Doc. no: N4478 Date: 2015-04-13 Revises: N4370 Reply-To: Christopher Kohlhoff <chris@kohlhoff.com>
In the June 2014 committee meeting in Rapperswil, LEWG requested that Boost.Asio-based N2175 Networking Library Proposal for TR2 (Revision 1) be updated for C++14 and brought forward as a proposed Networking Technical Specification. This document is that revision. As well as updating the proposal for C++14, it incorporates improvements to Asio that are based on the widespread field experience accumulated since 2007.
The Boost.Asio library, from which this proposal is derived, has been deployed in numerous systems, from large (including internet-facing HTTP servers, instant messaging gateways and financial markets applications) to small (mobile phones and embedded systems). The Asio library supports, or has been ported to, many operating systems including Linux, Mac OS X, Windows (native), Windows Runtime, Solaris, FreeBSD, NetBSD, OpenBSD, HP-UX, Tru64, AIX, iOS, Android, WinCE, Symbian, vxWorks and QNX Neutrino.
This revision contains numerous changes resulting from the LWG wording review held in Cologne in February 2015. Please note, however, it does not yet contain all of the wording corrections and suggestions from that meeting, nor have the applied corrections and changes been reviewed. As the changes are too extensive to list here, readers may wish to view the GitHub page for this proposal at https://github.com/chriskohlhoff/asio-tr2/ for further information.
The purpose of this revision is to provide LEWG with up-to-date wording in order to confirm and/or consider certain design choices, based on feedback from Cologne. To facilitate this process, this revision contains some of the suggested design changes from the wording review. There are two significant design changes worth noting here.
First, the basic_socket_acceptor
class's accept and async_accept member functions have been changed
to produce the incoming socket object by moving the result, rather than by
taking a socket object by non-const reference. For example, a synchronous accept
operation may now look like this:
tcp::socket socket(my_acceptor.accept()); // read and write on newly accepted socket ...
and an asynchronous accept operation like this:
my_acceptor.async_accept( [](error_code ec, tcp::socket socket) { if (!ec) { // read and write on newly accepted socket } });
As a consequence of this change, the basic_socket_streambuf
class no longer inherits from basic_socket
— it did so previously to allow users to pass it to accept() or async_accept(). Instead, basic_socket_streambuf
and basic_socket_iostream are
move-enabled and support the ability to move-construct from a socket:
tcp::iostream s(my_acceptor.accept());
Second, there was concern about the use of resource-owning iterators associated
with the ip::basic_resolver template, and the related
single iterator overloads of the free functions connect
and async_connect. The resolver
has been changed so that its resolve
operations now return a results class based on the regular expression library's
match_results template. This
ip::basic_resolver_results type satisfies the
requirements of a sequence container, except that only the operations defined
for const-qualified sequence containers are supported:
for (auto& result : my_resolver.resolve("www.boost.org", "http")) { std::cout << result->endpoint() << ", "; std::cout << result->host_name() << ", "; std::cout << result->service_name() << std::endl; }
In addition, the single iterator overloads of the free functions connect and async_connect
have been removed and replaced with overloads that accept an EndpointSequence. This ensures that the following
simple usage idiom is still supported:
connect(my_socket, my_resolver.resolve("www.boost.org", "http"));
An almost complete implementation of the proposal text may be found in a variant of Asio that stands alone from Boost. This variant is available at https://github.com/chriskohlhoff/asio/tree/master.
Unfamiliar readers are encouraged to look to the Boost.Asio documentation and examples for a more complete picture of the use of the library.
However, to give some idea of the flavour of the proposed library, consider the following sample code. This is part of a server program that echoes the characters it receives back to the client in upper case.
template <typename Iterator> void uppercase(Iterator begin, Iterator end) { std::locale loc(""); for (Iterator iter = begin; iter != end; ++iter) *iter = std::toupper(*iter, loc); } void sync_connection(tcp::socket& socket) { try { std::vector<char> buffer_space(1024); for (;;) { std::size_t length = socket.read_some(buffer(buffer_space)); uppercase(buffer_space.begin(), buffer_space.begin() + length); write(socket, buffer(buffer_space, length)); } } catch (std::system_error& e) { // ... } }
The synchronous operations used above are functions that do not return control to the caller until the corresponding operating system operation completes. In Asio-based programs their use cases typically fall into two categories:
Next, the equivalent code developed using asynchronous operations might look something like this:
class async_connection : public std::enable_shared_from_this<async_connection> { public: async_connection(tcp::socket socket) : socket_(std::move(socket)) { } void start() { do_read(); } private: void do_read() { auto self(shared_from_this()); socket_.async_read_some(buffer(buffer_space_), [this, self](std::error_code ec, std::size_t length) { if (!ec) { uppercase(buffer_space_.begin(), buffer_space_.begin() + length); do_write(length); } }); } void do_write(std::size_t length) { auto self(shared_from_this()); async_write(socket_, buffer(buffer_space_, length), [this, self](std::error_code ec, std::size_t /*length*/) { if (!ec) { do_read(); } }); } tcp::socket socket_; std::vector<char> buffer_space_{1024}; };
Asynchronous operations do not block the caller, but instead involve the delivery of a notification to the program when the corresponding operating system operation completes. Most non-trivial Asio-based programs will make use of asynchronous operations.
While the code may appear more complex due to the inverted flow of control, it allows a knowledgeable programmer to write code that will scale to a great many concurrent connections. However, this proposal uses the asynchronous model described in [N4045]. This is an extensible model that allows the asynchronous operations to support a variety of composition and notification mechanisms, and these mechanisms may alleviate this complexity. This includes futures:
std::future<std::size_t> fut = socket.async_read_some(buffer(buffer_space), use_future); // ... std::size_t length = fut.get();
and, through library extensions, coroutines:
void coro_connection(tcp::socket& socket, yield_context yield) { try { std::vector<char> buffer_space(1024); for (;;) { std::size_t length = socket.async_read_some(buffer(buffer_space), yield); uppercase(buffer_space.begin(), buffer_space.begin() + length); async_write(socket, buffer(buffer_space, length), yield); } } catch (std::system_error& e) { // ... } }
Finally, for many applications, networking is not a core feature, nor is it seen as a core competency of the application’s programmers. To cater to these use cases, the proposal provides a high-level interface to TCP sockets that is designed around the familiar C++ I/O streams framework.
Using the library in this way is as easy as opening a stream object with the remote host’s details:
tcp::iostream s("www.boost.org", "http");
Once connected, you send and receive any data as needed. In this case you send a request:
s << "GET / HTTP/1.0\r\n"; s << "Host: www.boost.org\r\n"; s << "Accept: */*\r\n"; s << "Connection: close\r\n\r\n";
Then receive and process the response:
std::string header; while (std::getline(s, header) && header != "\r") std::cout << header << "\n"; std::cout << s.rdbuf();
You can set a timeout to detect unresponsive connections:
s.expires_after(std::chrono::seconds(60));
And, if at any time there is an error, the tcp::iostream
class’s error()
member function may be used to obtain an error_code
that identifies the reason for failure:
if (!s) { std::cout << "Unable to connect: " << s.error().message() << "\n"; return 1; }
Problem areas addressed by this proposal include:
Features that are considered outside the scope of this proposal include:
The bulk of the library interface is intended for use by developers with at least some understanding of networking concepts (or a willingness to learn). A high level iostreams interface supports simple use cases and permits novices to develop network code without needing to get into too much depth.
The interface is based on the BSD sockets API, which is widely implemented and supported by extensive literature. It is also used as the basis of networking APIs in other languages (e.g. Java). Unsafe practices of the BSD sockets API, e.g. lack of compile-time type safety, are not included.
Asynchronous support is derived from the Proactor design pattern as implemented by the ADAPTIVE Communication Environment [ACE], and is influenced by the design of the Symbian C++ sockets API [SYMBIAN], which supports synchronous and asynchronous operations side-by-side. The Microsoft .NET socket classes [MS-NET] and the Extended Sockets API [ES-API] developed by The Open Group support similar styles of network programming.
This is a pure library proposal. It does not add any new language features, nor does it alter any existing standard library headers. It makes additions to experimental headers that may also be modified by other Technical Specifications.
This library can be implemented using compilers that conform to the C++14 standard. An implementation of this library requires operating system-specific functions that lie outside the C++14 standard.
The asynchronous operations defined in this proposal use the asynchronous model described in [N4045]. With the extensible asynchronous model presented in that paper, the user has the ability to select an asynchronous approach that is appropriate to each use case. With these library foundations, a single extensible asynchronous model can support a variety of composition methods, including:
To facilitate the coordination of asynchronous operations in multithreaded programs, the asynchronous model also utilises the executors design described in [N4242].
As executors and the extensible asynchronous model are a prerequisite for the networking library, the proposed text below incorporates a complete specification of these facilities.
<experimental/executor> synopsiscompletion_handler_typeasync_resultasync_completionassociated_allocatorget_associated_allocatorexecution_contextexecution_context::serviceis_executoruses_executorassociated_executorget_associated_executorexecutor_wrapperexecutor_wrapper constructorsexecutor_wrapper accessexecutor_wrapper invocationasync_resultassociated_allocatorassociated_executorwrapexecutor_workmake_worksystem_executorbad_executorexecutordispatchpostdeferstranduse_future_tasync_result
for packaged_taskpackaged_handlerpackaged_tokenpackage<experimental/buffer> synopsismutable_bufferconst_buffermutable_buffers_1const_buffers_1buffer_castbuffer_sizebuffer_copydynamic_vector_bufferdynamic_string_buffertransfer_alltransfer_at_leasttransfer_exactly<experimental/socket> synopsissocket_basesocket_base::lingerbasic_socketbasic_datagram_socketbasic_stream_socketbasic_socket_acceptor<experimental/internet> synopsisip::addressip::address_v4ip::address_v6ip::bad_address_castip::address_castip::basic_address_iterator specializationsip::basic_address_range specializationsip::network_v4ip::network_v6ip::basic_endpointip::basic_resolver_entryip::basic_resolver_resultsip::resolver_baseip::basic_resolverip::tcpip::tcp::no_delayip::udpip::v6_onlyip::unicast::hopsip::multicast::outbound_interfaceip::multicast::hopsip::multicast::enable_loopbackThis Technical Specification describes extensions to the C++ Standard Library. This Technical Specification specifies requirements for implementations of an interface that computer programs written in the C++ programming language may use to perform operations related to networking, such as operations involving sockets, timers, buffer management, host name resolution and internet protocols. This Technical Specification is applicable to information technology systems that can perform network operations, such as those with operating systems that conform to the POSIX interface. This Technical Specification is applicable only to vendors who wish to provide the interface it describes.
Conformance is specified in terms of behavior. Ideal behavior is not always implementable, so the conformance sub-clauses take that into account.
Some behavior is specified by reference to POSIX. How such behavior is actually implemented is unspecified.
[Note: This constitutes an "as if" rule allowing implementations to call native operating system or other APIs. —end note]
Implementations are encouraged to provide such behavior as it is defined by POSIX. Implementations shall document any behavior that differs from the behavior defined by POSIX. Implementations that do not support exact POSIX behavior are encouraged to provide behavior as close to POSIX behavior as is reasonable given the limitations of actual operating systems and file systems. If an implementation cannot provide any reasonable behavior, the implementation shall report an error as specified in Error Reporting.
[Note: This allows users to rely on an exception being thrown or an error code being set when an implementation cannot provide any reasonable behavior. —end note]
Implementations are not required to provide behavior that is not supported by a particular operating system.
This Technical Specification defines conditially-supported features, in
the form of additional member functions on types that satisfy Protocol, Endpoint, SettableSocketOption, GettableSocketOption or IoControlCommand
requirements.
[Note: This is so that, when the additional member functions are available, C++ programs may extend the library to add support for other protocols and socket options. —end note]
For the purposes of this Technical Specification, implementations that provide all of the additional member functions are known as extensible implementations.
[Note: Implementations are encouraged to provide the additional member functions, where possible. It is intended that POSIX and Windows implementations will provide them. —end note]
The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
[Note: The programming language and library described
in ISO/IEC 14882 is herein called the C++ Standard. References to clauses
within the C++ Standard are written as "C++Std [xref]".
The operating system interface described in ISO/IEC 9945 is herein called
POSIX. —end note]
This Technical Specification mentions commercially available operating systems for purposes of exposition. [1]
Unless otherwise specified, the whole of the C++ Standard's Library introduction (C++Std [library]) is included into this Technical Specification by reference.
The components described in this Technical Specification are experimental
and not part of the C++ standard library. All components described in this
Technical Specification are declared in namespace std::experimental::network_v1 or a sub-namespace thereof unless
otherwise specified. The header described in this technical specification
shall import the contents of std::experimental::network_v1 into std::experimental
as if by:
namespace std { namespace experimental { inline namespace network_v1 {} } }
Unless otherwise specified, references to other entities described in this
Technical Specification are assumed to be qualified with std::experimental::network_v1::,
references to entities described in the C++ standard are assumed to be qualified
with std::,
and references to entities described in C++ Extensions for Library Fundamentals
are assumed to be qualified with std::experimental::fundamentals_v1::.
[defs.host.byte.order] See section 3.194 of POSIX Base Definitions, Host Byte Order.
[defs.net.byte.order] See section 3.238 of POSIX Base Definitions, Network Byte Order.
[defs.sync.op] A synchronous operation is one where control is not returned until the operation completes.
[defs.async.op] An asynchronous operation is one where control is returned immediately without waiting for the operation to complete. Multiple asynchronous operations may be executed concurrently.
This section describes tentative plans for future versions of this technical specification and plans for moving content into future versions of the C++ Standard.
The C++ committee may release new versions of this technical specification,
containing networking library extensions we hope to add to a near-future
version of the C++ Standard. Future versions will define their contents in
std::experimental::network_v2, std::experimental::network_v3,
etc., with the most recent implemented version inlined into std::experimental.
When an extension defined in this or a future version of this technical specification
represents enough existing practice, it will be moved into the next version
of the C++ Standard by removing the experimental::network_vN
segment of its namespace and by removing the experimental/ prefix from its header's path.
These macros allow users to determine which version of this Technical Specification is supported by the headers defined by the specification. All headers in this Technical Specification shall supply the following macro definition:
#define __cpp_lib_experimental_network yyyymm
If an implementation supplies all of the conditionally-supported features specified in [conformance.conditional], all headers in this Technical Specification shall supply the following macro definition:
#define __cpp_lib_experimental_network_extensible yyyymm
[Note: The value of the macros __cpp_lib_experimental_network
and __cpp_lib_experimental_network_extensible
is yyyymm where yyyy is the year and mm
the month when the version of the Technical Specification was completed.
—end note]
This subclause describes the conventions used to specify this Technical Specification, in addition to those conventions specified in C++ Std, [description].
In addition to the elements defined in C++Std [structure.specifications], descriptions of function semantics contain the following elements (as appropriate):
— Completion signature: - if the function initiates an asynchronous operation, specifies the signature of a completion handler used to receive the result of the operation.
Most synchronous network library functions provide two overloads, one that
throws an exception to report system errors, and another that sets an
error_code (C++ Std, [syserr]).
[Note: This supports two common use cases:
— Uses where system errors are truly exceptional and indicate a serious
failure. Throwing an exception is the most appropriate response.
— Uses where system errors are routine and do not necessarily represent
failure. Returning an error code is the most appropriate response. This
allows application specific error handling, including simply ignoring the
error.
—end note]
Functions not having an argument of type
error_code&
report errors as follows, unless otherwise specified:
— When a call by the implementation to an operating system or other underlying
API results in an error that prevents the function from meeting its specifications,
the function exits via an exception of a type that would match a handler
of type system_error.
— Destructors throw nothing.
Functions having an argument of type error_code& report errors as follows, unless otherwise
specified:
— If a call by the implementation to an operating system or other underlying
API results in an error that prevents the function from meeting its specifications,
the error_code&
argument ec is set as appropriate
for the specific error. Otherwise, the ec
argument is set such that !ec is true.
Where a function is specified as two overloads, with and without an argument
of type error_code&:
R f(A1 a1, A2 a2, ..., AN aN); R f(A1 a1, A2 a2, ..., AN aN, error_code& ec);
then, when R is non-void, the effects of the first overload
are as if:
error_code ec; R r(f(a1, a2, ..., aN, ec)); if (ec) throw system_error(ec, __func__); return r;
otherwise, when R
is void, the effects of the
first overload are as if:
error_code ec; f(a1, a2, ..., aN, ec); if (ec) throw system_error(ec, __func__);
except that the type thrown may differ as specified above.
For both overloads, failure to allocate storage is reported by throwing an exception as described in the C++ standard (C++14 [res.on.exception.handling]).
Asynchronous network library functions in this Technical Specification
are identified by having the prefix async_
and take a completion handler [async.reqmts.async.token].
These asynchronous operations report errors as follows:
— If a call by the implementation to an operating system or other underlying
API results in an error that prevents the asynchronous operation from meeting
its specifications, the completion handler is invoked with an error_code value ec
that is set as appropriate for the specific error. Otherwise, the error_code value ec
is set such that !ec
is true.
— Asynchronous operations shall not fail with an error condition that indicates
interruption of an operating system or underlying API by a signal [Note:
Such as POSIX error number EINTR
—end note] . Asynchronous operations shall not fail
with any error condition associated with non-blocking operations [Note:
Such as POSIX error numbers EWOULDBLOCK,
EAGAIN, or EINPROGRESS; Windows error numbers WSAEWOULDBLOCK or WSAEINPROGRESS
—end note] .
Unless otherwise specified, when the behavior of a synchronous or asynchronous
operation is defined "as if" implemented by a POSIX function,
the error_code produced
by the function shall meet the following requirements:
— If the failure condition is one that is listed by POSIX for that function,
the error_code shall compare
equal to the error's corresponding enum
class errc
(C++Std [syserr]) or enum class resolver_errc constant.
— Otherwise, the error_code
shall be set to an implementation-defined value that reflects the underlying
operating system error.
[Example: The POSIX specification for shutdown
lists EBADF as one of its
possible errors. If a function that is specified "as if" implemented
by shutdown
fails with EBADF then the
following condition holds for the error_code
value ec: ec == errc::bad_file_descriptor —end example]
When the description of a function contains the element Error
conditions, this lists conditions where the operation may fail.
The conditions are listed, together with a suitable explanation, as enum class
constants. Unless otherwise specified, this list is a subset of the failure
conditions associated with the function.
Table 1. Networking library summary
|
Clause |
Header(s) |
|---|---|
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
Throughout this Technical Specification, the names of the template parameters are used to express type requirements, as listed in the table below.
Table 2. Template parameters and type requirements
|
template parameter name |
type requirements |
|---|---|
|
| |
|
|
C++Std, [allocator.requirements] |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
#include <experimental/executor> #include <experimental/io_service> #include <experimental/timer> #include <experimental/buffer> #include <experimental/socket> #include <experimental/internet>
[Note: This header is provided as a convenience for
programs so that they may access all networking facilities via a single,
self-contained #include.
