor becomes included after a period of being excluded, it must be re-executed.

7.12.2 SET scriptlet

The SET scriptlet is executed on the URC after each time the user finishes an interaction with a specific interactor. (Exception: if the track attribute of an interactor is true, the SET scriptlet is executed for every user action that changes the result value of the interactor.) The SET scriptlet may validate the result of the interactor, assign it to specific URC or target state variables and/or trigger other actions.

The SET scriptlet is mandatory for input interactors. It must not be used for output interactors.

A SET scriptlet is specified as subelement of an input interactor:

<set> … </set>
contains scriptlet code. Each statement trailed by a semicolon.

Appendix B: ECMAScript Syntax for Accessing Interactor Properties from INIT and SET Scriptlets contains a table of interactor properties that are available from a SET scriptlet.

7.13 Input Interactors

Input interactors collect user input and include controls that the user may manipulate. Each input interactor may have an INIT and a SET scriptlet.

All input interactors have an optional attribute

track=”true”

The default value is

track=”false”

When this attribute has the value true, the URC shall execute the SET scriptlet for each intermediate value. For example, if the user is operating a slider that acts as a volume control, the URC’s SET scriptlet will send a sampling of the values the slider passes through, not just the value the user stops at. The target can then dynamically increase the volume as the slider is moved.

When an interactor offers a set of choices to the user, the order in which the choices are given in the model must represent a reasonable order in which the user can receive them, and must be preserved by the URC when presenting them to the user.

7.13.1 command

The command interactor is used to request an action. This action is meaningful at the user level and may ultimately result in one or more actions on the target. Examples of some GUI concrete instantiations of this interactor are a pushbutton, hot key, and hardware key.

<command> . . . </command>

The following optional subelement may be used to provide information on the status of a command:

<statusinfo type=”typeset”>…</statusinfo>

The type attribute is mandatory and indicates one of three predefined status sets to be used. Valid values for type are: ”basic”, ”binary”, or ”numerical”. The basic status set provides the status values “not ready”, “ready”, “in progress”, “done”, and “error”. The binary status set provides the values “off” and “on”. The numerical status set provides the values “0”, “1”, “2”, … with no upper limit on the allowable values.

<statusinfo> has the following mandatory subelement:

<value>…</value> an expression giving the current status of the command.

The result should be one of the values of the status set specified with the type attribute. If the result is not one of the predefined values, the URC’s behaviour is undefined.

<statusinfo> may contain multiple instances of the following optional subelements:

<status value=”statusvalue”>…</status>

The mandatory attribute value identifies one of the members of the chosen status set, e.g. value=”in progress”. The content of this element provides text which may be used to describe the command’s status to the user. The URC may present this text to the user, but is not required to do so unless the user requests it. A URC may use its own conventions for representing command statuses, eg adapting the pitch of a sound, or the appearance of a visual button. If the value expression evaluates to a value for which no <status> element is provided, the URC’s behavior is undefined.

7.13.2 stringselection

The stringselection interactor presents to the user a set of string options, from which he or she selects one or multiple elements. Examples of some GUI concrete interactors with a single element selection are; a menu, a group of radio buttons, a dropdown list, and a non-editable combo box. Examples of GUI concrete interactors with multiple selections are; a listbox and a group of checkboxes.

<stringselection> . . . </stringselection>

An optional attribute multiple (with possible values true and false) may be provided. The default value is false. When a multiple value is true, the result type is a set of strings; otherwise it is merely a string.

The <option> subelement specifies the provided options for the selection.

<option> . . . </option> encloses localizable text for an option

The <option> subelement has the mandatory attribute val.

val=”string” defines the string value of the interactor if the option is selected by the user.

Note: Usually each option’s val attribute would be unique within the stringselection interactor to allow for exact determination of the user’s choice.

Optional attributes of each option are include, and active, with expressions as their values. They apply the meanings of the guard attributes include and active (see section 7.9 Guards) to individual options in stringselection. The default value is true for both.