—end note]
namespace std { namespace experimental { inline namespace network_v1 { class execution_context; template<class T, class Executor> class executor_wrapper; template<class Executor> class executor_work; class system_executor; class executor; template<class Executor> class strand; class io_service; template<class Clock> struct wait_traits; template<class Clock, class WaitTraits = wait_traits<Clock>> class basic_waitable_timer; typedef basic_waitable_timer<chrono::system_clock> system_timer; typedef basic_waitable_timer<chrono::steady_clock> steady_timer; typedef basic_waitable_timer<chrono::high_resolution_clock> high_resolution_timer; template<class Protocol> class basic_socket; template<class Protocol> class basic_datagram_socket; template<class Protocol> class basic_stream_socket; template<class Protocol> class basic_socket_acceptor; template<class Protocol, class Clock = chrono::steady_clock, class WaitTraits = wait_traits<Clock>> class basic_socket_streambuf; template<class Protocol, class Clock = chrono::steady_clock, class WaitTraits = wait_traits<Clock>> class basic_socket_iostream; namespace ip { class address; class address_v4; class address_v6; class address_iterator_v4; class address_iterator_v6; class address_range_v4; class address_range_v6; class network_v4; class network_v6; template<class InternetProtocol> class basic_endpoint; template<class InternetProtocol> class basic_resolver_entry; template<class InternetProtocol> class basic_resolver_results; template<class InternetProtocol> class basic_resolver; class tcp; class udp; } // namespace ip } // inline namespace network_v1 } // namespace experimental } // namespace std
Default template arguments are described as appearing both in <netfwd> and in the synopsis of other headers
but it is well-formed to include both <netfwd>
and one or more of the other headers. [Note: It is
the implementation’s responsibility to implement headers so that including
<netfwd> and other headers does not violate
the rules about multiple occurrences of default arguments. —end
note]
namespace std { namespace experimental { inline namespace network_v1 { template<class CompletionToken, class Signature, class = void> struct completion_handler_type; template<class CompletionToken, class Signature> using completion_handler_type_t = typename completion_handler_type<CompletionToken, Signature>::type; template<class CompletionHandler> class async_result; template<class CompletionToken, class Signature> struct async_completion; template<class T, class ProtoAllocator = allocator<void>> struct associated_allocator; template<class T, class ProtoAllocator = allocator<void>> using associated_allocator_t = typename associated_allocator<T, ProtoAllocator>::type; // get_associated_allocator: template<class T> associated_allocator_t<T> get_associated_allocator(const T& t); template<class T, class ProtoAllocator> associated_allocator_t<T, ProtoAllocator> get_associated_allocator(const T& t, const ProtoAllocator& a); enum class fork_event { prepare, parent, child }; class execution_context; class service_already_exists; template<class Service> Service& use_service(execution_context& ctx); template<class Service, class... Args> Service& make_service(execution_context& ctx, Args&&... args); template<class Service> bool has_service(execution_context& ctx) noexcept; template<class T> struct is_executor : false_type {}; struct executor_arg_t { }; constexpr executor_arg_t executor_arg = executor_arg_t(); template<class T, class Executor> struct uses_executor; template<class T, class Executor = system_executor> struct associated_executor; template<class T, class Executor = system_executor> using associated_executor_t = typename associated_executor<T, Executor>::type; // get_associated_executor: template<class T> associated_executor_t<T> get_associated_executor(const T& t); template<class T, class Executor> associated_executor_t<T, Executor> get_associated_executor(const T& t, const Executor& ex); template<class T, class ExecutionContext> associated_executor_t<T, typename ExecutionContext::executor_type> get_associated_executor(const T& t, ExecutionContext& ctx); template<class T, class Executor> class executor_wrapper; template<class T, class Executor, class Signature> struct completion_handler_type<executor_wrapper<T, Executor>, Signature>; template<class T, class Executor> class async_result<executor_wrapper<T, Executor>>; template<class T, class Executor, class ProtoAllocator> struct associated_allocator<executor_wrapper<T, Executor>, ProtoAllocator>; template<class T, class Executor, class Executor1> struct associated_executor<executor_wrapper<T, Executor>, Executor1>; // wrap: template<class Executor, class T> executor_wrapper<decay_t<T>, Executor> wrap(const Executor& ex, T&& t); template<class ExecutionContext, class T> executor_wrapper<decay_t<T>, typename ExecutionContext::executor_type> wrap(ExecutionContext& ctx, T&& t); template<class Executor> class executor_work; // make_work: template<class Executor> executor_work<Executor> make_work(const Executor& ex); template<class ExecutionContext> executor_work<typename ExecutionContext::executor_type> make_work(ExecutionContext& ctx); template<class T> executor_work<associated_executor_t<T>> make_work(const T& t); template<class T, class Executor> executor_work<associated_executor_t<T, Executor>> make_work(const T& t, const Executor& ex); template<class T, class ExecutionContext> executor_work<associated_executor_t<T, typename ExecutionContext::executor_type>> make_work(const T& t, ExecutionContext& ctx); class system_executor; bool operator==(const system_executor&, const system_executor&); bool operator!=(const system_executor&, const system_executor&); template<> struct is_executor<system_executor> : true_type {}; class bad_executor; class executor; template <> struct is_executor<executor> : true_type {}; bool operator==(const executor& a, const executor& b) noexcept; bool operator==(const executor& e, nullptr_t) noexcept; bool operator==(nullptr_t, const executor& e) noexcept; bool operator!=(const executor& a, const executor& b) noexcept; bool operator!=(const executor& e, nullptr_t) noexcept; bool operator!=(nullptr_t, const executor& e) noexcept; // dispatch: template<class CompletionToken> DEDUCED dispatch(CompletionToken&& token); template<class Executor, class CompletionToken> DEDUCED dispatch(const Executor& ex, CompletionToken&& token); template<class ExecutionContext, class CompletionToken> DEDUCED dispatch(ExecutionContext& ctx, CompletionToken&& token); // post: template<class CompletionToken> DEDUCED post(CompletionToken&& token); template<class Executor, class CompletionToken> DEDUCED post(const Executor& ex, CompletionToken&& token); template<class ExecutionContext, class CompletionToken> DEDUCED post(ExecutionContext& ctx, CompletionToken&& token); // defer: template<class CompletionToken> DEDUCED defer(CompletionToken&& token); template<class Executor, class CompletionToken> DEDUCED defer(const Executor& ex, CompletionToken&& token); template<class ExecutionContext, class CompletionToken> DEDUCED defer(ExecutionContext& ctx, CompletionToken&& token); template<class Executor> class strand; template<class Executor> bool operator==(const strand<Executor>& a, const strand<Executor>& b); template<class Executor> bool operator!=(const strand<Executor>& a, const strand<Executor>& b); template<class Executor> struct is_executor<strand<Executor>> : true_type {}; template<class ProtoAllocator = allocator<void>> class use_future_t; constexpr use_future_t<> use_future = use_future_t<>(); template<class ProtoAllocator, class R, class... Args> struct completion_handler_type<use_future_t<ProtoAllocator>, R(Args...)>; template<class R, class... Args> class async_result<packaged_task<R(Args...)>>; template<class, class> class packaged_handler; // undefined template<class R, class... Arg, class ProtoAllocator> class packaged_handler<R(Args...), ProtoAllocator>; template<class Signature, class ProtoAllocator> class async_result<packaged_handler<Signature, ProtoAllocator>>; template<class Func, class ProtoAllocator = allocator<void>> class packaged_token; template<class Func, class ProtoAllocator, class R, class... Args> struct completion_handler_type<packaged_token<Func, ProtoAllocator>, R(Args...)>; template<class Func, class ProtoAllocator = allocator<void>> packaged_token<decay_t<Func>, ProtoAllocator> package( Func&& f, const ProtoAllocator& a = ProtoAllocator()); } // inline namespace network_v1 } // namespace experimental template<class Allocator> struct uses_allocator<experimental::network_v1::executor, Allocator> : true_type {}; } // namespace std
[async.reqmts.proto.allocator]
A type A meets the proto-allocator
requirements if A is
CopyConstructible (C++Std,
[copyconstructible]), Destructible
(C++Std, [destructible]), and allocator_traits<A>::rebind_alloc<U> meets the allocator requirements
(C++Std, [allocator.requirements]), where U
is an object type. [Note: For example, std::allocator<void>
meets the proto-allocator requirements but not the allocator requirements.
—end note] No constructor, comparison operator, copy
operation, move operation, or swap operation on these types shall exit
via an exception.
In this Technical Specification, an asynchronous operation is initiated
by a function that is named with the prefix async_.
These functions shall be known as initiating functions.
All initiating functions in this Technical Specification:
— are function templates with template parameter CompletionToken;
— accept, as the final parameter, a completion token
object token of type
CompletionToken;
— specify a Completion signature element that defines
a call signature Signature
(C++ Std [func.def]).
A completion handler is a function object that will be invoked, at most once, with the result of an asynchronous operation.
An initiating function determines the type CompletionHandler
of its completion handler function object by performing completion_handler_type_t<CompletionToken,
Signature>.
The completion handler object completion_handler
is initialized with completion_handler(forward<CompletionToken>(token)). [Note: No other
requirements are placed on the type CompletionToken.
—end note]
The type CompletionHandler
must satisfy the MoveConstructible
requirements (C++ Std, [moveconstructible]) and be callable with the
specified completion signature. The Completion signature
elements in this Technical Specification have named parameters, and
the result of an asynchronous operation is specified in terms of these
names.
[async.reqmts.async.return.type]
For the sake of exposition, this specification sometimes annotates
functions with a return type DEDUCED. For every function declaration
that returns DEDUCED, the meaning is equivalent to specifying
the return type as typename
async_result<CompletionHandler>::type.
[async.reqmts.async.return.value]
An initiating function in this Technical Specification produces its return type as follows:
— constructing an object result
of type async_result<CompletionHandler>, initialized as result(handler); and
— using result.get()
as the operand of the return statement.
[Example: Given an asynchronous operation with
Completion signature void(R1 r1, R2 r2), an initiating function meeting these
requirements may be implemented as follows:
template<class CompletionToken> auto async_xyz(T1 t1, T2 t2, CompletionToken&& token) { completion_handler_type_t<decay_t<CompletionToken>, void(R1 r1, R2 r2)> completion_handler(forward<CompletionToken>(token)); async_result<decltype(completion_handler)> result(completion_handler); // initiate the operation and cause completion_handler to be invoked with // the result return result.get(); }
For convenience, initiating functions may be implemented using the
async_completion template:
template<class CompletionToken> auto async_xyz(T1 t1, T2 t2, CompletionToken&& token) { async_completion<CompletionToken, void(R1 r1, R2 r2)> init(token); // initiate the operation and cause init.completion_handler to be invoked // with the result return init.result.get(); }
—end example]
Unless otherwise specified, the lifetime of arguments to initiating functions shall be treated as follows:
— If the parameter has a pointer type or has a type of lvalue reference to non-const, the implementation may assume the validity of the pointee or referent, respectively, until the completion handler is invoked. [Note: In other words, the program must guarantee the validity of the argument until the completion handler is invoked. —end note]
— Otherwise, the implementation must not assume the validity of the argument after the initiating function completes. [Note: In other words, the program is not required to guarantee the validity of the argument after the initiating function completes. —end note] The implementation may make copies of the argument, and all copies shall be destroyed no later than immediately after invocation of the completion handler.
[async.reqmts.async.assoc.exec]
Certain objects that participate in asynchronous operations have an associated executor. These are obtained as specified below.
All asynchronous operations in this Technical Specification have an
associated executor object satisfying the Executor
requirements. If the initiating function is a member function,
the associated executor is that returned by the get_executor
member function on the same object. If the initiating function is not
a member function, the associated executor is that returned by the
get_executor member
function of the first argument to the initiating function.
Let Executor1 be the
type of the associated executor, and ex1
be the associated executor object obtained as described above.
[async.reqmts.async.handler.exec]
A completion handler object of type CompletionHandler
has an associated executor object ex2
of type Executor2 satisfying
the Executor requirements.
The type Executor2
is associated_executor_t<CompletionHandler, Executor1>. The object ex2
is obtained by performing associated_executor<CompletionHandler, Executor1>::get(handler, ex1).
The implementation of an asynchronous operation shall maintain an object
work1 of type executor_work<Executor1>,
initialized with work1(ex1) and with work1.owns_work() == true, until the effects of the asynchronous
operation have been realized.
The implementation of an asynchronous operation shall maintain an object
work2 of type executor_work<Executor2>,
initialized with work2(ex2) and with work2.owns_work() == true, until handler
has been submitted for execution.
Asynchronous operations may allocate memory. [Note:
Such as a data structure to store copies of the handler
object and the initiating function's arguments. —end note]
Let Alloc1 be a type,
satisfying the ProtoAllocator requirements,
that represents the asynchronous operation's default allocation strategy.
[Note: Typically std::allocator<void>. —end note]
Let alloc1 be an object
of type Alloc1.
All handlers have an associated allocator object satisfying the ProtoAllocator
requirements. The type Alloc2
of the handler's associated allocator shall be determined by associated_allocator_t<CompletionHandler,
Alloc1>.
The handler's associated allocator object alloc2
shall be obtained by performing associated_allocator<CompletionHandler, Executor1>::get(handler, alloc1).
The asynchronous operations defined in this Technical Specification:
— If required, allocate memory using only the completion handler's associated allocator.
— Prior to completion handler execution, deallocates any memory allocated.
[Note: The implementation may perform operating system or underlying API calls that perform memory allocations not using the associated allocator. Invocations of the allocator functions may not introduce data races (See C++ Std, [res.on.data.races]). —end note]
[async.reqmts.async.completion]
When an asynchronous operation completes, the implementation constructs
a zero-argument function object f
to invoke handler with
the results of the operation.
If an asynchonous operation completes immediately (that is, within
the thread of execution calling the initiating function, and before
the initiating function returns), the completion handler shall be submitted
for execution as if by performing ex2.post(std::move(f), alloc2). Otherwise, the completion handler
shall be submitted for execution as if by performing ex2.dispatch(std::move(f), alloc2).
[async.reqmts.async.exceptions]
Completion handlers are permitted to throw exceptions. The effect of any exception propagated from the execution of a completion handler is determined by the executor which is executing the handler.
The library describes a standard set of requirements for executors. A type meeting the Executor requirements embodies a set of rules for determining how submitted function objects are to be executed.
An executor type X shall
satisfy the requirements of CopyConstructible
(C++ Std, [copyconstructible]) and Destructible
(C++ Std, [destructible]) types. No constructor, comparison operator,
copy operation, move operation, swap operation, or member functions
context, on_work_started, and on_work_finished on these types shall
exit via an exception.
The executor copy constructor, comparison operators, and other member functions defined in these requirements shall not introduce data races as a result of concurrent calls to those functions from different threads.
In the table below, X
denotes an executor class, x1
and x2 denote values
of type X, cx1 and cx2
denote (possibly const) values of type X,
mx1 denotes an xvalue
of type X, f denotes a MoveConstructible
(C++ Std, [moveconstructible]) function object callable with zero arguments,
a denotes a value of
type A meeting the Allocator requirements (C++ Std, [allocator.requirements]),
and u denotes an identifier.
Table 3. Executor requirements
|
expression |
type |
assertion/note |
|---|---|---|
|
|
Shall not exit via an exception. | |
|
|
Shall not exit via an exception. | |
|
|
|
Returns |
|
|
|
Same as |
|
|
|
Shall not exit via an exception. |
|
|
Shall not exit via an exception. | |
|
|
Shall not exit via an exception. | |
|
|
Effects: Creates an object | |
|
|
Effects: Creates an object | |
|
|
Effects: Creates an object |
Although the requirements placed on defer
are identical to post,
defer is used to convey
the intention of the caller that the submitted function is a continuation
of the current call context. The executor may use this information to
optimize or otherwise adjust the way in which f
is invoked.
[async.reqmts.executioncontext]
An execution context shall be publicly and unambiguously derived from
execution_context, and
meet the additional requirements listed below.
In the table below, X
denotes an execution context class, and x
denotes an object of type X.
Table 4. ExecutionContext requirements
|
expression |
return type |
assertion/note |
|---|---|---|
|
|
type meeting executor requirements | |
|
|
|
Returns an executor object that is associated with the execution context. |
A class is a service if it is publicly and unambiguously
derived from execution_context::service,
or if it is publicly and unambiguously derived from another service.
For a service S, S::key_type is valid and denotes a type
(C++Std, [temp.deduct]), and is_base_of_v<typename
S::key_type,
S>
is true.
A service defines an explicit constructor that can be invoked with a
single lvalue argument referring to the execution_context
object that will own the service. Any additional constructors shall take
a first lvalue argument referring to the execution_context
object that will own the service. [Note: These constructors
may be called by the make_service
function. —end note]
[Example:
class my_service : public execution_context::service { public: typedef my_service key_type; explicit my_service(execution_context& ctx); my_service(execution_context& ctx, int some_value); private: virtual void shutdown() override; ... };
—end example]
A service's shutdown
member function shall destroy all copies of user-defined function objects
that are held by the service.
A type satisfies the signature requirements if it is a call signature (C++ Std, [func.def]).
The completion_handler_type
class template is a type transformation (C++Std, [meta]) that transforms
a CompletionToken into
a completion handler type that is based on a Signature.
namespace std { namespace experimental { inline namespace network_v1 { template<class CompletionToken, class Signature, class = void> struct completion_handler_type { typedef CompletionToken type; }; } // inline namespace network_v1 } // namespace experimental } // namespace std
The template parameter CompletionToken
shall be an object type. The template parameter Signature
shall be a call signature (C++Std, [func.def]).
Specializations of completion_handler_type
shall define a nested type type
that satisfies the MoveConstructible
requirements. An object of type type
shall be a function object with call signature Signature,
and type shall be constructible
from a rvalue of type CompletionToken.
The template parameter CompletionHandler
is a completion handler type produced by completion_handler_type_t<T, S>
for some completion token type T
and call signature S.
namespace std { namespace experimental { inline namespace network_v1 { template<class CompletionHandler> class async_result { public: typedef void type; explicit async_result(CompletionHandler&) {} async_result(const async_result&) = delete; async_result& operator=(const async_result&) = delete; type get() {} }; } // inline namespace network_v1 } // namespace experimental } // namespace std
Specializations of async_result
shall satisfy the Destructible
requirements (C++Std, [destructible]) in addition to the requirements in
the table below. In this table, R
is a specialization of async_result
for the template parameter CompletionHandler;
r is a modifiable lvalue
of type R; and h is a modifiable lvalue of type CompletionHandler.
Table 5. async_result specialization requirements
|
Expression |
Return type |
Note |
|---|---|---|
|
|
| |
|
| ||
|
|
|
The |
Template parameter CompletionToken
specifies the model used to obtain the result of the asynchronous operation.