An optional subelement is <peroptionhelp>:

<peroptionhelp> . . . </peroptionhelp>: help for the individual option. Like general interactor help, optional attributes are layer and auto, with the default values 1 for layer, and false for auto. However, unlike general interactor help, layer 1 is not required.

Other subelements are:

<optgroup> . . . </optgroup>: (optional) tagging for grouping. In this case the options belonging to the optgroup would be nested within the optgroup tags.

The <optgroup> subelement has the following mandatory subelement:

<label> … </label> The localizable text that represents this group of options

This is a way to group selection options into a hierarchy when large numbers of options are available. Optgroups may be nested to provide a hierarchy of options. This is not binding on the URC. The label identifies the subgroup of options.

The following subelements allow control over the number of values the users can select. Ignored if multiple=”false”.

<minchoices>…</minchoices>: (optional) expression defining the lower bound for the number of choices the user must make. Default value is 1.

<maxchoices>…</maxchoices>: (optional) expression defining the upper bound for the number of choices the user must make. Default value is 1.

7.13.3 booleanselection

User chooses true or false. An example of a GUI concrete interactor that would correspond to this abstract interactor is a single checkbox.

<booleanselection> . . . </booleanselection>

The result type is Boolean.

7.13.4 numberselection

User chooses a number (integer or float, depending on the precision argument) from within a specified range and an optional step. Examples of some GUI concrete interactors that would each correspond to this abstract interactor are a track bar (i.e. a slide bar with latched positions), or a spinner.

<numberselection> . . . </numberselection>

An optional attribute multiple (with possible values true and false) may be provided. The default value is false. When the multiple value is true, the result type is a set of numbers; otherwise it is a single number.

Subelements are

<min> ... </min> required lower inclusive bound. A number expression.

<max> ... </max> required upper inclusive bound. A number expression.

<res> . . . </res> optional step (default is 1). A number expression.

<precision>…</precision> optional precision to display to the user. A number expression.

<down> … </down> optional text used to navigate toward lower bound.

<up> … </up> optional text used to navigate toward upper bound.

An optional subelement <label> for the <min> and <max> subelements may specify a text label for the lower and upper bounds.

The <precision> subelement specifies a precision to display to the user. It must be the result of 10 raised to the nth​ power, where n is an integer. For example, a precision of 0.1 specifies that exactly one digit after the period is displayed.

The following subelements allow control over the number of values the users can select. Ignored if multiple=”false”.

<minchoices>…</minchoices> (optional) expression defining the lower bound for the number of choices the user must make. Default value is 1.

<maxchoices>…</maxchoices> (optional) expression defining the upper bound for the number of choices the user must make. Default value is 1.

The number selection cannot be used to select from a set of numbers that are non-linear. If this functionality is required, the result of numberselection may be mapped to a non-linear scale, or other interactors, such as stringselection may be used.

7.13.5 textentry

User provides a string within an optional specified limit on the number of characters. Examples of some GUI concrete interactors that would each correspond to this abstract interactor are; an (initialized) edit box and a combo box (with suggestions).

<textentry> . . . </textentry>

The result type is a string.

Optional attributes are

echo="password"
If this is specified, the URC is directed not to echo back the characters the user inputs for a password.
maxlen=”len”
This specifies an upper limit for the length of the text (in characters) to input.

Subelements are

<option> . . . </option> surrounds each suggested string (optional)

Optional attributes of each option are include, and active, with expressions as their values. They apply the meanings of the guard attributes include and active (see section 7.9 Guards) to individual options in textentry. The default value is true for both.

An optional subelement of <option> is:

<peroptionhelp> . . . </peroptionhelp>: help for the individual option.

As for general interactor help, optional attributes are layer and auto, with the default values 1 for layer, and false for auto. However, unlike general interactor help, layer 1 is not required.

7.13.6 ordering

User is presented with a set and asked to order the elements of the set.

<ordering> . . . </ordering>

The result type is a set (array).