Template parameter Signature
is the call signature (C++ Std, [func.def]) for the completion handler
type invoked on completion of the asynchronous operation.
namespace std { namespace experimental { inline namespace network_v1 { template<class CompletionToken, class Signature> struct async_completion { typedef completion_handler_type_t<decay_t<CompletionToken>, Signature> completion_handler_type; explicit async_completion(CompletionToken& t); async_completion(const async_completion&) = delete; async_completion& operator=(const async_completion&) = delete; see below completion_handler; async_result<completion_handler_type> result; }; } // inline namespace network_v1 } // namespace experimental } // namespace std
The template parameter Signature
shall be a call signature (C++Std, [func.def]).
[async.async.completion.members]
explicit async_completion(CompletionToken& t);
Effects: If
CompletionTokenandcompletion_handler_typeare the same type, bindscompletion_handlertot; otherwise, initializescompletion_handlerwith the result offorward<CompletionToken>(t). Initializesresultwithcompletion_handler.
see below completion_handler;
Type:
completion_handler_type&ifCompletionTokenandcompletion_handler_typeare the same type; otherwise,completion_handler_type.
namespace std { namespace experimental { inline namespace network_v1 { template<class T, class ProtoAllocator = allocator<void>> struct associated_allocator { typedef see below type; static type get(const T& t, const ProtoAllocator& a = ProtoAllocator()) noexcept; }; } // inline namespace network_v1 } // namespace experimental } // namespace std
Specializations of associated_allocator
shall satisfy the requirements in the table below. In this table, X is a specialization of associated_allocator for the template
parameters T and ProtoAllocator; t
is a value of (possibly const) T;
and a is an object of type
ProtoAllocator.
Table 6. associated_allocator specialization requirements
|
Expression |
Return type |
Note |
|---|---|---|
|
|
A type meeting the proto-allocator requirements. | |
|
|
|
Shall not exit via an exception. |
|
|
|
Shall not exit via an exception. |
typedef see below type;
Type: If
Thas a nested typeallocator_type,typename T::allocator_type. OtherwiseProtoAllocator.
type get(const T& t, const ProtoAllocator& a = ProtoAllocator()) noexcept;
Returns: If
Thas a nested typeallocator_type,t.get_allocator(). Otherwisea.
template<class T> associated_allocator_t<T> get_associated_allocator(const T& t);
Returns:
associated_allocator<T>::get(t).
template<class T, class ProtoAllocator> associated_allocator_t<T, ProtoAllocator> get_associated_allocator(const T& t, const ProtoAllocator& a);
Returns:
associated_allocator<T, ProtoAllocator>::get(t, a).
Class execution_context
implements an extensible, type-safe, polymorphic set of services, indexed
by service type.
namespace std { namespace experimental { inline namespace network_v1 { class execution_context { public: class service; // construct / copy / destroy: execution_context(); execution_context(const execution_context&) = delete; execution_context& operator=(const execution_context&) = delete; virtual ~execution_context(); // execution context operations: void notify_fork(fork_event e); protected: // execution context protected operations: void shutdown(); void destroy(); }; // service access: template<class Service> typename Service::key_type& use_service(execution_context& ctx); template<class Service, class... Args> Service& make_service(execution_context& ctx, Args&&... args); template<class Service> bool has_service(const execution_context& ctx) noexcept; class service_already_exists : public logic_error { }; } // inline namespace network_v1 } // namespace experimental } // namespace std
Access to the services of an execution_context
is via three function templates, use_service<>, make_service<> and has_service<>.
In a call to use_service<Service>(), the type argument chooses a service.
If the service is not present in an execution_context,
an object of type Service
is created and added to the execution_context.
A program can check if an execution_context
implements a particular service with the function template has_service<Service>().
Service objects may be explicitly added to an execution_context
using the function template make_service<Service>(). If the service is already present,
make_service exits via
an exception of type service_already_exists.
Once a service reference is obtained from an execution_context
object by calling use_service<>, that reference remains usable
until a call to destroy().
execution_context();
Effects: Creates an object of class
execution_contextwhich contains no services. [Note: An implementation might preload service of internal service types for its own use. —end note]
~execution_context();
Effects: Destroys an object of class
execution_context. Performsshutdown()followed bydestroy().
void notify_fork(fork_event e);
Effects: For each service object
svcin the set:
— Ife == fork_event::prepare, performssvc->notify_fork(e)in reverse order of addition to the set.
— Otherwise, performssvc->notify_fork(e)in order of addition to the set.
void shutdown();
Effects: For each service object
svcin theexecution_contextset, in reverse order of addition to the set, performssvc->shutdown(). For each service in the set,svc->shutdown()is called only once irrespective of the number of calls toshutdownon theexecution_context.
void destroy();
[function_effects Destroys each service object in the execution_context
set, and removes it from the set, in reverse order of addition to the
set.
The functions use_service,
make_service, and has_service shall not introduce data
races as a result of concurrent calls to those functions from different
threads.
template<class Service> typename Service::key_type& use_service(execution_context& ctx);
Effects: If an object of type
Service::key_typedoes not already exist in theexecution_contextset identified byctx, creates an object of typeService, initialized asService(ctx), and adds it to the set.
Returns: A reference to the corresponding service of
ctx.
Notes: The reference returned remains valid until a call to
destroy.
template<class Service, class... Args> Service& make_service(execution_context& ctx, Args&&... args);
Requires: A service object of type
Service::key_typedoes not already exist in theexecution_contextset identified byctx.
Effects: Creates an object of type
Service, initialized asService(ctx, forward<Args>(args)...), and adds it to theexecution_contextset identified byctx.
Throws:
service_already_existsif a corresponding service object of typeKeyis already present in the set.
Notes: The reference returned remains valid until a call to
destroy.
template<class Service> bool has_service(const execution_context& ctx) noexcept;
Returns:
trueif an object of typeService::key_typeis present inctx, otherwisefalse.
namespace std { namespace experimental { inline namespace network_v1 { class execution_context::service { protected: // construct / copy / destroy: explicit service(execution_context& owner); service(const service&) = delete; service& operator=(const service&) = delete; virtual ~service(); // service observers: execution_context& context() noexcept; private: // service operations: virtual void shutdown() = 0; virtual void notify_fork(fork_event e) {} execution_context& context_; // exposition only }; } // inline namespace network_v1 } // namespace experimental } // namespace std
explicit service(execution_context& owner);
Postconditions:
std::addressof(context_) == std::addressof(owner).
execution_context& context() noexcept;
Returns:
context_.
namespace std { namespace experimental { inline namespace network_v1 { template<class T> struct is_executor : false_type {}; } // inline namespace network_v1 } // namespace experimental } // namespace std
is_executor can be used
to detect executor types satisfying the Executor
type requirements.
Instantiations of the is_executor
template shall meet the UnaryTypeTrait requirements (C++ Std, [meta.rqmts]).
A program may specialize this template for a user-defined type T to have a BaseCharacteristic of integral_constant<int, N> with N
> 0 to indicate that T
should be treated as an executor type.
namespace std { namespace experimental { inline namespace network_v1 { struct executor_arg_t { }; constexpr executor_arg_t executor_arg = executor_arg_t(); } // inline namespace network_v1 } // namespace experimental } // namespace std
The executor_arg_t struct
is an empty structure type used as a unique type to disambiguate constructor
and function overloading. Specifically, types may have constructors with
executor_arg_t as the first
argument, immediately followed by an argument of a type that satisfies
the Executor requirements.
namespace std { namespace experimental { inline namespace network_v1 { template<class T, class Executor> struct uses_executor; } // inline namespace network_v1 } // namespace experimental } // namespace std
Remark: Detects whether T
has a nested executor_type
that is convertible from Executor.
Meets the BinaryTypeTrait
requirements (C++ Std, [meta.rqmts]). The implementation shall provide
a definition that is derived from true_type
if a type T::executor_type exists and is_convertible<Executor,
T::executor_type>::value !=
false, otherwise it shall be derived
from false_type. A program
may specialize this template to derive from true_type
for a user-defined type T
that does not have a nested executor_type
but nonetheless can be constructed with an executor if the first argument
of a constructor has type executor_arg_t
and the second argument has type Executor.
Uses-executor construction with executor Executor refers to the construction
of an object obj of type
T, using constructor
arguments v1,
v2,
..., vN
of types V1,
V2,
..., VN,
respectively, and an executor ex
of type Executor, according
to the following rules:
— if uses_executor<T, Executor>::value is true
and is_constructible<T, executor_arg_t, Executor, V1, V2, ..., VN>::value is true,
then obj is initialized
as obj(executor_arg,
ex,
v1,
v2,
..., vN);
— otherwise, obj is initialized
as obj(v1, v2, ..., vN).
namespace std { namespace experimental { inline namespace network_v1 { template<class T, class Executor = system_executor> struct associated_executor { typedef see below type; static type get(const T& t, const Executor& e = Executor()) noexcept; }; } // inline namespace network_v1 } // namespace experimental } // namespace std
A program may specialize this traits type if the T
template parameter in the specialization is a user-defined type. The template
parameter Executor shall
be a type meeting Executor requirements.
Specializations of associated_executor
shall satisfy the requirements in the table below. In this table, X is a specialization of associated_executor for the template
parameter T; t is a const reference to an object of
type T; and e is an object of type Executor.
Table 7. associated_executor specialization requirements
|
Expression |
Return type |
Note |
|---|---|---|
|
|
A type meeting Executor requirements. | |
|
|
|
Shall not exit via an exception. |
|
|
|
Shall not exit via an exception. |
typedef see below type;
Type: If
Thas a nested typeexecutor_type,typename T::executor_type. OtherwiseExecutor.
type get(const T& t, const Executor& e = Executor()) noexcept;
Returns: If
Thas a nested typeexecutor_type,t.get_executor(). Otherwisee.
template<class T> associated_executor_t<T> get_associated_executor(const T& t);
Returns:
associated_executor<T>::get(t).
template<class T, class Executor> associated_executor_t<T, Executor> get_associated_executor(const T& t, const Executor& ex);
Returns:
associated_executor<T, Executor>::get(t, ex).
Remarks: This function shall not participate in overload resolution unless
is_executor<Executor>::valueistrue.
template<class T, class ExecutionContext> associated_executor_t<T, typename ExecutionContext::executor_type> get_associated_executor(const T& t, ExecutionContext& ctx);
Returns:
get_associated_executor(t, ctx.get_executor()).
Remarks: This function shall not participate in overload resolution unless
is_convertible<ExecutionContext&, execution_context&>::valueistrue.
executor_wrapper<T, Executor> is a wrapper around an object or function
of type T, and an executor
object of type Executor
satisfying Executor requirements.
namespace std { namespace experimental { inline namespace network_v1 { template<class T, class Executor> class executor_wrapper { public: // types: typedef T wrapped_type; typedef Executor executor_type; // construct / copy / destroy: executor_wrapper(T t, const Executor& ex); executor_wrapper(const executor_wrapper& other) = default; executor_wrapper(executor_wrapper&& other) = default; template<class U, class OtherExecutor> executor_wrapper(const executor_wrapper<U, OtherExecutor>& other); template<class U, class OtherExecutor> executor_wrapper(executor_wrapper<U, OtherExecutor>&& other); template<class U, class OtherExecutor> executor_wrapper(executor_arg_t, const Executor& ex, const executor_wrapper<U, OtherExecutor>& other); template<class U, class OtherExecutor> executor_wrapper(executor_arg_t, const Executor& ex, executor_wrapper<U, OtherExecutor>&& other); ~executor_wrapper(); // executor wrapper access: T& unwrap() noexcept; const T& unwrap() const noexcept; executor_type get_executor() const noexcept; // executor wrapper invocation: template<class... Args> result_of_t<T&(Args&&...)> operator()(Args&&... args); template<class... Args> result_of_t<const T&(Args&&...)> operator()(Args&&... args) const; private: Executor ex_; // exposition only T wrapped_; // exposition only }; template<class T, class Executor, class Signature> struct completion_handler_type<executor_wrapper<T, Executor>, Signature> { typedef executor_wrapper<completion_handler_type_t<T, Signature>, Executor> type; }; template<class T, class Executor> class async_result<executor_wrapper<T, Executor>>; template<class T, class Executor, class ProtoAllocator> struct associated_allocator<executor_wrapper<T, Executor>, ProtoAllocator>; template<class T, class Executor, class Executor1> struct associated_executor<executor_wrapper<T, Executor>, Executor1>; } // inline namespace network_v1 } // namespace experimental } // namespace std
executor_wrapper(T t, const Executor& ex);
Effects: Constructs an object of type
executor_wrapper<T, Executor>. Initializesex_with the valueex. Initializeswrapped_by performing uses-executor construction, using the constructor argumentstd::move(t)and the executorex_.
template<class U, class OtherExecutor> executor_wrapper(const executor_wrapper<U, OtherExecutor>& other);
Requires: If
Uis not convertible toT, or ifOtherExecutoris not convertible toExecutor, the program is ill-formed.
Effects: Constructs an object of type
executor_wrapper<T, Executor>. Initializesex_withother.get_executor(). Initializeswrapped_by performing uses-executor construction, using the constructor argumentother.unwrap()and the executorex_.
template<class U, class OtherExecutor> executor_wrapper(executor_wrapper<U, OtherExecutor>&& other);
Requires: If
Uis not convertible toT, or ifOtherExecutoris not convertible toExecutor, the program is ill-formed.
Effects: Constructs an object of type
executor_wrapper<T, Executor>. Initializesex_withother.get_executor(). Initializeswrapped_by performing uses-executor construction, using the constructor argumentstd::move(other.unwrap())and the executorex_.
template<class U, class OtherExecutor> executor_wrapper(executor_arg_t, const Executor& ex, const executor_wrapper<U, OtherExecutor>& other);
Requires: If
Uis not convertible toTthe program is ill-formed.
Effects: Constructs an object of type
executor_wrapper<T, Executor>. Initializesex_withex. Initializeswrapped_by performing uses-executor construction, using the constructor argumentother.unwrap()and the executorex_.
template<class U, class OtherExecutor> executor_wrapper(executor_arg_t, const Executor& ex, executor_wrapper<U, OtherExecutor>&& other);
Requires:
UisTor convertible toT.
Effects: Constructs an object of type
executor_wrapper<T, Executor>. Initializesex_withex. Initializeswrapped_by performing uses-executor construction, using the constructor argumentstd::move(other.unwrap())and the executorex_.
T& unwrap() noexcept; const T& unwrap() const noexcept;
Returns:
wrapped_.
executor_type get_executor() const noexcept;
Returns:
executor_.
[async.exec.wrapper.invocation]
template<class... Args> result_of_t<T&(Args&&...)> operator()(Args&&... args); template<class... Args> result_of_t<const T&(Args&&...)> operator()(Args&&... args) const;
Returns:
INVOKE(unwrap(), forward<Args>(args)...)(C++ Std, [func.require]).
[async.exec.wrapper.async.result]
namespace std { namespace experimental { inline namespace network_v1 { template<class T, class Executor> class async_result<executor_wrapper<T, Executor>> { public: typedef typename async_result<T>::type type; explicit async_result(executor_wrapper<T, Executor>& wrapper); async_result(const async_result&) = delete; async_result& operator=(const async_result&) = delete; type get(); private: async_result<T> wrapped_; // exposition only }; } // inline namespace network_v1 } // namespace experimental } // namespace std explicit async_result(executor_wrapper<T, Executor>& wrapper);
Effects: Initializes
wrapped_aswrapped_(wrapper.unwrap()).
type get();
Returns:
wrapped_.get().
[async.exec.wrapper.assoc.alloc]
namespace std { namespace experimental { inline namespace network_v1 { template<class T, class Executor, class ProtoAllocator> struct associated_allocator<executor_wrapper<T, Executor>, ProtoAllocator> { typedef associated_allocator_t<T, ProtoAllocator> type; static type get(const executor_wrapper<T, Executor>& w, const ProtoAllocator& a = ProtoAllocator()) noexcept; }; } // inline namespace network_v1 } // namespace experimental } // namespace std static type get(const executor_wrapper<T, Executor>& w, const ProtoAllocator& a = ProtoAllocator()) noexcept;
Returns:
associated_allocator<T, ProtoAllocator>::get(w.unwrap(), a).
[async.exec.wrapper.assoc.exec]
namespace std { namespace experimental { inline namespace network_v1 { template<class T, class Executor, class Executor1> struct associated_executor<executor_wrapper<T, Executor>, Executor1> { typedef Executor type; static type get(const executor_wrapper<T, Executor>& w, const Executor1& e = Executor1()) noexcept; }; } // inline namespace network_v1 } // namespace experimental } // namespace std static type get(const executor_wrapper<T, Executor>& w, const Executor1& e = Executor1()) noexcept;
Returns:
w.get_executor().
template<class Executor, class T> executor_wrapper<decay_t<T>, Executor> wrap(const Executor& ex, T&& t);
Returns:
executor_wrapper<decay_t<T>, Executor>(forward<T>(t), ex).
Remarks: This function shall not participate in overload resolution unless
is_executor<Executor>::valueistrue.
template<class ExecutionContext, class CompletionToken> executor_wrapper<decay_t<T>, typename ExecutionContext::executor_type> wrap(ExecutionContext& ctx, T&& t);
Returns:
wrap(ctx.get_executor(), forward<T>(t)).
Remarks: This function shall not participate in overload resolution unless
is_convertible<ExecutionContext&, execution_context&>::valueistrue.
namespace std { namespace experimental { inline namespace network_v1 { template<class Executor> class executor_work { public: // types: typedef Executor executor_type; // construct / copy / destroy: explicit executor_work(const executor_type& ex) noexcept; executor_work(const executor_work& other) noexcept; executor_work(executor_work&& other) noexcept; executor_work& operator=(const executor_work&) = delete; ~executor_work(); // executor work observers: executor_type get_executor() const noexcept; bool owns_work() const noexcept; // executor work modifiers: void reset() noexcept; private: Executor ex_; // exposition only bool owns_; // exposition only }; } // inline namespace network_v1 } // namespace experimental } // namespace std
explicit executor_work(const executor_type& ex) noexcept;
Effects: Constructs an object of class
executor_work, initializingex_withex, and then performingex_.on_work_started().
Postconditions:
ex == ex_andowns_ == true.
executor_work(const executor_work& other) noexcept;
Effects: Constructs an object of class
executor_work, initializingex_withother.ex_. Ifother.owns_ == true, performsex_.on_work_started().
Postconditions:
ex_ == other.ex_andowns_ == other.owns_.
executor_work(executor_work&& other) noexcept;
Effects: Constructs an object of class
executor_work, initializingex_withstd::move(other.ex_)andowns_withother.owns_, and setsother.owns_tofalse.
~executor_work();
Effects: If
owns_istrue, performsex_.on_work_finished().
executor_type get_executor() const noexcept;
Returns:
ex_.
bool owns_work() const noexcept;
Returns:
owns_.
void reset() noexcept;
Effects: If
owns_istrue, performsex_.on_work_finished().
Postconditions:
owns_ == false.
template<class Executor> executor_work<Executor> make_work(const Executor& ex);
Returns:
executor_work<Executor>(ex).
Remarks: This function shall not participate in overload resolution unless
is_executor<Executor>::valueistrue.
template<class ExecutionContext> executor_work<typename ExecutionContext::executor_type> make_work(ExecutionContext& ctx);
Returns: An object of type
executor_work<typename ExecutionContext::executor_type>initialized with the result ofctx.get_executor().