Subelements are

<element> . . </element> encloses the localizable text for an element.

The <element> subelement has the mandatory attribute val.

val=”string” defines the string value representing the element in the ordering as accessed by the INIT and SET scriptlets.

Optional attributes for <element> are include, and active, with expressions as their values. They apply the meanings of the guard attributes include and active (see section 7.9 Guards) to individual elements in <ordering>. The default value is true for both.

The <element> subelement has the optional subelement <peroptionhelp>.

 <peroptionhelp> . . . </peroptionhelp>: help for the individual option. Like general interactor help, optional attributes are layer and auto, with the default values 1 for layer, and false for auto. However, unlike general interactor help, layer 1 is not required.

7.13.7 association

User is presented with two sets and asked to create ordered pairs.

<association> . . . </association>

The result type is an array of two-element arrays, where each two-element array represents a pair of the form (a, b), where “a” is a member of the first set and “b” a member of the second set.

<set1>

<element>…</element> encloses the localizable text for an element of set1.

The <element> subelement has the mandatory attribute val.

val=”string” defines the string value representing the element in a pair as accessed by the INIT and SET scriptlets.

</set1>

<set2>

<element>…</element> encloses the localizable text for an element of set2.

</set2>

Again, the val=”string” attribute is mandatory for <element>.

Optional attributes for <element> are include, and active, with expressions as their values. They apply the meanings of the guard attributes include and active (see section 7.9 Guards) to individual elements in <association>. The default value is true for both.

<set1>, and <set2> may include the optional attribute minuses, an integer expression which specifies the minimum number of times each element in the set must be used. For example, a value of 1 indicates that each element must appear in at least one pair. When no minuses value is specified, a default value of 0 is used. This indicates that not all of the elements need be used.

<set1>, and <set2> may include the optional attribute maxuses, an integer expression which specifies the maximum number of times an element in the set can be used. A value of N indicates that each element can appear in up to N pairs. When no maxuses value is specified, this indicates that elements may be used any number of times. If the maxuses expression evaluates to a value less than the value of minuses, then the value of minuses is assigned to maxuses.

A one-to-one mapping is specified by giving the value 1 to minuses and maxuses for both sets 1 and 2.

An optional subelement of each element is:

 <peroptionhelp> . . . </peroptionhelp>: help for the individual option. Like general interactor help, optional attributes are layer and auto, with the default values 1 for layer, and false for auto. However, unlike general interactor help, layer 1 is not required.

The following optional subelements of an association allow control over the total number of pairs the users can select.

<minchoices> … </minchoices>: expression defining the lower bound for the number of choices the user must make. Default value is 0.

<maxchoices>?</maxchoices>: expression defining the upper bound for the number of choices the user must make. Default value is no upper limit.

In the event of incompatibilities between the values specified for minuses, maxuses, minchoices and maxchoices, the following rules shall apply:

(a) The maximum number of pairs that can be chosen by the user (MAX) is the smallest of the following values:

maxuses value of set1 times the number of elements in set1

maxuses value of set2 times the number of elements in set2

<maxchoices> value

(b) The minimum number of pairs that the user must choose (MIN) is the greatest of the following values:

minuses of set1 times the number of elements in set1

minuses value of set2 times the number of elements in set2

<minchoices> value
(c) If MIN > MAX, then MIN := MAX. The specific pairs that are chosen must conform as closely as possible to the constraints specified by the minuses and maxuses values.
7.13.8 datetimeentry

<datetimeentry> . . . </datetimeentry>

The result type is a string--the ISO 8601 date/time the user selects.

Subelements indicate the date/time range the user is to choose from:

<startdatetime> . . . </startdatetime> start date/time in ISO 8601 format as specified below.

<enddatetime> . . . </enddatetime> end date/time in ISO 8601 format as specified below.

An optional subelement is:

<incr>.. </incr> the increment of time (not date) that may be suggested to the user in ISO 8601 format. It is a recommendation for the display granularity, and not a constraint for input values.