Remarks: This function shall not participate in overload resolution unless
is_convertible<ExecutionContext&, execution_context&>::valueistrue.
template<class T> executor_work<associated_executor_t<T>> make_work(const T& t);
Returns: An object of type
executor_work<associated_executor_t<T>>initialized with the result ofassociated_executor<T>::get(t).
Remarks: This function shall not participate in overload resolution unless
is_executor<T>::valueisfalseandis_convertible<T&, execution_context&>::valueisfalse.
template<class T, class Executor> executor_work<associated_executor_t<T, Executor>> make_work(const T& t, const Executor& ex);
Returns: An object of type
executor_work<associated_executor_t<T, Executor>>initialized with the result ofassociated_executor<T, Executor>::get(t, ex).
Remarks: This function shall not participate in overload resolution unless
is_executor<Executor>::valueistrue.
template<class T, class ExecutionContext> executor_work<associated_executor_t<T, typename ExecutionContext::executor_type>> make_work(const T& t, ExecutionContext& ctx);
Returns: An object of type
executor_work<associated_executor_t<T, typename ExecutionContext::executor_type>>initialized with the result ofassociated_executor<T, typename ExecutionContext::executor_type>::get(t, ctx.get_executor()).
Remarks: This function shall not participate in overload resolution unless
is_convertible<ExecutionContext&, execution_context&>::valueistrue.
Class system_executor represents
a set of rules where function objects are permitted to execute on any thread.
namespace std { namespace experimental { inline namespace network_v1 { class system_executor { public: // constructors: system_executor() {} // executor operations: execution_context& context() noexcept; void on_work_started() noexcept {} void on_work_finished() noexcept {} template<class Func, class ProtoAllocator> void dispatch(Func&& f, const ProtoAllocator& a); template<class Func, class ProtoAllocator> void post(Func&& f, const ProtoAllocator& a); template<class Func, class ProtoAllocator> void defer(Func&& f, const ProtoAllocator& a); }; bool operator==(const system_executor&, const system_executor&) noexcept; bool operator!=(const system_executor&, const system_executor&) noexcept; } // inline namespace network_v1 } // namespace experimental } // namespace std
Class system_executor satisfies
the Executor requirements.
To satisfy the executor requirements for the post
and defer member functions,
the system executor may create thread
objects to run the submitted function objects. If the program is terminated
by any means, and there remain unexecuted functions objects that have been
submitted using post or
defer, these function objects
are discarded without calling them.
execution_context& context() noexcept;
Returns: A reference to an object with static storage duration whose type is derived from
execution_context.
template<class Func, class ProtoAllocator> void dispatch(Func&& f, const ProtoAllocator& a);
Effects: Equivalent to
DECAY_COPY(forward<Func>(f))().
template<class Func, class ProtoAllocator> void post(Func&& f, const ProtoAllocator& a); template<class Func, class ProtoAllocator> void defer(Func&& f, const ProtoAllocator& a);
Effects: Creates an object
f1initialized withDECAY_COPY(forward<Func>(f)), and callsf1as if in a thread of execution represented by athreadobject. Any exception propagated from the execution ofDECAY_COPY(forward<Func>(f))()shall result in a call tostd::terminate.
[async.system.exec.comparisons]
bool operator==(const system_executor&, const system_executor&) noexcept;
Returns:
true.
bool operator!=(const system_executor&, const system_executor&) noexcept;
Returns:
false.
An exception of type bad_executor
is thrown by executor member
functions dispatch, post, and defer
when the executor object has no target.
namespace std { namespace experimental { inline namespace network_v1 { class bad_executor : public exception { public: // constructor: bad_executor() noexcept; }; } // inline namespace network_v1 } // namespace experimental } // namespace std bad_executor() noexcept;
Effects: constructs a
bad_executorobject.
Postconditions:
what()returns an implementation-defined NTBS.
The executor class provides
a polymorphic wrapper for types that satisfy the Executor
requirements.
namespace std { namespace experimental { inline namespace network_v1 { class executor { public: // construct / copy / destroy: executor() noexcept; executor(nullptr_t) noexcept; executor(const executor& e) noexcept; executor(executor&& e) noexcept; template<class Executor> executor(Executor e); template<class Executor, class ProtoAllocator> executor(allocator_arg_t, const ProtoAllocator& a, Executor e); executor& operator=(const executor& e) noexcept; executor& operator=(executor&& e) noexcept; executor& operator=(nullptr_t) noexcept; template<class Executor> executor& operator=(Executor e); ~executor(); // executor modifiers: void swap(executor& other) noexcept; template<class Executor, class ProtoAllocator> void assign(Executor e, const ProtoAllocator& a); // executor operations: execution_context& context() noexcept; void on_work_started() noexcept; void on_work_finished() noexcept; template<class Func, class ProtoAllocator> void dispatch(Func&& f, const ProtoAllocator& a); template<class Func, class ProtoAllocator> void post(Func&& f, const ProtoAllocator& a); template<class Func, class ProtoAllocator> void defer(Func&& f, const ProtoAllocator& a); // executor capacity: explicit operator bool() const noexcept; // executor target access: const type_info& target_type() const noexcept; template<class Executor> Executor* target() noexcept; template<class Executor> const Executor* target() const noexcept; }; template<> struct is_executor<executor> : true_type {}; // executor comparisons: bool operator==(const executor& a, const executor& b) noexcept; bool operator==(const executor& e, nullptr_t) noexcept; bool operator==(nullptr_t, const executor& e) noexcept; bool operator!=(const executor& a, const executor& b) noexcept; bool operator!=(const executor& e, nullptr_t) noexcept; bool operator!=(nullptr_t, const executor& e) noexcept; // executor specialized algorithms: void swap(executor& a, executor& b) noexcept; } // inline namespace network_v1 } // namespace experimental template<class Allocator> struct uses_allocator<experimental::network_v1::executor, Allocator> : true_type {}; } // namespace std
The target is the executor object that is held by
the wrapper. The executor
type itself meets the requirements for an Executor.
[Note: To meet the noexcept
requirements for executor copy constructors and move constructors, implementations
may share a target between two or more executor
objects. —end note]
executor() noexcept;
Postconditions:
!*this.
executor(nullptr_t) noexcept;
Postconditions:
!*this.
executor(const executor& e) noexcept;
Postconditions:
!*thisif!e; otherwise,*thistargetse.target()or a copy ofe.target().
executor(executor&& e) noexcept;
Effects: If
!e,*thishas no target; otherwise, movese.target()or move-constructs the target ofeinto the target of*this, leavingein a valid state with an unspecified value.
template<class Executor> executor(Executor e);
Effects:
*thistargets a copy ofeinitialized withstd::move(e).
template<class Executor, class ProtoAllocator> executor(allocator_arg_t, const ProtoAllocator& a, Executor e);
Effects:
*thistargets a copy ofeinitialized withstd::move(e).
A copy of the allocator argument is used to allocate memory, if necessary, for the internal data structures of the constructed
executorobject.
executor& operator=(const executor& e) noexcept;
Effects:
executor(e).swap(*this).
Returns:
*this.
executor& operator=(executor&& e) noexcept;
Effects: Replaces the target of
*thiswith the target ofe, leavingein a valid state with an unspecified value.
Returns:
*this.
executor& operator=(nullptr_t) noexcept;
Effects:
executor(nullptr).swap(*this).
Returns:
*this.
template<class Executor> executor& operator=(Executor e);
Effects:
executor(std::move(e)).swap(*this).
Returns:
*this.
~executor();
Effects: If
*this != nullptr, releases shared ownership of, or destroys, the target of*this.
void swap(executor& other) noexcept;
Effects: Interchanges the targets of
*thisandother.
template<class Executor, class ProtoAllocator> void assign(Executor e, const ProtoAllocator& a);
Effects:
executor(allocator_arg, a, std::move(e)).swap(*this).
execution_context& context() noexcept;
Requires:
*this != nullptr.
Returns:
e.context(), whereeis the target object of*this.
void on_work_started() noexcept;
Requires:
*this != nullptr.
Effects:
e.on_work_started(), whereeis the target object of*this.
void on_work_finished() noexcept;
Requires:
*this != nullptr.
Effects:
e.on_work_finished(), whereeis the target object of*this.
template<class Func, class ProtoAllocator> void dispatch(Func&& f, const ProtoAllocator& a);
Effects:
e.dispatch(g, a), whereeis the target object of*this, andgis a function object of unspecified type that, when called asg(), performsDECAY_COPY(f)().
template<class Func, class ProtoAllocator> void post(Func&& f, const ProtoAllocator& a);
Effects:
e.post(g, a), whereeis the target object of*this, andgis a function object of unspecified type that, when called asg(), performsDECAY_COPY(f)().
template<class Func, class ProtoAllocator> void defer(Func&& f, const ProtoAllocator& a);
Effects:
e.defer(g, a), whereeis the target object of*this, andgis a function object of unspecified type that, when called asg(), performsDECAY_COPY(f)().
explicit operator bool() const noexcept;
Returns:
trueif*thishas a target, otherwisefalse.
const type_info& target_type() const noexcept;
Returns: If
*thishas a target of typeT,typeid(T); otherwise,typeid(void).
template<class Executor> Executor* target() noexcept; template<class Executor> const Executor* target() const noexcept;
Returns: If
target_type() == typeid(Executor)a pointer to the stored executor target; otherwise a null pointer value.
bool operator==(const executor& a, const executor& b) noexcept;
Returns:
—trueif!aand!b;
—trueifaandbshare a target;
—trueifeandfare the same type ande == f, whereeis the target ofaandfis the target ofb;
— otherwisefalse.
bool operator==(const executor& e, nullptr_t) noexcept; bool operator==(nullptr_t, const executor& e) noexcept;
Returns:
!e.
bool operator!=(const executor& a, const executor& b) noexcept;
Returns:
!(a == b).
bool operator!=(const executor& e, nullptr_t) noexcept; bool operator!=(nullptr_t, const executor& e) noexcept;
Returns:
(bool) e.
void swap(executor& a, executor& b) noexcept;
Effects:
a.swap(b).
template<class CompletionToken> DEDUCED dispatch(CompletionToken&& token);
Let the type
CompletionHandlerbe the completion handler type determined by performingcompletion_handler_type_t<CompletionToken, void()>.
Requires: The type
CompletionHandlermust satisfy theMoveConstructiblerequirements (C++ Std, [moveconstructible]) and be callable with zero arguments.
Effects:
— Constructs a function objectcompletion_handlerof typeCompletionHandler, initialized ascompletion_handler(forward<CompletionToken>(token)).
— Constructs an objectresultof typeasync_result<CompletionHandler>, initializing the object asresult(completion_handler).
— Obtains the completion handler's associated executor objectexby performingget_associated_executor(completion_handler).
— Obtains the completion handler's associated allocator objectallocby performingget_associated_allocator(completion_handler).
— Performsex.dispatch(std::move(completion_handler), alloc).
Returns:
result.get().
template<class Executor, class CompletionToken> DEDUCED dispatch(const Executor& ex, CompletionToken&& token);
Let the type
CompletionHandlerbe the completion handler type determined by performingcompletion_handler_type_t<CompletionToken, void()>.
Requires: The type
CompletionHandlermust satisfy theMoveConstructiblerequirements (C++ Std, [moveconstructible]) and be callable with zero arguments.
Effects:
— Constructs a function objectcompletion_handlerof typeCompletionHandler, initialized ascompletion_handler(forward<CompletionToken>(token)).
— Constructs an objectresultof typeasync_result<CompletionHandler>, initializing the object asresult(completion_handler).
— Obtains the completion handler's associated executor objectex1by performingget_associated_executor(completion_handler).
— Creates a work objectwby performingmake_work(ex1).
— Obtains the completion handler's associated allocator objectallocby performingget_associated_allocator(completion_handler).
— Constructs a function objectfwith a function call operator that performsex1.dispatch(std::move(completion_handler), alloc)followed byw.reset().
— Performsex.dispatch(std::move(f), alloc).
Returns:
result.get().
Remarks: This function shall not participate in overload resolution unless
is_executor<Executor>::valueistrue.
template<class ExecutionContext, class CompletionToken> DEDUCED dispatch(ExecutionContext& ctx, CompletionToken&& token);
Returns:
std::experimental::dispatch(ctx.get_executor(), forward<CompletionToken>(token)).
Remarks: This function shall not participate in overload resolution unless
is_convertible<ExecutionContext&, execution_context&>::valueistrue.
template<class CompletionToken> DEDUCED post(CompletionToken&& token);
Let the type
CompletionHandlerbe the completion handler type determined by performingcompletion_handler_type_t<CompletionToken, void()>.
Requires: The type
CompletionHandlermust satisfy theMoveConstructiblerequirements (C++ Std, [moveconstructible]) and be callable with zero arguments.
Effects:
— Constructs a function objectcompletion_handlerof typeCompletionHandler, initialized ascompletion_handler(forward<CompletionToken>(token)).
— Constructs an objectresultof typeasync_result<CompletionHandler>, initializing the object asresult(completion_handler).
— Obtains the completion handler's associated executor objectexby performingget_associated_executor(completion_handler).
— Obtains the completion handler's associated allocator objectallocby performingget_associated_allocator(completion_handler).
— Performsex.post(std::move(completion_handler), alloc).
Returns:
result.get().
template<class Executor, class CompletionToken> DEDUCED post(const Executor& ex, CompletionToken&& token);
Let the type
CompletionHandlerbe the completion handler type determined by performingcompletion_handler_type_t<CompletionToken, void()>.
Requires: The type
CompletionHandlermust satisfy theMoveConstructiblerequirements (C++ Std, [moveconstructible]) and be callable with zero arguments.
Effects:
— Constructs a function objectcompletion_handlerof typeCompletionHandler, initialized ascompletion_handler(forward<CompletionToken>(token)).
— Constructs an objectresultof typeasync_result<CompletionHandler>, initializing the object asresult(completion_handler).
— Obtains the completion handler's associated executor objectex1by performingget_associated_executor(completion_handler).
— Creates a work objectwby performingmake_work(ex1).
— Obtains the completion handler's associated allocator objectallocby performingget_associated_allocator(completion_handler).
— Constructs a function objectfwith a function call operator that performsex1.dispatch(std::move(completion_handler), alloc)followed byw.reset().
— Performsex.post(std::move(f), alloc).
Returns:
result.get().
Remarks: This function shall not participate in overload resolution unless
is_executor<Executor>::valueistrue.
template<class ExecutionContext, class CompletionToken> DEDUCED post(ExecutionContext& ctx, CompletionToken&& token);
Returns:
std::experimental::post(ctx.get_executor(), forward<CompletionToken>(token)).
Remarks: This function shall not participate in overload resolution unless
is_convertible<ExecutionContext&, execution_context&>::valueistrue.
template<class CompletionToken> DEDUCED defer(CompletionToken&& token);
Let the type
CompletionHandlerbe the completion handler type determined by performingcompletion_handler_type_t<CompletionToken, void()>.
Requires: The type
CompletionHandlermust satisfy theMoveConstructiblerequirements (C++ Std, [moveconstructible]) and be callable with zero arguments.
Effects:
— Constructs a function objectcompletion_handlerof typeCompletionHandler, initialized ascompletion_handler(forward<CompletionToken>(token)).
— Constructs an objectresultof typeasync_result<CompletionHandler>, initializing the object asresult(completion_handler).
— Obtains the completion handler's associated executor objectexby performingget_associated_executor(completion_handler).
— Obtains the completion handler's associated allocator objectallocby performingget_associated_allocator(completion_handler).
— Performsex.defer(std::move(completion_handler), alloc).
Returns:
result.get().
template<class Executor, class CompletionToken> DEDUCED defer(const Executor& ex, CompletionToken&& token);
Let the type
CompletionHandlerbe the completion handler type determined by performingcompletion_handler_type_t<CompletionToken, void()>.
Requires: The type
CompletionHandlermust satisfy theMoveConstructiblerequirements (C++ Std, [moveconstructible]) and be callable with zero arguments.
Effects:
— Constructs a function objectcompletion_handlerof typeCompletionHandler, initialized ascompletion_handler(forward<CompletionToken>(token)).
— Constructs an objectresultof typeasync_result<CompletionHandler>, initializing the object asresult(completion_handler).
— Obtains the completion handler's associated executor objectex1by performingget_associated_executor(completion_handler).
— Creates a work objectwby performingmake_work(ex1).
— Obtains the completion handler's associated allocator objectallocby performingget_associated_allocator(completion_handler).
— Constructs a function objectfwith a function call operator that performsex1.dispatch(std::move(completion_handler), alloc)followed byw.reset().
— Performsex.defer(std::move(f), alloc).
Returns:
result.get().
Remarks: This function shall not participate in overload resolution unless
is_executor<Executor>::valueistrue.
template<class ExecutionContext, class CompletionToken> DEDUCED defer(ExecutionContext& ctx, CompletionToken&& token);
Returns:
std::experimental::defer(ctx.get_executor(), forward<CompletionToken>(token)).
Remarks: This function shall not participate in overload resolution unless
is_convertible<ExecutionContext&, execution_context&>::valueistrue.
The class template strand
is a wrapper around an object of type Executor
satisfying the Executor requirements.
namespace std { namespace experimental { inline namespace network_v1 { template<class Executor> class strand { public: // types: typedef Executor inner_executor_type; // construct / copy / destroy: strand(); explicit strand(Executor ex); strand(const strand& other) noexcept; strand(strand&& other) noexcept; template<class OtherExecutor> strand(const strand<OtherExecutor>& other) noexcept; template<class OtherExecutor> strand(strand<OtherExecutor>&& other) noexcept; strand& operator=(const strand& other) noexcept; strand& operator=(strand&& other) noexcept; template<class OtherExecutor> strand& operator=(const strand<OtherExecutor>& other) noexcept; template<class OtherExecutor> strand& operator=(strand<OtherExecutor>&& other) noexcept; ~strand(); // strand operations: inner_executor_type get_inner_executor() const noexcept; bool running_in_this_thread() const noexcept; execution_context& context() noexcept; void on_work_started() noexcept; void on_work_finished() noexcept; template<class Func, class ProtoAllocator> void dispatch(Func&& f, const ProtoAllocator& a); template<class Func, class ProtoAllocator> void post(Func&& f, const ProtoAllocator& a); template<class Func, class ProtoAllocator> void defer(Func&& f, const ProtoAllocator& a); private: Executor inner_ex_; // exposition only }; bool operator==(const strand<Executor>& a, const strand<Executor>& b); bool operator!=(const strand<Executor>& a, const strand<Executor>& b); } // inline namespace network_v1 } // namespace experimental } // namespace std
strand<Executor>
satisfies the Executor requirements.
A strand provides guarantees of ordering and non-concurrency. Given:
— strand objects s1 and
s2 such that s1 == s2
— a function object f1 added
to the strand s1 using
post or defer,
or using dispatch when
s1.running_in_this_thread()
== false
— a function object f2 added
to the strand s2 using
post or defer,
or using dispatch when
s2.running_in_this_thread()
== false
then the implementation invokes f1
and f2 such that:
— the invocation of f1 is
not concurrent with the invocation of f2
— the invocation of f1 synchronizes
with the invocation of f2.