The <incr> value must follow the following ISO 8601 profile: PyYmMdDThHnM (e.g. PT30M for 30 min, P1Y for 1 year, PT2H30M for 2.5 hours). Note: P, Y, M, D, T, H, and M are

literals.

<datetimeentry> has the following optional attribute:

type=”string” specifing the required components of the date and time.

The type specification string must be one of the following ISO 8601 profiles:

· "YYYY" for year (incomplete date)

· "YYYY-MM" for year & month (incomplete date)

· "YYYY-MM-DD" for complete date (e.g. 1997-07-16)

· "hh:mm" for timezone-independent time without seconds (e.g. 13:10)

· "hh:mm:ss" for local time (timezone independent) with seconds (e.g. 13:10:30)

· "hh:mmTZD" for global time without seconds (timezone specific) (e.g. 13:10-6:00, or equivalent 19:10Z).

· "hh:mm:ssTZD" for global time with seconds (timezone specific) (e.g. 13:10:30-6:00, or equivalent 19:10:30Z).

· "YYYY-MM-DDThh:mm" for local date and time without seconds (e.g. 1997-07-16T13:10).

· "YYYY-MM-DDThh:mm:ss" for local date and time with seconds (e.g. 1997-07-16T13:10:30).

· "YYYY-MM-DDThh:mmTZD" for global date and time without seconds (e.g. 1997-07-16T13:10-6:00, or equivalent 1997-07-16T19:10Z).

· "YYYY-MM-DDThh:mm:ssTZD" for global date and time with seconds (e.g. 1997-07-16T13:10:30-6:00, or equivalent 1997-07-16T19:10:30Z).

Note: In the examples, T is a literal.

If no type attribute is included, then the default specification “YYYY-MM-DDThh:mm” for local date and time without seconds is used.

These formats also constitute the set of valid formats for the startdatetime and enddatetime values.

7.14 Output Interactors

Output interactors in AAIML are used to present information (usually localizable text) to the user. An output interactor’s interaction with the user is restricted to presenting information to the user, and no input from the user is allowed.

An output interactor may have an INIT scriptlet (see 7.12.1 INIT scriptlet), but must not have a SET scriptlet (see 7.12.2 SET scriptlet).

An output interactor may use the guard attribute include. Any use of the guard attribute active will be ignored for an output interactor (see section 7.9 Guards).

All text presented to the user is localizable, and may contain dynamic text through the use of <eval> tags, as defined in section 7.11 Text
7.14.1 textout

This is the simplest output and just consists of (localizable) text, as defined in section 7.11. This is text that does not directly relate to an input interactor, e.g. titles, or copyright notices.

<textout> . . . </textout>
surrounds localizable text

7.14.2 matrix

The matrix interactor exposes the content of a two-dimensional data structure, with rows and columns. For example, a matrix could be rendered as a table on a graphical URC device.

<matrix cols=cols > . . . </matrix>

Headers for the matrix columns are noted with the mandatory subelement <colheaders>:

<colheaders>

<colheader> … </colheader>

. . .

<colheader> … </colheader>

</colheaders>

For each column there must be a column header. Each column header contains localizable text surrounded by <colheader>; empty column headers are allowed. Note that the order of the column headers is significant.

Column headers may be grouped, by enclosing them within the tagging:

<colgroup> … </colgroup>

Column groups have the mandatory subelement:

<label> … </label> The localizable text that represents this group of columns.
Each row of the matrix is specified by the <row> subelement:

<row>

<header> . . . </header>

<element> . . . </element>

<emptyelement />

<element> . . . </element>

</row>

The order in which the rows of a matrix are given is significant. The <header> element is mandatory, but may be empty.

The <element> tag must not be empty. However, empty matrix cells may be specified by the <emptyelement /> tag. Note that this notation (trailing slash) is an XML defined shortcut for <emptyelement></emptyelement>.

An empty row can be specified as:

<emptyrow> <header> … </header> </emptyrow> this entire row consists of empty elements.

The header of an empty row is mandatory, but may be empty.
Rows may be grouped, by enclosing them within the tagging:

<rowgroup> … </rowgroup>

Row groups have the mandatory subelement:

<label> … </label> The localizable text that represents this group of rows.

Matrix rows and columns may may have subelements that contain associated help text:

<help> … </help> Localizable help text
Optional attributes of the <help> element are:

layer=”integer”

and auto=”true” or auto=”false”.

The layer attribute (an integer) provides information about the help layer, starting with layers “1”, “2” etc., with increasing level of detail for increasing layer number. If the layer attribute is not given, a default value of 1 is used.

The optional auto attribute specifies whether the help text should be presented to the user unsolicited. The default value is false.

Help text may optionally contain links to general help text, as defined in section 7.7 General Help Text. A link is tagged as

<hlink idref=”id”> … </hlink>
It is up to the URC how to present the matrix to the user, and how the user may navigate through the rows and columns. For example, the URC may allow a matrix to be traversed via row or column, in different directions, as well as skipping to the next or to the previous sparse element.

7.14.3 announcement

An announcement is an isolated text element that provides information at a certain point in time. It may be triggered by certain events, e.g. error conditions. An example would be an error notification.

<announcement> . . . </announcement>

A mandatory attribute is type with the following possible values:

type = "info"

an informational message

type = "alert"
an alert message

type = "warning"
a warning message

type = "error"
an error message

<announcement> must include one subelement <text>:

<text> … </text>
contains localizable text

A mandatory subelement of <announcement> is <expr>:

<expr> . . . </expr> the expression to evaluate

Note: <expr> is different from the guard concept of inclusion. Inclusion controls the relevance of interactors, <expr> triggers the exposition of the announcement. In other words: If the include guard is not present or evaluates to true, the announcement is triggered by the expression in <expr>.

A mandatory attribute of <expr> is when with the following values:

when="change" expression value changes

when="becomestrue" expression goes from false to true (expression must result in a Boolean value)

when="becomesfalse" expression goes from true to false (expression must result in a Boolean value)

Example:

<announcement type=”warning”>

<expr when=”becomestrue”> ejectbuttonpressed </expr>

<text> Please release the eject button. </text>

</announcement>

7.14.4 gradation

The gradation interactor expresses the magnitude of something relative to its possible range. For example, a gradation interactor could be rendered as a gauge, a progress bar, or a meter on a graphical URC device.

<gradation> . . . </gradation>

Mandatory subelements are:

<lower> . . . </lower> low end of the range. An expression evaluating to a number.

<upper> . . . </upper> high end of the range. An expression evaluating to a number.

<value> . . . </value> current value. An expression evaluating to a number.

An optional subelement <label> for the <lower> and <upper> subelements may specify a text label for the lower and upper bounds.

Note that the <value> expression of the gradation interactor is to be re-evaluated whenever dependent variables change their value.

8 Presentation-Specific Information

Editorial note: This section summarizes options for handling presentation-dependent information, but makes no firm recommendations.

The core AAIML specification represents all information as text, and does not specify or constrain the way the AAIML model, and the groups and interactors within it, should be presented to the user. However, more efficient and usable concrete user interfaces can be achieved if the target, URC, or some third party, is able to provide hints on the most natural way to present the AAIML model for a specific target on a particular URC with a particular set of user preferences.

This could be achieved in a number of ways, including:

1. Hints within the AAIML model: Fits with the W3C philosophy but bloats the model since hints for all possible renderings may be included. This approach may also encourage modality-dependent thinking by AAIML authors.