Furthermore, if the addition of f1
happens before the addition of f2,
then the invocation of f1
happens before the invocation of f2.
All member functions, except for the assignment operators and the destructor,
do not introduce data races on *this, including its ordered, non-concurrent
state. Additionally, constructors and assignment operators do not introduce
data races on lvalue arguments.
If any function f executed
by the strand throws an exception, the subsequent strand state is as if
f had exited without throwing
an exception.
strand();
Effects: Constructs an object of class
strand<Executor>that represents a unique ordered, non-concurrent state. Initializesinner_ex_withinner_ex_().
Remarks: This overload shall not participate in overload resolution unless
Executorsatisfies theDefaultConstructiblerequirements (C++ Std, [defaultconstructible]).
explicit strand(Executor ex);
Effects: Constructs an object of class
strand<Executor>that represents a unique ordered, non-concurrent state. Initializesinner_ex_asinner_ex_(ex).
strand(const strand& other) noexcept;
Effects: Constructs an object of class
strand<Executor>. Initializesinner_ex_asinner_ex_(other.inner_ex_).
Postconditions:
—*this == other
—get_inner_executor() == other.get_inner_executor()
strand(strand&& other) noexcept;
Effects: Constructs an object of class
strand<Executor>. Initializesinner_ex_withinner_ex_(std::move(other.inner_ex_)).
Postconditions:
—*thisis equal to the prior value ofother
—get_inner_executor() == other.get_inner_executor()
template<class OtherExecutor> strand(const strand<OtherExecutor>& other) noexcept;
Requires:
OtherExecutoris convertible toExecutor.
Effects: Constructs an object of class
strand<Executor>. Initializesinner_ex_withinner_ex_(other.inner_ex_).
Postconditions:
*this == other.
template<class OtherExecutor> strand(strand<OtherExecutor>&& other) noexcept;
Requires:
OtherExecutoris convertible toExecutor.
Effects: Constructs an object of class
strand<Executor>. Initializesinner_ex_withinner_ex_(std::move(other.inner_ex_)).
Postconditions:
*thisis equal to the prior value ofother.
strand& operator=(const strand& other) noexcept;
Requires:
ExecutorisAssignable(C++ Std [assignable]).
Postconditions:
—*this == other
—get_inner_executor() == other.get_inner_executor()
Returns:
*this.
strand& operator=(strand&& other) noexcept;
Requires:
ExecutorisAssignable(C++ Std [assignable]).
Postconditions:
—*thisis equal to the prior value ofother
—get_inner_executor() == other.get_inner_executor()
Returns:
*this.
template<class OtherExecutor> strand& operator=(const strand<OtherExecutor>& other) noexcept;
Requires:
OtherExecutoris convertible toExecutor.ExecutorisAssignable(C++ Std [assignable]).
Effects: Assigns
other.inner_ex_toinner_ex_.
Postconditions:
*this == other.
Returns:
*this.
template<class OtherExecutor> strand& operator=(strand<OtherExecutor>&& other) noexcept;
Requires:
OtherExecutoris convertible toExecutor.ExecutorisAssignable(C++ Std [assignable]).
Effects: Assigns
std::move(other.inner_ex_)toinner_ex_.
Postconditions:
*thisis equal to the prior value ofother.
Returns:
*this.
~strand();
Effects: Destroys an object of class
strand<Executor>. After this destructor completes, objects that were added to the strand but have not yet been executed will be executed in a way that meets the guarantees of ordering and non-concurrency.
inner_executor_type get_inner_executor() const noexcept;
Returns:
inner_ex_.
bool running_in_this_thread() const noexcept;
Returns:
trueif the current thread of execution is running a function that was submitted to the strand, or to any other strand objectssuch thats == *this, usingdispatch,postordefer; otherwisefalse. [Note: That is, the current thread of execution's call chain includes a function that was submitted to the strand. —end note]
execution_context& context() noexcept;
Returns:
inner_ex_.context().
void on_work_started() noexcept;
Effects: Calls
inner_ex_.on_work_started().
void on_work_finished() noexcept;
Effects: Calls
inner_ex_.on_work_finished().
template<class Func, class ProtoAllocator> void dispatch(Func&& f, const ProtoAllocator& a);
Effects: If
running_in_this_thread() == true, callsDECAY_COPY(forward<Func>(f))(). [Note: Iffexits via an exception, the exception propagates to the caller ofdispatch(). —end note] Otherwise, requests invocation off, as if by forwarding the function objectfand allocatorato the executorinner_ex_, such that the guarantees of ordering and non-concurrency are met.
template<class Func, class ProtoAllocator> void post(Func&& f, const ProtoAllocator& a);
Effects: Requests invocation of
f, as if by forwarding the function objectfand allocatorato the executorinner_ex_, such that the guarantees of ordering and non-concurrency are met.
template<class Func, class ProtoAllocator> void defer(Func&& f, const ProtoAllocator& a);
Effects: Requests invocation of
f, as if by forwarding the function objectfand allocatorato the executorinner_ex_, such that the guarantees of ordering and non-concurrency are met.
bool operator==(const strand<Executor>& a, const strand<Executor>& b);
Returns:
true, if the strand objects share the same ordered, non-concurrent state; otherwisefalse.
bool operator!=(const strand<Executor>& a, const strand<Executor>& b);
Returns:
!(a == b).
The class template use_future_t
defines a set of completion
token types for use with asynchronous operations.
namespace std { namespace experimental { inline namespace network_v1 { template<class ProtoAllocator = allocator<void>> class use_future_t { public: // use_future_t types: typedef ProtoAllocator allocator_type; // use_future_t members: constexpr use_future_t() noexcept; explicit use_future_t(const allocator_type& a) noexcept; template<class OtherProtoAllocator> use_future_t<OtherProtoAllocator> rebind(const OtherProtoAllocator& a) const noexcept; allocator_type get_allocator() const noexcept; }; } // inline namespace network_v1 } // namespace experimental } // namespace std
constexpr use_future_t() noexcept;
Effects: Constructs a
use_future_twith a default-constructed allocator.
explicit use_future_t(const allocator_type& a) noexcept;
Effects: Constructs an object of type
use_future_t.
Postconditions:
get_allocator() == a.
template<class OtherProtoAllocator> use_future_t<OtherProtoAllocator> rebind(const OtherProtoAllocator& a) const noexcept;
Returns: A
use_future_tobject whereget_allocator() == a.
allocator_type get_allocator() const noexcept;
Returns: The associated allocator object.
template<class ProtoAllocator, class R, class... Args> struct completion_handler_type<use_future_t<ProtoAllocator>, R(Args...)> { typedef see below type; };
Let F be the nested function
object type type.
An object t1 of type
F is an asynchronous
provider with an associated shared state (C++Std, [futures.state]). The
type F provides F::operator()
such that the expression t1(declval<Args>()...) is well formed.
The implementation shall specialize associated_executor
for F. For function objects
executed using the associated executor's dispatch(), post() or defer() functions, any exception thrown is
caught by the executor and stored in the associated shared state.
async_result<F>
is valid and when an object r1
of type async_result<F> is constructed from t1, the expression r1.get() returns a future with the same shared
state as t1.
The semantics of async_result::type
and F::operator()
are defined in the table below. In this table, N is
the value of sizeof...(Args);
let i be in the range [0..N)
and let Ti be the ith
type in Args; let Ui
be decay_t<Ti> for each
type Ti in Args;
and let ai be the ith
argument to F::operator().
Table 8. completion_handler_type<use_future_t<ProtoAllocator>, R(Args...)>::type semantics
|
|
|
|
|
|---|---|---|---|
|
0 |
|
Makes the shared state ready. | |
|
1 |
|
|
If |
|
1 |
|
|
If |
|
1 |
all other types |
|
Atomically stores |
|
2 |
|
|
If |
|
2 |
|
|
If |
|
2 |
all other types |
|
Atomically stores the result of |
|
>2 |
|
|
If |
|
>2 |
|
|
If |
|
>2 |
all other types |
|
Atomically stores the result of |
[async.packaged.task.specializations]
namespace std { namespace experimental { inline namespace network_v1 { template<class R, class... Args> class async_result<packaged_task<R(Args...)>> { public: typedef future<R> type; explicit async_result(packaged_task<R(Args...)>& t); async_result(const async_result&) = delete; async_result& operator=(const async_result&) = delete; type get(); private: type future_; // exposition only }; } // inline namespace network_v1 } // namespace experimental } // namespace std explicit async_result(packaged_task<R(Args...)>& t);
Effects: Initializes
future_witht.get_future().
type get();
Returns:
std::move(future_).
Class template packaged_handler
is an adapter to enable the use of packaged tasks with asynchronous operations
as a completion handler with an associated allocator.
namespace std { namespace experimental { inline namespace network_v1 { template<class, class> class packaged_handler; // undefined template<class R, class... Args, class ProtoAllocator> class packaged_handler<R(Args...), ProtoAllocator> { public: // packaged_handler types: typedef ProtoAllocator allocator_type; // packaged_handler construct / copy / assign: template<class Func> explicit packaged_handler(packaged_token<Func, ProtoAllocator>&& token); packaged_handler(const packaged_handler&) = delete; packaged_handler(packaged_handler&& rhs) noexcept; packaged_handler& operator=(const packaged_handler&) = delete; packaged_handler& operator=(packaged_handler&& rhs) noexcept; // packaged_handler operations: allocator_type get_allocator() const noexcept; future<R> get_future(); void operator()(Args... args); private: packaged_task<R(Args...)> task_; // exposition only ProtoAllocator allocator_; // exposition only }; template<class Signature, class ProtoAllocator> class async_result<packaged_handler<Signature, ProtoAllocator>>; } // inline namespace network_v1 } // namespace experimental } // namespace std
[async.package.handler.members]
template<class Func> explicit packaged_handler(packaged_token<Func, ProtoAllocator>&& token);
Effects: Initializes
task_withstd::move(token.f_)and initializesallocator_withtoken.allocator_.
packaged_handler(packaged_handler&& rhs) noexcept;
Effects: Initializes
task_withstd::move(rhs.task_)and initializesallocator_withstd::move(rhs.allocator_).
packaged_handler& operator=(packaged_handler&& rhs) noexcept;
Effects: Performs
task_ = std::move(rhs.task_)andallocator_ = std::move(rhs.allocator_).
Returns:
*this.
allocator_type get_allocator() const noexcept;
Returns:
allocator_.
future<R> get_future();
Returns:
task_.get_future().
void operator()(Args... args);
Effects: Calls
task_(forward<Args>(args)...).
[async.package.handler.async.result]
namespace std { namespace experimental { inline namespace network_v1 { template<class R, class... Args, class ProtoAllocator> class async_result<packaged_handler<R(Args...), ProtoAllocator>> { public: typedef future<R> type; explicit async_result(packaged_task<R(Args...)>& t); async_result(const async_result&) = delete; async_result& operator=(const async_result&) = delete; type get(); private: type future_; // exposition only }; } // inline namespace network_v1 } // namespace experimental } // namespace std
The implementation provides a partial specialization of async_result that meets the async_result specialization requirements.
explicit async_result(packaged_handler<Signature, ProtoAllocator>& h);
Effects: Initializes
future_witht.get_future().
type get();
Returns:
std::move(future_).
Class template packaged_handler
is an adapter to enable the use of packaged tasks with asynchronous operations
as a completion token. The specification of the packaged task's Signature is deferred until the completion
token is transformed into a completion handler.
namespace std { namespace experimental { inline namespace network_v1 { template<class Func, class ProtoAllocator = allocator<void>> class packaged_token { public: // packaged_token types: typedef ProtoAllocator allocator_type; // packaged_token constructors: explicit packaged_token(Func f); packaged_token(Func f, const allocator_type& a); // packaged_token operations: allocator_type get_allocator() const noexcept; private: Func f_; // exposition only ProtoAllocator allocator_; // exposition only }; template<class Func, class ProtoAllocator, class R, class... Args> struct completion_handler_type<packaged_token<Func, ProtoAllocator>, R(Args...)> { typedef packaged_handler<result_of_t<Func(Args...)>(Args...), ProtoAllocator> type; }; } // inline namespace network_v1 } // namespace experimental } // namespace std
explicit packaged_token(Func f);
Effects: Initializes
f_withstd::move(f)and default constructsallocator_.
packaged_token(Func f, const allocator_type& a);
Effects: Initializes
f_withstd::move(f)andallocator_witha.
allocator_type get_allocator() const noexcept;
Returns:
allocator_.
template<class Func, class ProtoAllocator = allocator<void>> packaged_token<decay_t<Func>, ProtoAllocator> package( Func&& f, const ProtoAllocator& a = ProtoAllocator());
Returns:
packaged_token<decay_t<Func>, ProtoAllocator>(forward<Func>(f), a).
namespace std { namespace experimental { inline namespace network_v1 { class io_service; } // inline namespace network_v1 } // namespace experimental } // namespace std
namespace std { namespace experimental { inline namespace network_v1 { class io_service : public execution_context { public: // types: class executor_type; // construct / copy / destroy: io_service(); explicit io_service(int concurrency_hint); io_service(const io_service&) = delete; io_service& operator=(const io_service&) = delete; // io_service operations: executor_type get_executor() noexcept; size_t run(); template<class Rep, class Period> size_t run_for(const chrono::duration<Rep, Period>& rel_time); template<class Clock, class Duration> size_t run_until(const chrono::time_point<Clock, Duration>& abs_time); size_t run_one(); template<class Rep, class Period> size_t run_one_for(const chrono::duration<Rep, Period>& rel_time); template<class Clock, class Duration> size_t run_one_until(const chrono::time_point<Clock, Duration>& abs_time); size_t poll(); size_t poll_one(); void stop(); bool stopped() const noexcept; void restart(); }; } // inline namespace network_v1 } // namespace experimental } // namespace std
The class io_service satsifies
the ExecutionContext type
requirements.
The io_service functions
run, run_for,
run_until, run_one, run_one_for,
run_one_until, poll, or poll_one
must be called for the io_service
to perform asynchronous
operations on behalf of a C++ program. Notification that an asynchronous
operation has completed is delivered by execution of the associated handler
function object, as determined by the requirements for asynchronous
operations.
For an object of type io_service,
outstanding work is defined as the sum of:
— the total number of calls to the on_work_started
function, less the total number of calls to the on_work_finished
function, to any executor of the io_service.
— the number of function objects that have been added to the io_service via any executor of the io_service, but not yet executed; and
— the number of function objects that are currently being executed by the
io_service.
If at any time the outstanding work falls to 0,
the io_service is stopped
as if by stop().
The io_service member functions
get_executor, run, run_for,
run_until, run_one, run_one_for,
run_one_until, poll, poll_one,
stop, and stopped, and the io_service::executor_type
copy constructors, member functions and comparison operators, shall not
introduce data races as a result of concurrent calls to those functions
from different threads of execution. [Note: The restart member function is excluded from
these thread safety requirements. —end note]
[io_service.io_service.members]
io_service(); explicit io_service(int concurrency_hint);
Effects: Creates an object of class
io_service.
Remarks: The
concurrency_hintparameter is a suggestion to the implementation on the number of threads that should process asynchronous operations and execute function objects.
executor_type get_executor() noexcept;
Returns: An executor that may be used for submitting function objects to the
io_service.
size_t run();
Requires: Must not be called from a thread that is currently calling one of
run,run_for,run_until,run_one,run_one_for,run_one_until,poll, orpoll_one.
Effects: Equivalent to:
size_t n = 0; while (run_one()) if (n != numeric_limits<size_t>::max()) ++n;
Returns:
n.
template<class Rep, class Period> size_t run_for(const chrono::duration<Rep, Period>& rel_time);
Effects: Equivalent to:
return run_until(chrono::steady_clock::now() + rel_time);
template<class Clock, class Duration> size_t run_until(const chrono::time_point<Clock, Duration>& abs_time);
Effects: Equivalent to:
size_t n = 0; while (run_one_until(abs_time)) if (n != numeric_limits<size_t>::max()) ++n;
Returns:
n.
size_t run_one();
Requires: Must not be called from a thread that is currently calling one of
run,run_for,run_until,run_one,run_one_for,run_one_until,poll, orpoll_one.
Effects: If the
io_serviceobject has no outstanding work, performsstop(). Otherwise, blocks while the io_service has outstanding work, or until theio_serviceis stopped, or until one function object has been executed.
If an executed function object throws an exception, the exception propagates to the caller of
run_one(). Theio_servicestate is as if the function object had returned normally.
Returns:
1if a function object was executed, otherwise0.
Notes: This function may invoke additional function objects through nested calls to the
io_serviceexecutor'sdispatchmember function. These do not count towards the return value.
template<class Rep, class Period> size_t run_one_for(const chrono::duration<Rep, Period>& rel_time);
Effects: Equivalent to:
return run_one_until(chrono::steady_clock::now() + rel_time);
template<class Clock, class Duration> size_t run_one_until(const chrono::time_point<Clock, Duration>& abs_time);
Effects: If the
io_serviceobject has no outstanding work, performsstop(). Otherwise, blocks while the io_service has outstanding work, or until the expiration of the absolute timeout (C++ Std, [thread.req.timing]) specified byabs_time, or until theio_serviceis stopped, or until one function object has been executed.
If an executed function object throws an exception, the exception propagates to the caller of
run_one(). Theio_servicestate is as if the function object had returned normally.
Returns:
1if a function object was executed, otherwise0.
Notes: This function may invoke additional function objects through nested calls to the
io_serviceexecutor'sdispatchmember function. These do not count towards the return value.
size_t poll();
Effects: Equivalent to:
size_t n = 0; while (poll_one()) if (n != numeric_limits<size_t>::max()) ++n;
Returns:
n.
size_t poll_one();
Effects: If the
io_serviceobject has no outstanding work, performsstop(). Otherwise, if there is a function object ready for immediate execution, executes it.
If an executed function object throws an exception, the exception propagates to the caller of
poll_one(). Theio_servicestate is as if the function object had returned normally.
Returns:
1if a function object was invoked, otherwise0.
Notes: This function may invoke additional function objects through nested calls to the
io_serviceexecutor'sdispatchmember function. These do not count towards the return value.
void stop();
Effects: Stops the
io_service. Concurrent calls torun,run_for,run_until,run_one,run_one_for,run_one_until,pollorpoll_onewill end as soon as possible. If a call torun,run_for,run_until,run_one,run_one_for,run_one_until,pollorpoll_oneis currently executing a function object, the call will end only after completion of that function object. The call tostop()returns without waiting for concurrent calls torun,run_for,run_until,run_one,run_one_for,run_one_until,pollorpoll_oneto complete.
Postconditions:
stopped() == true.