2. Style sheets can be used to give hints for one or more specific forms of rendering, optimizing the aesthetics and usability for a particular URC and/or preference set. In a simple case, a style sheet might specify the mapping from each interactor type to a concrete instantiation of that interactor. In a more sophisticated implementation, the style sheet would handle the detailed layout of the concrete interface. A style sheet for a GUI might add graphics. Guidelines on how to use style sheets may be necessary. The style sheet idea is not limited to XSLT – a target vendor and URC vendor could agree on any format. XForms is a successor to the HTML+CSS approach and is one possible mechanism for providing alternative renderings optimized for specific presentation modalities. They could be provided by vendors or third parties such as user groups.
3. A set of standardized terms (text labels) could be defined. When used in an AAIML model, the URC could replace them with graphical, audio or tactile symbols taken from a library.
4. Multiple concrete interfaces that take advantage of the underlying abstract control mechanisms could be provided. Some target vendors are already preparing multiple interfaces.

Some mechanism for helping the URC to provide an efficient and natural concrete implementation of an AAIML model is desirable. However, provision of such a mechanism would increase the need to define a thorough testing process in order to ensure that an abstract interface represents the target adequately. Some checks could be automated, while others require human judgement.
9 Universal Remote Console

A Universal Remote Console is software that runs on a portable or stationary general-purpose computer or may be a specialized computing device. A Universal Remote Console would ordinarily be completely hosted on one box, but a distributed approach is possible, where the user directly interacts with a thin client, and an “accessibility server” on the network does the bulk of the processing.

Using underlying network protocols, the URC establishes a session with a target. The URC takes an abstract description of the target interface and presents a concrete user interface to the user that takes into account the user’s preferences and abilities.

An implicit ordering of groups and interactors, specified by their order within the model, may be used when constructing a concrete user interface from an AAIML model, but this order is not binding.

9.1 User Preferences

The URC may use user preference information in transforming the abstract UI into a concrete UI. This standard does not constrain whether or how the URC stores preferences, and does not constrain the processing the URC uses to apply those preferences.

A particular Universal Remote Console could have an (accessible) means for the user to convey his or her preferences.

9.2 Scripting Engine

The URC shall host an ECMAScript runtime environment. Whenever there are scriptlets to be executed or evaluated, the URC shall submit them to the ECMAScript runtime environment.

9.3 Target Object

The URC shall implement a Target object that exposes the target’s state variables as properties and the target’s actions as methods. At point of use, the properties must be in-sync with the corresponding target state variables (see section 6.3 Requirements for a Distributed Object Model).

The URC shall inject this object into the scripting space so that the scripting in the AAIML document may refer to the Target object’s properties and methods. For example, if the scripting refers to the expression Target.EndOfTape, that expression evaluates to the current value of the target state variable EndOfTape. If the scripting calls the method Target.Stop(), the URC will make a remote procedure call (RPC) to the method Stop(). The actual implementation of the RPC depends on the underlying network layers.

9.4 UI Selection

The URC must only present that portion of the UI whose ancestor inclusion guards define to be included. This is the case if and only if all of the include guards evaluate to true). Ancestor guards are all the nested guards that enclose a particular portion of the UI. The URC shall refrain from presenting any portion of the UI that has at least one false ancestor inclusion guard.

Furthermore, if the URC user has expressed a preference for viewing a subset of the full AAIML model, as described in Section 7.10.1

 REF _Ref11574492 \h
featureclass, then the URC must only present that portion of the UI whose featureclass attribute is in accord with the user’s choice. A URC may offer users the ability to:

1. view only elements with a featureclass value of “basic”,

2. view the “basic” and “general” elements, or

3. view all elements.

According to the user's choice, a reduced set of elements, or alternative navigation scheme may be used by the URC. It may, for example, make the "basic" and "general" classes immediately available, while requiring further navigation to reach elements in the "full" class. For matrixgroups, this may mean presenting only some of the rows and columns.

9.5 URC Specific Help Text

The URC may add helpText of its own to the helpText appearing in the AAIML document. The URC’s portion of the helpText shall describe how to operate the concrete interactor that corresponds to the abstract interactor in question.

9.6 Dynamic Updates

Whenever a target state variable or a URC state variable changes, the URC has to re-evaluate all scriptlets that contain this variable.

9.7 Discovery

The URC shall support the user in discovering available targets and their properties (see 6.1 Requirements for Discovery, and 10.1 Target Properties for Discovery). The standard does not define specific ways for the URC to do this.

10 Requirements for the Target

10.1 Target Properties for Discovery

In general, a target must provide the following information in the discovery phase:

· V2 compliance and standard version number.

· Type: one of {location-dependent, location-informative, location-free}.

· Name: Human-readable name of the target

· Target categories according to a hierarchical classification schema (e.g. UNSPSC). A target must have one or more categories. See issue (37).

· A set of keywords describing the functionality of the target. The set of keywords is not constrained. See issue (37).

· Manufacturer code (e.g. according to Dun & Bradstreet’s D-U-N-S). Open issue for metadata: Identify an appropriate manufacturer coding schema.

· Unit identification code such as a serial number. The format is specific to the manufacturer and may include information on product version or generation.

· Verbal location information (not interpreted by the URC). This may include information such as building, floor, room number, etc. It may also include visual, or tactile clues to identify the target.

· Functional location information (interpreted by the URC). The purpose is to let the user activate a function on the target that helps them to locate the target. Examples include audio functions such as a beep or bell, visual functions such as a flash, and direction based functions such as an “infrared ping” function.

· Preconditions on the user’s location in order to let the user control the target. This might include a maximum distance between the URC and the target, or building based location constraints (same room, etc.).

· Geocoordinates (longitude, latitude, altitude)

· Status on current availability of the target, such as busy status.

Additionally, a target can specify other properties not included in this list.

We distinguish between “private” and “public” targets. Information on the location of a device is only required for public targets that are location-dependent or location-informative (not location-free). Depending on the target type some of the above described properties may not apply.

10.2 AAIML Model

The target must include in the AAIML model all information that it usually presents. If there is information that is inherently not translatable into text (e.g. geographic information, instrumental music), or if there is information provided by a third party for which no text equivalent can be generated (e.g. a document with a picture with no alternative text) then the target must provide text indicating the presence and nature of the untranslatable information. Any available text equivalents for non-text output must also be included.
The target must include within the AAIML model all functions it is capable of performing. The AAIML model must also include help text associated with the functions and displays.

All interactors should be represented in such a way that a linear presentation of a single interactor at a time will be comprehensible – no spatial layout can be assumed. Text used within interactors must also be comprehensible when presented linearly – no spatially arranged text such as ASCII art is permissible.

10.3 Timed Events

If the target functionality includes timed events that are under the control of the target (e.g. timeouts, response requirements), the target must provide at least one of the following options for controlling these timed events:

1) Time dependence can be turned off.

2) Times allowed can be adjusted by the user up to 5 times the default values

3) The target must provide a warning of a timeout, and allow at least 10 seconds for the user to respond.

10.4 Loss of Connection

If connection between the target and URC is lost and then re-established, the state of the target must be made clear to the user upon reconnection. Where reasonable, if the reconnection is made within a short time, the target should prompt to user whether they wish to resume their dialog. It is up to the target to define the time at which a reset operation is performed upon loss of connection.

Editorial note: to be specified, provide requirements for state variables.

11 Appendix A: Consistency with Other Standards

This section is incomplete.

This section will report on how the data types used in AAIML comply with the ISO and IEEE type specifications. Also reports on W3C XML specification compliance.

12 Appendix B: ECMAScript Syntax for Accessing Interactor Properties from INIT and SET Scriptlets

The following table provides the ECMAScript syntax for accessing interactors properties from INIT or SET scriptlets.

Interactor properties that contain localizable text are not accessible from the scriptlets. In particular the output interactors only provide access to the general properties 'id' and 'active'. Only properties reflecting the result of an input interactor may be modified from the scriptlets (write access), the others may only be read (read access).

Within an INIT or SET scriptlet, the keyword this refers to the interactor they are assigned to. Note that only the interactor’s own properties can be accessed from its assigned scriptlets (no cross-interactor access allowed).