[Note: When
stopped() == true, subsequent calls torun,run_for,run_until,run_one,run_one_for,run_one_until,pollorpoll_onewill exit immediately with a return value of0, without executing any function objects. Anio_serviceremains in the stopped state until a call torestart(). —end note]
bool stopped() const noexcept;
Returns:
trueif theio_serviceis stopped.
void restart();
Postconditions:
stopped() == false.
namespace std { namespace experimental { inline namespace network_v1 { class io_service::executor_type { public: // construct / copy / destroy: executor_type(const executor_type& other) noexcept; executor_type(executor_type&& other) noexcept; executor_type& operator=(const executor_type& other) noexcept; executor_type& operator=(executor_type&& other) noexcept; // executor operations: bool running_in_this_thread() const noexcept; io_service& context() noexcept; void on_work_started() noexcept; void on_work_finished() noexcept; template<class Func, class ProtoAllocator> void dispatch(Func&& f, const ProtoAllocator& a); template<class Func, class ProtoAllocator> void post(Func&& f, const ProtoAllocator& a); template<class Func, class ProtoAllocator> void defer(Func&& f, const ProtoAllocator& a); }; bool operator==(const io_service::executor_type& a, const io_service::executor_type& b) noexcept; bool operator!=(const io_service::executor_type& a, const io_service::executor_type& b) noexcept; template<> struct is_executor<io_service::executor_type> : true_type {}; } // inline namespace network_v1 } // namespace experimental } // namespace std
io_service::executor_type is a type satisfying Executor requirements. Objects of
type io_service::executor_type are associated with an
io_service, and function
objects submitted using the dispatch,
post, or defer member functions will be executed
by the io_service from
within the run, run_for, run_until,
run_one, run_one_for, run_one_until,
poll or poll_one
functions.
executor_type(const executor_type& other) noexcept;
Postconditions:
*this == other.
executor_type(executor_type&& other) noexcept;
Postconditions:
*thisis equal to the prior value ofother.
executor_type& operator=(const executor_type& other) noexcept;
Postconditions:
*this == other.
Returns:
*this.
executor_type& operator=(executor_type&& other) noexcept;
Postconditions:
*thisis equal to the prior value ofother.
Returns:
*this.
bool running_in_this_thread() const noexcept;
Returns:
trueif the current thread of execution is running therun,run_for,run_until,run_one,run_one_for,run_one_until,pollorpoll_onefunction of the associatedio_serviceobject. [Note: That is, the current thread of execution's call chain includes a run function. —end note]
io_service& context() noexcept;
Returns: A reference to the associated
io_serviceobject.
void on_work_started() noexcept;
Effects: Increment the count of outstanding work associated with the
io_service.
void on_work_finished() noexcept;
Effects: Decrement the count of outstanding work associated with the
io_service.
template<class Func, class ProtoAllocator> void dispatch(Func&& f, const ProtoAllocator& a);
Effects: If
running_in_this_thread()istrue, callsDECAY_COPY(forward<Func>(f))(). [Note: Iffexits via an exception, the exception propagates to the caller ofdispatch(). —end note] Otherwise, callspost(forward<Func>(f), a).
template<class Func, class ProtoAllocator> void post(Func&& f, const ProtoAllocator& a);
Effects: Adds
fto theio_service.
template<class Func, class ProtoAllocator> void defer(Func&& f, const ProtoAllocator& a);
Effects: Adds
fto theio_service.
bool operator==(const io_service::executor_type& a, const io_service::executor_type& b) noexcept;
Returns:
addressof(a.context()) == addressof(b.context()).
bool operator!=(const io_service::executor_type& a, const io_service::executor_type& b) noexcept;
Returns:
!(a == b).
[timer] This clause defines components for performing timer operations.
[Example: Performing a synchronous wait operation on a timer:
io_service i; steady_timer t(i); t.expires_after(seconds(5)); t.wait();
—end example]
[Example: Performing an asynchronous wait operation on a timer:
void handler(error_code ec) { ... } ... io_service i; steady_timer t(i); t.expires_after(seconds(5)); t.async_wait(handler); i.run();
—end example]
#include <chrono> namespace std { namespace experimental { inline namespace network_v1 { template<class Clock> struct wait_traits; template<class Clock, class WaitTraits = wait_traits<Clock>> class basic_waitable_timer; typedef basic_waitable_timer<chrono::system_clock> system_timer; typedef basic_waitable_timer<chrono::steady_clock> steady_timer; typedef basic_waitable_timer<chrono::high_resolution_clock> high_resolution_timer; } // inline namespace network_v1 } // namespace experimental } // namespace std
In the table below, X
denotes a wait traits class for a type Clock
meeting the Clock requirements
(C++ Std [time.clock.req]); t
denotes a (possibly const) value of type Clock::time_point;
and d denotes a (possibly
const) value of type Clock::duration.
Table 9. WaitTraits requirements
|
expression |
return type |
assertion/note |
|---|---|---|
|
|
|
Returns a |
|
|
|
Returns a |
namespace std { namespace experimental { inline namespace network_v1 { template<class Clock> struct wait_traits { static typename Clock::duration to_wait_duration( const typename Clock::duration& d); static typename Clock::duration to_wait_duration( const typename Clock::time_point& t); }; } // inline namespace network_v1 } // namespace experimental } // namespace std
Class template wait_traits
satisfies the WaitTraits
type requirements. Template argument Clock
is a type meeting the Clock
requirements (C++ Std [time.clock.req]).
static typename Clock::duration to_wait_duration( const typename Clock::duration& d);
Returns:
d.
static typename Clock::duration to_wait_duration( const typename Clock::time_point& t);
Returns: Let
nowbeClock::now(). Ifnow + Clock::duration::max()is beforet,Clock::duration::max(); ifnow + Clock::duration::min()is aftert,Clock::duration::min(); otherwise,t - now.
namespace std { namespace experimental { inline namespace network_v1 { template<class Clock, class WaitTraits = wait_traits<Clock>> class basic_waitable_timer { public: // types: typedef io_service::executor_type executor_type; typedef Clock clock_type; typedef typename clock_type::duration duration; typedef typename clock_type::time_point time_point; typedef WaitTraits traits_type; // construct / copy / destroy: explicit basic_waitable_timer(io_service& ios); basic_waitable_timer(io_service& ios, const time_point& t); basic_waitable_timer(io_service& ios, const duration& d); basic_waitable_timer(const basic_waitable_timer&) = delete; basic_waitable_timer(basic_waitable_timer&& rhs) noexcept; ~basic_waitable_timer(); basic_waitable_timer& operator=(const basic_waitable_timer&) = delete; basic_waitable_timer& operator=(basic_waitable_timer&& rhs); // basic_waitable_timer operations: executor_type get_executor() noexcept; size_t cancel(); size_t cancel_one(); time_point expiry() const; size_t expires_at(const time_point& t); size_t expires_after(const duration& d); void wait(); void wait(error_code& ec); template<class CompletionToken> DEDUCED async_wait(CompletionToken&& token); }; } // inline namespace network_v1 } // namespace experimental } // namespace std
explicit basic_waitable_timer(io_service& ios);
Effects: Equivalent to
basic_waitable_timer(ios, time_point()).
basic_waitable_timer(io_service& ios, const time_point& t);
Postconditions:
—get_executor() == ios.get_executor().
—expiry() == t.
basic_waitable_timer(io_service& ios, const duration& d);
Effects: Sets the expiry time as if by calling
expires_after(d).
Postconditions:
get_executor() == ios.get_executor().
basic_waitable_timer(basic_waitable_timer&& rhs) noexcept;
Effects: Move constructs an object of class
basic_waitable_timer<Clock, WaitTraits>that refers to the state originally represented byrhs.
Postconditions:
—get_executor()is equal to the prior value ofrhs.get_executor().
—expiry()returns the same value asrhs.expiry()prior to the constructor invocation.
—rhs.expiry() == time_point().
~basic_waitable_timer();
Effects: Destroys the timer, cancelling any asynchronous wait operations associated with the timer as if by calling
cancel().
basic_waitable_timer& operator=(basic_waitable_timer&& rhs);
Effects: Cancels any outstanding asynchronous operations associated with
*thisas if by callingcancel(), then moves into*thisthe state originally represented byrhs.
Postconditions:
—get_executor()is equal to the prior value ofrhs.get_executor().
—expiry()returns the same value asrhs.expiry()prior to the assignment.
—rhs.expiry() == time_point().
Returns:
*this.
executor_type get_executor() noexcept;
Returns: The associated executor.
size_t cancel();
Effects: Causes any outstanding asynchronous wait operations to complete. Completion handlers for canceled operations are passed an error code
ecsuch thatec == errc::operation_canceledyieldstrue.
Returns: The number of operations that were canceled.
size_t cancel_one();
Effects: Causes the outstanding asynchronous wait operation that was initiated first, if any, to complete as soon as possible. The completion handler for the canceled operation is passed an error code
ecsuch thatec == errc::operation_canceledyieldstrue.
Returns:
1if an operation was cancelled, otherwise0.
time_point expiry() const;
Returns: The expiry time associated with the timer, as previously set using
expires_at()orexpires_after().
size_t expires_at(const time_point& t);
Effects: Cancels outstanding asynchronous wait operations, as if by calling
cancel(). Sets the expiry time associated with the timer.
Returns: The number of operations that were canceled.
Postconditions:
expiry() == t.
size_t expires_after(const duration& d);
Returns:
expires_at(clock_type::now() + d).
void wait(); void wait(error_code& ec);
Effects: Establishes the postcondition as if by repeatedly blocking the calling thread for the relative time produced by
WaitTraits::to_wait_duration(expiry()).
Postconditions:
ec || !(clock_type::now() < expiry()).
template<class CompletionToken> DEDUCED async_wait(CompletionToken&& token);
Completion signature:
void(error_code ec).
Effects: Initiates an asynchronous wait operation such that the completion handler is submitted for execution only when the condition
ec || !(clock_type::now() < expiry())yieldstrue.
namespace std { namespace experimental { inline namespace network_v1 { enum class stream_errc { eof = implementation defined, not_found = implementation defined }; const error_category& stream_category() noexcept; error_code make_error_code(stream_errc e) noexcept; error_condition make_error_condition(stream_errc e) noexcept; class mutable_buffer; class const_buffer; class mutable_buffers_1; class const_buffers_1; // buffer type traits: template<class T> is_mutable_buffer_sequence; template<class T> is_const_buffer_sequence; template<class T> is_dynamic_buffer; // buffer conversions: template<class T> T buffer_cast(const mutable_buffer& b) noexcept; template<class T> T buffer_cast(const const_buffer& b) noexcept; // buffer size: size_t buffer_size(const mutable_buffer& b) noexcept; size_t buffer_size(const const_buffer& b) noexcept; template<class ConstBufferSequence> size_t buffer_size(const ConstBufferSequence& buffers) noexcept; // buffer copy: size_t buffer_copy(const mutable_buffer& dest, const const_buffer& source) noexcept; size_t buffer_copy(const mutable_buffer& dest, const const_buffer& source, size_t max_size) noexcept; template<class ConstBufferSequence> size_t buffer_copy(const mutable_buffer& dest, const ConstBufferSequence& source) noexcept; template<class ConstBufferSequence> size_t buffer_copy(const mutable_buffer& dest, const ConstBufferSequence& source, size_t max_size) noexcept; template<class MutableBufferSequence> size_t buffer_copy(const MutableBufferSequence& dest, const const_buffer& source) noexcept; template<class MutableBufferSequence> size_t buffer_copy(const MutableBufferSequence& dest, const const_buffer& source, size_t max_size) noexcept; template<class MutableBufferSequence, class ConstBufferSequence> size_t buffer_copy(const MutableBufferSequence& dest, const ConstBufferSequence& source) noexcept; template<class MutableBufferSequence, class ConstBufferSequence> size_t buffer_copy(const MutableBufferSequence& dest, const ConstBufferSequence& source, max_size) noexcept; // buffer arithmetic: mutable_buffer operator+(const mutable_buffer& b, size_t n) noexcept; mutable_buffer operator+(size_t n, const mutable_buffer& b) noexcept; const_buffer operator+(const const_buffer&, size_t n) noexcept; const_buffer operator+(size_t, const const_buffer&) noexcept; mutable_buffers_1 operator+(const mutable_buffers_1& b, size_t n) noexcept; mutable_buffers_1 operator+(size_t n, const mutable_buffers_1& b) noexcept; const_buffers_1 operator+(const const_buffers_1&, size_t n) noexcept; const_buffers_1 operator+(size_t, const const_buffers_1&) noexcept; // buffer creation: mutable_buffers_1 buffer(void* p, size_t n) noexcept; const_buffers_1 buffer(const void* p, size_t n) noexcept; mutable_buffers_1 buffer(const mutable_buffer& b) noexcept; mutable_buffers_1 buffer(const mutable_buffer& b, size_t n) noexcept; const_buffers_1 buffer(const const_buffer& b) noexcept; const_buffers_1 buffer(const const_buffer& b, size_t n) noexcept; template<class T, size_t N> mutable_buffers_1 buffer(T (&arr)[N]) noexcept; template<class T, size_t N> mutable_buffers_1 buffer(T (&arr)[N], size_t n) noexcept; template<class T, size_t N> const_buffers_1 buffer(const T (&arr)[N]) noexcept; template<class T, size_t N> const_buffers_1 buffer(const T (&arr)[N], size_t n) noexcept; template<class T, size_t N> mutable_buffers_1 buffer(array<T, N>& arr) noexcept; template<class T, size_t N> mutable_buffers_1 buffer(array<T, N>& arr, size_t n) noexcept; template<class T, size_t N> const_buffers_1 buffer(array<const T, N>& arr) noexcept; template<class T, size_t N> const_buffers_1 buffer(array<const T, N>& arr, size_t n) noexcept; template<class T, size_t N> const_buffers_1 buffer(const array<T, N>& arr) noexcept; template<class T, size_t N> const_buffers_1 buffer(const array<T, N>& arr, size_t n) noexcept; template<class T, class Allocator> mutable_buffers_1 buffer(vector<T, Allocator>& vec) noexcept; template<class T, class Allocator> mutable_buffers_1 buffer(vector<T, Allocator>& vec, size_t n) noexcept; template<class T, class Allocator> const_buffers_1 buffer(const vector<T, Allocator>& vec) noexcept; template<class T, class Allocator> const_buffers_1 buffer(const vector<T, Allocator>& vec, size_t n) noexcept; template<class CharT, class Traits, class Allocator> mutable_buffers_1 buffer(basic_string<CharT, Traits, Allocator>& str) noexcept; template<class CharT, class Traits, class Allocator> mutable_buffers_1 buffer(basic_string<CharT, Traits, Allocator>& str, size_t n) noexcept; template<class CharT, class Traits> const_buffers_1 buffer(basic_string_view<CharT, Traits> str) noexcept; template<class CharT, class Traits> const_buffers_1 buffer(basic_string_view<CharT, Traits> str, size_t n) noexcept; template<class T, Allocator> class dynamic_vector_buffer; template<class CharT, class Traits, Allocator> class dynamic_string_buffer; // dynamic buffer creation: template<class T, class Allocator> dynamic_vector_buffer<T, Allocator> dynamic_buffer(vector<T, Allocator>& vec) noexcept; template<class T, class Allocator> dynamic_vector_buffer<T, Allocator> dynamic_buffer(vector<T, Allocator>& vec, size_t n) noexcept; template<class CharT, class Traits, class Allocator> dynamic_string_buffer<CharT, Traits, Allocator> dynamic_buffer(basic_string<CharT, Traits, Allocator>& str) noexcept; template<class CharT, class Traits, class Allocator> dynamic_string_buffer<CharT, Traits, Allocator> dynamic_buffer(basic_string<CharT, Traits, Allocator>& str, size_t n) noexcept; class transfer_all; class transfer_at_least; class transfer_exactly; // synchronous read operations: template<class SyncReadStream, class MutableBufferSequence> size_t read(SyncReadStream& stream, const MutableBufferSequence& buffers); template<class SyncReadStream, class MutableBufferSequence> size_t read(SyncReadStream& stream, const MutableBufferSequence& buffers, error_code& ec); template<class SyncReadStream, class MutableBufferSequence, class CompletionCondition> size_t read(SyncReadStream& stream, const MutableBufferSequence& buffers, CompletionCondition completion_condition); template<class SyncReadStream, class MutableBufferSequence, class CompletionCondition> size_t read(SyncReadStream& stream, const MutableBufferSequence& buffers, CompletionCondition completion_condition, error_code& ec); template<class SyncReadStream, class DynamicBuffer> size_t read(SyncReadStream& stream, DynamicBuffer&& b); template<class SyncReadStream, class DynamicBuffer> size_t read(SyncReadStream& stream, DynamicBuffer&& b, error_code& ec); template<class SyncReadStream, class DynamicBuffer, class CompletionCondition> size_t read(SyncReadStream& stream, DynamicBuffer&& b, CompletionCondition completion_condition); template<class SyncReadStream, class DynamicBuffer, class CompletionCondition> size_t read(SyncReadStream& stream, DynamicBuffer&& b, CompletionCondition completion_condition, error_code& ec); // asynchronous read operations: template<class AsyncReadStream, class MutableBufferSequence, class CompletionToken> DEDUCED async_read(AsyncReadStream& stream, const MutableBufferSequence& buffers, CompletionToken&& token); template<class AsyncReadStream, class MutableBufferSequence, class CompletionCondition, class CompletionToken> DEDUCED async_read(AsyncReadStream& stream, const MutableBufferSequence& buffers, CompletionCondition completion_condition, CompletionToken&& token); template<class AsyncReadStream, class DynamicBuffer, class CompletionToken> DEDUCED async_read(AsyncReadStream& stream, DynamicBuffer&& b, CompletionToken&& token); template<class AsyncReadStream, class DynamicBuffer, class CompletionCondition, class CompletionToken> DEDUCED async_read(AsyncReadStream& stream, DynamicBuffer&& b, CompletionCondition completion_condition, CompletionToken&& token); // synchronous write operations: template<class SyncWriteStream, class ConstBufferSequence> size_t write(SyncWriteStream& stream, const ConstBufferSequence& buffers); template<class SyncWriteStream, class ConstBufferSequence> size_t write(SyncWriteStream& stream, const ConstBufferSequence& buffers, error_code& ec); template<class SyncWriteStream, class ConstBufferSequence, class CompletionCondition> size_t write(SyncWriteStream& stream, const ConstBufferSequence& buffers, CompletionCondition completion_condition); template<class SyncWriteStream, class ConstBufferSequence, class CompletionCondition> size_t write(SyncWriteStream& stream, const ConstBufferSequence& buffers, CompletionCondition completion_condition, error_code& ec); template<class SyncWriteStream, class DynamicBuffer> size_t write(SyncWriteStream& stream, DynamicBuffer&& b); template<class SyncWriteStream, class DynamicBuffer> size_t write(SyncWriteStream& stream, DynamicBuffer&& b, error_code& ec); template<class SyncWriteStream, class DynamicBuffer, class CompletionCondition> size_t write(SyncWriteStream& stream, DynamicBuffer&& b, CompletionCondition completion_condition); template<class SyncWriteStream, class DynamicBuffer, class CompletionCondition> size_t write(SyncWriteStream& stream, DynamicBuffer&& b, CompletionCondition completion_condition, error_code& ec); // asynchronous write operations: template<class AsyncWriteStream, class ConstBufferSequence, class CompletionToken> DEDUCED async_write(AsyncWriteStream& stream, const ConstBufferSequence& buffers, CompletionToken&& token); template<class AsyncWriteStream, class ConstBufferSequence, class CompletionCondition, class CompletionToken> DEDUCED async_write(AsyncWriteStream& stream, const ConstBufferSequence& buffers, CompletionCondition completion_condition, CompletionToken&& token); template<class AsyncWriteStream, class DynamicBuffer, class CompletionToken> DEDUCED async_write(AsyncWriteStream& stream, DynamicBuffer&& b, CompletionToken&& token); template<class AsyncWriteStream, class DynamicBuffer, class CompletionCondition, class CompletionToken> DEDUCED async_write(AsyncWriteStream& stream, DynamicBuffer&& b, CompletionCondition completion_condition, CompletionToken&& token); // synchronous delimited read operations: template<class SyncReadStream, class DynamicBuffer> size_t read_until(SyncReadStream& s, DynamicBuffer&& b, char delim); template<class SyncReadStream, class DynamicBuffer> size_t read_until(SyncReadStream& s, DynamicBuffer&& b, char delim, error_code& ec); template<class SyncReadStream, class DynamicBuffer> size_t read_until(SyncReadStream& s, DynamicBuffer&& b, string_view delim); template<class SyncReadStream, class DynamicBuffer> size_t read_until(SyncReadStream& s, DynamicBuffer&& b, string_view delim, error_code& ec); // asynchronous delimited read operations: template<class AsyncReadStream, class DynamicBuffer, class CompletionToken> DEDUCED async_read_until(AsyncReadStream& s, DynamicBuffer&& b, char delim, CompletionToken&& token); template<class AsyncReadStream, class DynamicBuffer, class CompletionToken> DEDUCED async_read_until(AsyncReadStream& s, DynamicBuffer&& b, string_view delim, CompletionToken&& token); } // inline namespace network_v1 } // namespace experimental template<> struct is_error_code_enum< experimental::network_v1::stream_errc> : public true_type {}; } // namespace std
[buffer.reqmts.mutablebuffersequence]
A mutable buffer sequence satisfies the requirements for a constant buffer sequence as well as the requirements in the table below.