12.1 All Interactors

	ECMAScript syntax
	Description

	this.id
	Interactor id (read)

	this.active
	Is the interactor active? (read)

12.2 All Input Interactors

	ECMAScript syntax
	Description

	this.track
	Is tracking on? (read)

12.3 command

No properties accessible beyond those of all interactors and all input interactors.

12.4 stringselection

	ECMAScript syntax
	Description

	this.selection
	Value of (first) selected option? (read/write)

	this.selections
	List of values of selected options? (read/write)

	this.numSelected
	How many items are selected currently? (read)

	this.addSelection(String)
	Action: Select (additional) option by value.

	this.removeSelection(String)
	Action: Remove option by value.

	this.options
	List of all active option values (read)

	this.multiple
	Multiple selection allowed? (read)

	this.minchoices
	Minimum number of selections (read)

	this.maxchoices
	Maximum number of selection (read)

12.5 booleanselection

	ECMAScript syntax
	Description

	this.result
	Result (read/write)

12.6 numberselection

	ECMAScript syntax
	Description

	this.selection
	(First) selected number (read/write).

	this.selections
	List of selected numbers (read/write).

	this.addSelection(Number)
	Action: Select (additional) number.

	this.removeSelection(Number)
	Action: Unselect number.

	this.options
	List of all available numbers (read)

	this.multiple
	Multiple selections allowed? (read)

	this.minchoices
	Minimum number of selections (read)

	this.maxchoices
	Maximum number of selections (read)

	this.min
	Minimum value (read)

	this.max
	Maximum value (read)

	this.res
	Resolution (read)

	this.precision
	Precision (read)

12.7 textentry

	ECMAScript syntax
	Description

	this.result
	Result (read/write)

	this.maxlen
	Maximum text length (read)

	this.options
	List of all active options (read)

12.8 ordering

	ECMAScript syntax
	Description

	this.result
	List of ordered values (read/write)

12.9 association

	ECMAScript syntax
	Description

	this.result
	Associations between sets (read/write)

	this.getAssociatedElements2(String)
	Values (from set 2) associated with a value from set 1 (read)

	this.getAssociatedElements1(String)
	Values (from set 1) associated with a value from set 2 (read)

	this.addPair(String, String)
	Action: Create association, specified by vals.

	this.removePair(String, String)
	Action: Remove association, specified by vals.

	this.values1
	List of active set 1 values (read)

	this.values2
	List of active set 2 values (read)

	this.minuses1
	Set 1 minuses (read)

	this.maxuses1
	Set 1 maxuses (read)

	this.minuses2
	Set 2 minuses (read)

	this.maxuses2
	Set 2 maxuses (read)

	this.minchoices
	Minimum number of associations (read)

	this.maxchoices
	Maximum number of associations (read)

12.10 datetimeentry

	ECMAScript syntax
	Description

	this.result
	Selected date/time (read/write)

	this.startdatetime
	Earliest date/time allowed (read)

	this.enddatetime
	Latest date/time allowed (read)

12.11 textout

No properties accessible beyond those of all interactors.

12.12 matrix

No properties accessible beyond those of all interactors.

12.13 announcement

No properties accessible beyond those of all interactors.

12.14 gradation

No properties accessible beyond those of all interactors.

13 Appendix C: XML Schema for AAIML

Editorial note: To be defined.

User

(

Universal Remote Console (URC)

Target Device/�Service

Target Properties

User

(

Universal Remote Console (URC)

Target Device/�Service

Synchronized Target State Variables

Remote Procedure Calls (RPCs)

Abstract UI (AAIML)

PAGE
INCITS V2
AIAP-URC Working Document, Version 4.0, 07/15/2002
Page 20/40
© 1998, 1999, 2000, 2001, 2002 INCITS. ALL RIGHTS RESERVED. This document is provided for information and comment only. It is subject to change or withdrawal, at any time, without notice. Send comments to info-v2@nist.gov.