In the table below, X
denotes a constant buffer sequence class, x
denotes a (possibly const) value of type X,
and u denotes an identifier.
Table 10. ConstBufferSequence requirements
|
expression |
return type |
assertion/note |
|---|---|---|
|
|
convertible to | |
|
X u(x);
|
post: equal(u.begin(), u.end(), x.begin(), x.end(), [](const typename X::value_type& v1, const typename X::value_type& v2) { mutable_buffer b1(v1); mutable_buffer b2(v2); return buffer_cast<void*>(b1) == buffer_cast<void*>(b2) && buffer_size(b1) == buffer_size(b2); })
|
[buffer.reqmts.constbuffersequence]
A constant buffer sequence satisfies the requirements
for Destructible (C++
Std, [destructible]) and CopyConstructible
(C++ Std, [copyconstructible]), as well as the requirements in the table
below.
In the table below, X
denotes a constant buffer sequence class, x
denotes a (possibly const) value of type X,
and u denotes an identifier.
Table 11. ConstBufferSequence requirements
|
expression |
return type |
assertion/note |
|---|---|---|
|
|
convertible to | |
|
|
iterator type pointing to |
|
|
X u(x);
|
post: equal(u.begin(), u.end(), x.begin(), x.end(), [](const typename X::value_type& v1, const typename X::value_type& v2) { const_buffer b1(v1); const_buffer b2(v2); return buffer_cast<const void*>(b1) == buffer_cast<const void*>(b2) && buffer_size(b1) == buffer_size(b2); })
| |
|
|
convertible to | |
|
|
convertible to |
A dynamic buffer encapsulates memory storage that may be automatically
resized as required, where the memory is divided into an input sequence
followed by an output sequence. These memory regions are internal to
the dynamic buffer, but direct access to the elements is provided to
permit them to be efficiently used with I/O operations, such as the
send or receive operations of a socket. Data
written to the output sequence of a dynamic buffer object is appended
to the input sequence of the same object.
A dynamic buffer type X
shall satisfy the requirements of MoveConstructible
(C++ Std, [moveconstructible]) types in addition to those listed below.
In the table below, X
denotes a dynamic buffer class, x
denotes a value of type X,
x1 denotes a (possibly
const) value of type X,
and n denotes a value
of type size_t.
Table 12. DynamicBuffer requirements
|
expression |
type |
assertion/note |
|---|---|---|
|
|
type meeting ConstBufferSequence requirements. |
This type represents the memory associated with the input sequence. |
|
|
type meeting MutableBufferSequence requirements. |
This type represents the memory associated with the output sequence. |
|
|
|
Returns the size, in bytes, of the input sequence. |
|
|
|
Returns the permitted maximum of the sum of the sizes of the input sequence and output sequence. |
|
|
|
Returns the maximum sum of the sizes of the input sequence and output sequence that the dynamic buffer can hold without requiring reallocation. |
|
|
|
Returns a constant buffer sequence |
|
|
|
Returns a mutable buffer sequence |
|
|
Appends | |
|
|
Removes |
In this Technical Specification, a synchronous read operation is a function that reads data into a mutable buffer sequence argument of a type meeting MutableBufferSequence requirements.
The mutable buffer sequence specifies memory where the data should be placed. A synchronous read operation shall always fill a buffer in the sequence completely before proceeding to the next.
In this Technical Specification, an asynchronous read operation is an asynchronous operation that reads data into a mutable buffer sequence argument of a type meeting MutableBufferSequence requirements.
The mutable buffer sequence specifies memory where the data should be placed. An asynchronous read operation shall always fill a buffer in the sequence completely before proceeding to the next.
The read operation's implementation shall maintain one or more copies of the buffer sequence until such time as the read operation no longer requires access to the memory specified by the buffers in the sequence. The program shall ensure the memory remains valid until:
— the last copy of the buffer sequence is destroyed, or
— the completion handler for the asynchronous operation is invoked,
whichever comes first.
In this Technical Specification, a synchronous write operation is a function that writes data from a constant buffer sequence argument of a type meeting ConstBufferSequence requirements.
The constant buffer sequence specifies memory where the data to be written is located. A synchronous write operation shall always write a buffer in the sequence completely before proceeding to the next.
In this Technical Specification, an asynchronous write operation is an asynchronous operation that writes data from a constant buffer sequence argument of a type meeting ConstBufferSequence requirements.
The constant buffer sequence specifies memory where the data to be written is located. An asynchronous write operation shall always write a buffer in the sequence completely before proceeding to the next.
The write operation's implementation shall maintain one or more copies of the buffer sequence until such time as the write operation no longer requires access to the memory specified by the buffers in the sequence. The program shall ensure the memory remains valid until:
— the last copy of the buffer sequence is destroyed, or
— the completion handler for the asynchronous operation is invoked,
whichever comes first.
[buffer.reqmts.syncreadstream]
In the table below, a
denotes a synchronous read stream object, mb
denotes an object satisfying mutable
buffer sequence requirements, and ec
denotes an object of type error_code.
Table 13. Buffer-oriented synchronous read stream requirements
|
operation |
type |
semantics, pre/post-conditions |
|---|---|---|
|
|
|
Meets the requirements for a synchronous
read operation. |
[buffer.reqmts.asyncreadstream]
In the table below, a
denotes an asynchronous read stream object, mb
denotes an object satisfying mutable
buffer sequence requirements, and t
is a completion token.
Table 14. Buffer-oriented asynchronous read stream requirements
|
operation |
type |
semantics, pre/post-conditions |
|---|---|---|
|
|
A type satisfying the Executor requirements. |
Returns the associated I/O executor. |
|
|
The return type is determined according to the requirements for an asynchronous operation. |
Meets the requirements for an asynchronous
read operation with completion signature |
[buffer.reqmts.syncwritestream]
In the table below, a
denotes a synchronous write stream object, cb
denotes an object satisfying constant
buffer sequence requirements, and ec
denotes an object of type error_code.
Table 15. Buffer-oriented synchronous write stream requirements
|
operation |
type |
semantics, pre/post-conditions |
|---|---|---|
|
|
|
Meets the requirements for a synchronous
write operation. |
[buffer.reqmts.asyncwritestream]
In the table below, a
denotes an asynchronous write stream object, cb
denotes an object satisfying constant
buffer sequence requirements, and t
is a completion token.
Table 16. Buffer-oriented asynchronous write stream requirements
|
operation |
type |
semantics, pre/post-conditions |
|---|---|---|
|
|
A type satisfying the Executor requirements. |
Returns the associated I/O executor. |
|
|
The return type is determined according to the requirements for an asynchronous operation. |
Meets the requirements for an asynchronous
write operation with completion signature |
namespace std { namespace experimental { inline namespace network_v1 { class mutable_buffer { public: // constructors: mutable_buffer() noexcept; mutable_buffer(void* p, size_t n) noexcept; private: void* data_; // exposition only size_t size_; // exposition only }; } // inline namespace network_v1 } // namespace experimental } // namespace std
mutable_buffer() noexcept;
Postconditions:
data_ == nullptrandsize_ == 0.
mutable_buffer(void* p, size_t n) noexcept;
Postconditions:
data_ == pandsize_ == n.
namespace std { namespace experimental { inline namespace network_v1 { class const_buffer { public: // constructors: const_buffer() noexcept; const_buffer(const void* p, size_t n) noexcept; const_buffer(const mutable_buffer& b) noexcept; private: const void* data_; // exposition only size_t size_; // exposition only }; } // inline namespace network_v1 } // namespace experimental } // namespace std
const_buffer() noexcept;
Postconditions:
data_ == nullptrandsize_t == 0.
const_buffer(const void* p, size_t n) noexcept;
Postconditions:
data_ == pandsize_ == n.
const_buffer(const mutable_buffer& b);
Postconditions:
data_ == b.data_andsize_ == b.size_.
An object of class mutable_buffers_1
represents a sequence of exactly one mutable_buffer
object.
namespace std { namespace experimental { inline namespace network_v1 { class mutable_buffers_1 : public mutable_buffer { public: // types: typedef mutable_buffer value_type; typedef unspecified const_iterator; // constructors: mutable_buffers_1(void* p, size_t n) noexcept; explicit mutable_buffers_1(const mutable_buffer& b) noexcept; // members: const_iterator begin() const noexcept; const_iterator end() const noexcept; }; } // inline namespace network_v1 } // namespace experimental } // namespace std
The mutable_buffers_1 class
meets the requirements for MutableBufferSequence.
mutable_buffers_1(const void* p, size_t n) noexcept;
Effects: Constructs an object of class
mutable_buffers_1, initializing the base class withmutable_buffer(p, n).
explicit mutable_buffers_1(const mutable_buffer& b) noexcept;
Effects: Constructs an object of class
mutable_buffers_1, initializing the base class withmutable_buffer(b).
const_iterator begin() const noexcept;
Returns: An iterator referring to the first (and only)
mutable_bufferobject in the sequence.
const_iterator end() const noexcept;
Returns: An iterator which is the past-the-end value.
An object of class const_buffers_1
represents a sequence of exactly one const_buffer
object.
namespace std { namespace experimental { inline namespace network_v1 { class const_buffers_1 : public const_buffer { public: // types: typedef const_buffer value_type; typedef unspecified const_iterator; // constructors: const_buffers_1(const void* p, size_t n) noexcept; explicit const_buffers_1(const const_buffer& b) noexcept; // members: const_iterator begin() const noexcept; const_iterator end() const noexcept; }; } // inline namespace network_v1 } // namespace experimental } // namespace std
The const_buffers_1 class
meets the requirements for ConstBufferSequence.
const_buffers_1(const void* p, size_t n) noexcept;
Effects: Constructs an object of class
const_buffers_1, initializing the base class withconst_buffer(p, n).
explicit const_buffers_1(const const_buffer& b) noexcept;
Effects: Constructs an object of class
const_buffers_1, initializing the base class withconst_buffer(b).
const_iterator begin() const noexcept;
Returns: An iterator referring to the first (and only)
const_bufferobject in the sequence.
const_iterator end() const noexcept;
Returns: An iterator which is the past-the-end value.
namespace std { namespace experimental { inline namespace network_v1 { template<class T> is_mutable_buffer_sequence; template<class T> is_const_buffer_sequence; template<class T> is_dynamic_buffer; } // inline namespace network_v1 } // namespace experimental } // namespace std
This sub-clause contains templates that may be used to query the properties
of a type at compile time. Each of these templates shall be a UnaryTypeTrait
(C++ Std, [meta.rqmts]) with a BaseCharacteristic of true_type
if the corresponding condition is true, otherwise false_type.
Table 17. Buffer type traits
|
Template |
Condition |
Preconditions |
|---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
template<class T> T buffer_cast(const mutable_buffer& b) noexcept; template<class T> T buffer_cast(const const_buffer& b) noexcept;
Returns:
static_cast<T>(b.data_).
size_t buffer_size(const mutable_buffer& b) noexcept; size_t buffer_size(const const_buffer& b) noexcept;
Returns:
b.size_.
template<class ConstBufferSequence> size_t buffer_size(const ConstBufferSequence& buffers) noexcept;
Returns: The total size of all buffers in the sequence, as if computed as follows:
size_t total_size = 0; for (const auto& v: buffers) { const_buffer b(v); total_size += b.size_; } return total_size;
Remarks: This function overload shall not participate in overload resolution unless
is_const_buffer_sequence<ConstBufferSequence>::valueistrue.
size_t buffer_copy(const mutable_buffer& dest, const const_buffer& source) noexcept; size_t buffer_copy(const mutable_buffer& dest, const const_buffer& source, size_t max_size) noexcept; template<class ConstBufferSequence> size_t buffer_copy(const mutable_buffer& dest, const ConstBufferSequence& source) noexcept; template<class ConstBufferSequence> size_t buffer_copy(const mutable_buffer& dest, const ConstBufferSequence& source, size_t max_size) noexcept; template<class MutableBufferSequence> size_t buffer_copy(const MutableBufferSequence& dest, const const_buffer& source) noexcept; template<class MutableBufferSequence> size_t buffer_copy(const MutableBufferSequence& dest, const const_buffer& source, size_t max_size) noexcept; template<class MutableBufferSequence, class ConstBufferSequence> size_t buffer_copy(const MutableBufferSequence& dest, const ConstBufferSequence& source) noexcept; template<class MutableBufferSequence, class ConstBufferSequence> size_t buffer_copy(const MutableBufferSequence& dest, const ConstBufferSequence& source, size_t max_size) noexcept;
Effects: Copies bytes from the buffer or buffer sequence
sourceto the buffer or buffer sequencedest, as if by calls tomemcpy.
The number of bytes copied is the lesser of:
—buffer_size(dest);
—buffer_size(source); and
—max_size, if specified.
The mutable buffer or mutable buffer sequence
destspecifies memory where the data should be placed. The operation always fills a buffer in the sequence completely before proceeding to the next.
The constant buffer or constant buffer sequence
sourcespecifies memory where the data to be written is located. The operation always copies a buffer in the sequence completely before proceeding to the next.
Returns: The number of bytes copied from
sourcetodest.
Remarks: Where an overload accepts a template parameter
MutableBufferSequence, the overload shall not participate in overload resolution unlessis_mutable_buffer_sequence<MutableBufferSequence>::valueistrue. Where an overload accepts a template parameterConstBufferSequence, the overload shall not participate in overload resolution unlessis_const_buffer_sequence<ConstBufferSequence>::valueistrue.
mutable_buffer operator+(const mutable_buffer& b, size_t n) noexcept; mutable_buffer operator+(size_t n, const mutable_buffer& b) noexcept;
Returns: A
mutable_bufferequivalent tomutable_buffer( buffer_cast<char*>(b) + min(n, buffer_size(b)), buffer_size(b) - min(n, buffer_size(b)));
const_buffer operator+(const const_buffer& b, size_t n) noexcept; const_buffer operator+(size_t n, const const_buffer& b) noexcept;
Returns: A
const_bufferequivalent toconst_buffer( buffer_cast<const char*>(b) + min(n, buffer_size(b)), buffer_size(b) - min(n, buffer_size(b)));
mutable_buffers_1 operator+(const mutable_buffers_1& b, size_t n) noexcept; mutable_buffers_1 operator+(size_t n, const mutable_buffers_1& b) noexcept;
Returns: A
mutable_buffers_1equivalent tomutable_buffers_1( buffer_cast<char*>(b) + min(n, buffer_size(b)), buffer_size(b) - min(n, buffer_size(b)));
const_buffers_1 operator+(const const_buffers_1& b, size_t n) noexcept; const_buffers_1 operator+(size_t n, const const_buffers_1& b) noexcept;
Returns: A
const_buffers_1equivalent toconst_buffers_1( buffer_cast<const char*>(b) + min(n, buffer_size(b)), buffer_size(b) - min(n, buffer_size(b)));
In the functions below, T
must be a trivially copyable type.
For the function overloads below that accept an argument of type vector<>,
the buffer objects returned are invalidated by any vector operation that
also invalidates all references, pointers and iterators referring to the
elements in the sequence (C++ Std, [vector]).
For the function overloads below that accept an argument of type basic_string<>,
the buffer objects returned are invalidated according to the rules defined
for invalidation of references, pointers and iterators referring to elements
of the sequence (C++ Std, [string.require]).
mutable_buffers_1 buffer(void* p, size_t n) noexcept;
Returns:
mutable_buffers_1(p, n).
const_buffers_1 buffer(const void* p, size_t n) noexcept;
Returns:
const_buffers_1(p, n).
mutable_buffers_1 buffer(const mutable_buffer& b) noexcept;
Returns:
mutable_buffers_1(b).
mutable_buffers_1 buffer(const mutable_buffer& b, size_t n) noexcept;
Returns: A
mutable_buffers_1value equivalent to:mutable_buffers_1( buffer_cast<void*>(b), min(buffer_size(b), n));
const_buffers_1 buffer(const const_buffer& b) noexcept;
Returns:
const_buffers_1(b).
const_buffers_1 buffer(const const_buffer& b, size_t n) noexcept;
Returns: A
const_buffers_1value equivalent to:const_buffers_1( buffer_cast<const void*>(b), min(buffer_size(b), n));
template<class T, size_t N> mutable_buffers_1 buffer(T (&arr)[N]) noexcept;
Returns: A
mutable_buffers_1value equivalent to:mutable_buffers_1( static_cast<void*>(arr), N * sizeof(T));
template<class T, size_t N> mutable_buffers_1 buffer(T (&arr)[N], size_t n) noexcept;
Returns: A
mutable_buffers_1value equivalent to:mutable_buffers_1( static_cast<void*>(arr), min(N * sizeof(T), n));
template<class T, size_t N> const_buffers_1 buffer(const T (&arr)[N]) noexcept;
Returns: A
const_buffers_1value equivalent to:const_buffers_1( static_cast<const void*>(arr), N * sizeof(T));
template<class T, size_t N> const_buffers_1 buffer(const T (&arr)[N], size_t n) noexcept;
Returns: A
const_buffers_1value equivalent to:const_buffers_1( static_cast<const void*>(arr), min(N * sizeof(T), n));
template<class T, size_t N> mutable_buffers_1 buffer(array<T, N>& arr) noexcept;
Returns: A
mutable_buffers_1value equivalent to:mutable_buffers_1( arr.data(), arr.size() * sizeof(T));
template<class T, size_t N> mutable_buffers_1 buffer(array<T, N>& arr, size_t n) noexcept;
Returns: A
mutable_buffers_1value equivalent to:mutable_buffers_1( arr.data(), min(arr.size() * sizeof(T), n));
template<class T, size_t N> const_buffers_1 buffer(array<const T, N>& arr) noexcept;
Returns: A
const_buffers_1value equivalent to:const_buffers_1( arr.data(), arr.size() * sizeof(T));
template<class T, size_t N> const_buffers_1 buffer(array<const T, N>& arr, size_t n) noexcept;
Returns: A
const_buffers_1value equivalent to:const_buffers_1( arr.data(), min(arr.size() * sizeof(T), n));
template<class T, size_t N> const_buffers_1 buffer(const array<T, N>& arr) noexcept;
Returns: A
const_buffers_1value equivalent to:const_buffers_1( arr.data(), arr.size() * sizeof(T));
template<class T, size_t N> const_buffers_1 buffer(const array<T, N>& arr, size_t n) noexcept;
Returns: A
const_buffers_1value equivalent to:const_buffers_1( arr.data(), min(arr.size() * sizeof(T), n));
template<class T, class Allocator> mutable_buffers_1 buffer(vector<T, Allocator>& vec) noexcept;
Returns: A
mutable_buffers_1value equivalent to:mutable_buffers_1( !vec.empty() ? &vec[0] : nullptr, vec.size() * sizeof(T));
template<class T, class Allocator> mutable_buffers_1 buffer(vector<T, Allocator>& vec, size_t n) noexcept;
Returns: A
mutable_buffers_1value equivalent to:mutable_buffers_1( !vec.empty() ? &vec[0] : nullptr, min(vec.size() * sizeof(T), n));
template<class T, class Allocator> const_buffers_1 buffer(const vector<T, Allocator>& vec) noexcept;
Returns: A
const_buffers_1value equivalent to:const_buffers_1( !vec.empty() ? &vec[0] : nullptr, vec.size() * sizeof(T));
template<class T, class Allocator> const_buffers_1 buffer(const vector<T, Allocator>& vec, size_t n) noexcept;
Returns: A
const_buffers_1value equivalent to:const_buffers_1( !vec.empty() ? &vec[0] : nullptr, min(vec.size() * sizeof(T), n));
template<class CharT, class Traits, class Allocator> mutable_buffers_1 buffer(basic_string<CharT, Traits, Allocator>& str) noexcept;
Returns: A
mutable_buffers_1value equivalent to:mutable_buffers_1( !str.empty() ? &str[0] : nullptr, str.size() * sizeof(CharT));
template<class CharT, class Traits, class Allocator> mutable_buffers_1 buffer(basic_string<CharT, Traits, Allocator>& str, size_t n) noexcept;
Returns: A
mutable_buffers_1value equivalent to:mutable_buffers_1( !str.empty() ? &str[0] : nullptr, min(str.size() * sizeof(CharT), n));
template<class CharT, class Traits> const_buffers_1 buffer(basic_string_view<CharT, Traits> str) noexcept;
Returns: A
const_buffers_1value equivalent to:const_buffers_1( str.data(), str.size() * sizeof(CharT));
template<class CharT, class Traits> const_buffers_1 buffer(basic_string_view<CharT, Traits> str, size_t n) noexcept;
Returns: A
const_buffers_1value equivalent to:const_buffers_1( str.data(), min(str.size() * sizeof(CharT), n));
The dynamic_vector_buffer
class template meets the requirements for DynamicBuffer.
namespace std { namespace experimental { inline namespace network_v1 { template<class T, class Allocator> class dynamic_vector_buffer { public: // types: typedef const_buffers_1 const_buffers_type; typedef mutable_buffers_1 mutable_buffers_type; // constructors: explicit dynamic_vector_buffer(vector<T, Allocator>& vec) noexcept; dynamic_vector_buffer(vector<T, Allocator>& vec, size_t maximum_size) noexcept; dynamic_vector_buffer(dynamic_vector_buffer&&) = default; // members: size_t size() const noexcept; size_t max_size() const noexcept; size_t capacity() const noexcept; const_buffers_type data() const noexcept; mutable_buffers_type prepare(size_t n); void commit(size_t n); void consume(size_t n); private: vector<T, Allocator>& vec_; // exposition only size_t size_; // exposition only const size_t max_size_; // exposition only }; } // inline namespace network_v1 } // namespace experimental } // namespace std
The dynamic_vector_buffer
class template requires that T
is a trivially copyable type and that sizeof(T)
== 1.
explicit dynamic_vector_buffer(vector<T, Allocator>& vec) noexcept;
Effects: Initializes
vec_withvec,size_withvec.size(), andmax_size_withvec.max_size().
dynamic_vector_buffer(vector<T, Allocator>& vec, size_t maximum_size) noexcept;
Requires:
vec.size() <= maximum_size.
Effects: Initializes
vec_withvec,size_withvec.size(), andmax_size_withmaximum_size.
[buffer.dynamic.vector.members]
size_t size() const noexcept;
Returns:
size_.
size_t max_size() const noexcept;
Returns:
max_size_.
size_t capacity() const noexcept;
Returns:
vec_.capacity().
const_buffers_type data() const noexcept;
Returns:
buffer(vec_, size_).
mutable_buffers_type prepare(size_t n);
Effects: Performs
vec_.resize(size_ + n).
Returns:
buffer(buffer(vec_) + size_, n).
Throws:
length_errorifsize() + nexceedsmax_size().
void commit(size_t n);
Effects: Performs:
size_ += min(n, vec_.size() - size_); vec_.resize(size_);
void consume(size_t n);
Effects: Performs:
size_t m = min(n, size_); vec_.erase(vec_.begin(), vec_.begin() + m); size_ -= m;
The dynamic_string_buffer
class template meets the requirements for DynamicBuffer.
namespace std { namespace experimental { inline namespace network_v1 { template<class CharT, class Traits, class Allocator> class dynamic_string_buffer { public: // types: typedef const_buffers_1 const_buffers_type; typedef mutable_buffers_1 mutable_buffers_type; // constructors: explicit dynamic_string_buffer(basic_string<CharT, Traits, Allocator>& str) noexcept; dynamic_string_buffer(basic_string<CharT, Traits, Allocator>& str, size_t maximum_size) noexcept; dynamic_string_buffer(dynamic_string_buffer&&) = default; // members: size_t size() const noexcept; size_t max_size() const noexcept; size_t capacity() const noexcept; const_buffers_type data() const noexcept; mutable_buffers_type prepare(size_t n); void commit(size_t n) noexcept; void consume(size_t n); private: basic_string<CharT, Traits, Allocator>& str_; // exposition only size_t size_; // exposition only const size_t max_size_; // exposition only }; } // inline namespace network_v1 } // namespace experimental } // namespace std
The dynamic_string_buffer
class template requires that sizeof(CharT) == 1.
explicit dynamic_string_buffer(basic_string<CharT, Traits, Allocator>& str) noexcept;
Effects: Initializes
str_withstr,size_withstr.size(), andmax_size_withstr.max_size().
dynamic_string_buffer(basic_string<CharT, Traits, Allocator>& str, size_t maximum_size) noexcept;
Requires:
str.size() <= maximum_size.
Effects: Initializes
str_withstr,size_withstr.size(), andmax_size_withmaximum_size.
[buffer.dynamic.string.members]
size_t size() const noexcept;
Returns:
size_.
size_t max_size() const noexcept;
Returns:
max_size_.
size_t capacity() const noexcept;
Returns:
str_.capacity().
const_buffers_type data() const noexcept;
Returns:
buffer(str_, size_).
mutable_buffers_type prepare(size_t n);
Effects: Performs
str_.resize(size_ + n).
Returns:
buffer(buffer(str_) + size_, n).
Throws:
length_errorifsize() + nexceedsmax_size().
void commit(size_t n) noexcept;
Effects: Performs:
size_ += min(n, str_.size() - size_); str_.resize(size_);
void consume(size_t n);
Effects: Performs:
size_t m = min(n, size_); str_.erase(m); size_ -= m;
template<class T, class Allocator> dynamic_vector_buffer<T, Allocator> dynamic_buffer(vector<T, Allocator>& vec) noexcept;
Returns:
dynamic_vector_buffer<T, Allocator>(vec).
template<class T, class Allocator> dynamic_vector_buffer<T, Allocator> dynamic_buffer(vector<T, Allocator>& vec, size_t n) noexcept;
Returns:
dynamic_vector_buffer<T, Allocator>(vec, n).
template<class CharT, class Traits, class Allocator> dynamic_string_buffer<CharT, Traits, Allocator> dynamic_buffer(basic_string<CharT, Traits, Allocator>& str) noexcept;
Returns:
dynamic_string_buffer<CharT, Traits, Allocator>(str).
template<class CharT, class Traits, class Allocator> dynamic_string_buffer<CharT, Traits, Allocator> dynamic_buffer(basic_string<CharT, Traits, Allocator>& str, size_t n) noexcept;
Returns:
dynamic_string_buffer<CharT, Traits, Allocator>(str, n).
namespace std { namespace experimental { inline namespace network_v1 { class transfer_all { public: size_t operator()(const error_code& ec, size_t) const; }; } // inline namespace network_v1 } // namespace experimental } // namespace std
The class transfer_all
is a function object type for use as a CompletionCondition
argument to synchronous read, asynchronous read, synchronous
write, or asynchronous write
operations.
size_t operator()(const error_code& ec, size_t) const;
Returns: If
!ec, an unspecified non-zero value. Otherwise0.
namespace std { namespace experimental { inline namespace network_v1 { class transfer_at_least { public: explicit transfer_at_least(size_t m); size_t operator()(const error_code& ec, size_t s) const; private: size_t minimum_; // exposition only }; } // inline namespace network_v1 } // namespace experimental } // namespace std
The class transfer_at_least
is a function object type for use as a CompletionCondition
argument to synchronous read, asynchronous read, synchronous
write, or asynchronous write
operations.
explicit transfer_at_least(size_t m);
Postconditions:
minimum_ == m.
size_t operator()(const error_code& ec, size_t n) const;
Returns: If
!ec && n < minimum_, an unspecified non-zero value. Otherwise0.
namespace std { namespace experimental { inline namespace network_v1 { class transfer_exactly { public: explicit transfer_exactly(size_t e); size_t operator()(const error_code& ec, size_t s) const; private: size_t exact_; // exposition only }; } // inline namespace network_v1 } // namespace experimental } // namespace std
The class transfer_exactly
is a function object type for use as a CompletionCondition
argument to synchronous read, asynchronous read, synchronous
write, or asynchronous write
operations.
explicit transfer_exactly(size_t e);
Postconditions:
exact_ == e.
size_t operator()(const error_code& ec, size_t n) const;
Returns: If
!ec && n < exact_, the result ofmin(exact_ - n, N), whereNis an unspecified non-zero value. Otherwise0.
template<class SyncReadStream, class MutableBufferSequence> size_t read(SyncReadStream& stream, const MutableBufferSequence& buffers); template<class SyncReadStream, class MutableBufferSequence> size_t read(SyncReadStream& stream, const MutableBufferSequence& buffers, error_code& ec); template<class SyncReadStream, class MutableBufferSequence, class CompletionCondition> size_t read(SyncReadStream& stream, const MutableBufferSequence& buffers, CompletionCondition completion_condition); template<class SyncReadStream, class MutableBufferSequence, class CompletionCondition> size_t read(SyncReadStream& stream, const MutableBufferSequence& buffers, CompletionCondition completion_condition, error_code& ec);
Effects: Clears
ec, then reads data from the buffer-oriented synchronous read stream objectstreamby performing zero or more calls to the stream'sread_somemember function.
The
completion_conditionparameter specifies a function object to be called prior to each call to the stream'sread_somemember function. The function object is passed theerror_codevalue from the most recentread_somecall, and the total number of bytes transferred in the synchronous read operation so far. The function object return value specifies the maximum number of bytes to be read on the subsequentread_somecall. Overloads where a completion condition is not specified behave as if called with an object of classtransfer_all.
The synchronous read operation continues until:
— the total number of bytes transferred is equal to
buffer_size(buffers); or
— the completion condition returns
0.
On return,
eccontains theerror_codevalue from the most recentread_somecall.
Returns: The total number of bytes transferred in the synchronous read operation.
Remarks: This function shall not participate in overload resolution unless
is_mutable_buffer_sequence<MutableBufferSequence>::valueistrue.
template<class SyncReadStream, class DynamicBuffer> size_t read(SyncReadStream& stream, DynamicBuffer&& b); template<class SyncReadStream, class DynamicBuffer> size_t read(SyncReadStream& stream, DynamicBuffer&& b, error_code& ec); template<class SyncReadStream, class DynamicBuffer, class CompletionCondition> size_t read(SyncReadStream& stream, DynamicBuffer&& b, CompletionCondition completion_condition); template<class SyncReadStream, class DynamicBuffer, class CompletionCondition> size_t read(SyncReadStream& stream, DynamicBuffer&& b, CompletionCondition completion_condition, error_code& ec);
Effects: Clears
ec, then reads data from the synchronous read stream objectstreamby performing zero or more calls to the stream'sread_somemember function.
Data is placed into the dynamic buffer object
b. A mutable buffer sequence is obtained prior to eachread_somecall usingb.prepare(N), whereNis an unspecified value less than or equal tob.max_size() - b.size(). [Note: Implementations are encouraged to useb.capacity()when determiningN, to minimize the number ofread_somecalls performed on the stream. —end note] After eachread_somecall, the implementation performsb.commit(n), wherenis the return value fromread_some.
The
completion_conditionparameter specifies a function object to be called prior to each call to the stream'sread_somemember function. The function object is passed theerror_codevalue from the most recentread_somecall, and the total number of bytes transferred in the synchronous read operation so far. The function object return value specifies the maximum number of bytes to be read on the subsequentread_somecall. Overloads where a completion condition is not specified behave as if called with an object of classtransfer_all.
The synchronous read operation continues until:
—
b.size() == b.max_size(); or
— the completion condition returns
0.
On return,
eccontains theerror_codevalue from the most recentread_somecall.
Returns: The total number of bytes transferred in the synchronous read operation.
Remarks: This function shall not participate in overload resolution unless
is_dynamic_buffer<DynamicBuffer>::valueistrue.
template<class AsyncReadStream, class MutableBufferSequence, class CompletionToken> DEDUCED async_read(AsyncReadStream& stream, const MutableBufferSequence& buffers, CompletionToken&& token); template<class AsyncReadStream, class MutableBufferSequence, class CompletionCondition, class CompletionToken> DEDUCED async_read(AsyncReadStream& stream, const MutableBufferSequence& buffers, CompletionCondition completion_condition, CompletionToken&& token);
Completion signature:
void(error_code ec, size_t n).
Effects: Reads data from the buffer-oriented asynchronous read stream object
streamby invoking the stream'sasync_read_somemember function (henceforth referred to as asynchronous read_some operations) zero or more times.
The
completion_conditionparameter specifies a function object to be called prior to each asynchronous read_some operation. The function object is passed theerror_codevalue from the most recent asynchronous read_some operation, and the total number of bytes transferred in the asynchronous read operation so far. The function object return value specifies the maximum number of bytes to be read on the subsequent asynchronous read_some operation. Overloads where a completion condition is not specified behave as if called with an object of classtransfer_all.
This asynchronous read operation is outstanding until:
— the total number of bytes transferred is equal to
buffer_size(buffers); or
— the completion condition returns
0.
The program shall ensure the
AsyncReadStreamobjectstreamis valid until the handler for the asynchronous operation is invoked.
On completion of the asynchronous operation,
ecis theerror_codevalue from the most recent asynchronous read_some operation, andnis the total number of bytes transferred.
Remarks: This function shall not participate in overload resolution unless
is_mutable_buffer_sequence<MutableBufferSequence>::valueistrue.
template<class AsyncReadStream, class DynamicBuffer, class CompletionToken> DEDUCED async_read(AsyncReadStream& stream, DynamicBuffer&& b, CompletionToken&& token); template<class AsyncReadStream, class DynamicBuffer, class CompletionCondition, class CompletionToken> DEDUCED async_read(AsyncReadStream& stream, DynamicBuffer&& b, CompletionCondition completion_condition, CompletionToken&& token);
Completion signature:
void(error_code ec, size_t n).
Effects: Initiates an asynchronous operation to read data from the buffer-oriented asynchronous read stream object
streamby performing one or more asynchronous read_some operations on the stream.
Data is placed into the dynamic buffer object
b. A mutable buffer sequence is obtained prior to eachasync_read_somecall usingb.prepare(N), whereNis an unspecified value such thatNis less than or equal tob.max_size() - b.size(). [Note: Implementations are encouraged to useb.capacity()when determiningN, to minimize the number of asynchronous read_some operations performed on the stream. —end note] After the completion of each asynchronous read_some operation, the implementation performsb.commit(n), wherenis the value passed to the asynchronous read_some operation's completion handler.
The
completion_conditionparameter specifies a function object to be called prior to each asynchronous read_some operation. The function object is passed theerror_codevalue from the most recent asynchronous read_some operation, and the total number of bytes transferred in the asynchronous read operation so far. The function object return value specifies the maximum number of bytes to be read on the subsequent asynchronous read_some operation. Overloads where a completion condition is not specified behave as if called with an object of classtransfer_all.
The asynchronous read operation is outstanding until:
—
b.size() == b.max_size(); or
— the completion condition returns
0.
The program must ensure both the
AsyncReadStreamobjectstreamand the memory associated with the dynamic bufferbare valid until the handler for the asynchronous operation is invoked.
On completion of the asynchronous operation,
ecis theerror_codevalue from the most recent asynchronous read_some operation, andnis the total number of bytes transferred.
Remarks: This function shall not participate in overload resolution unless
is_dynamic_buffer<DynamicBuffer>::valueistrue.
template<class SyncWriteStream, class ConstBufferSequence> size_t write(SyncWriteStream& stream, const ConstBufferSequence& buffers); template<class SyncWriteStream, class ConstBufferSequence> size_t write(SyncWriteStream& stream, const ConstBufferSequence& buffers, error_code& ec); template<class SyncWriteStream, class ConstBufferSequence, class CompletionCondition> size_t write(SyncWriteStream& stream, const ConstBufferSequence& buffers, CompletionCondition completion_condition); template<class SyncWriteStream, class ConstBufferSequence, class CompletionCondition> size_t write(SyncWriteStream& stream, const ConstBufferSequence& buffers, CompletionCondition completion_condition, error_code& ec);
Effects: Writes data to the buffer-oriented synchronous write stream object
streamby performing zero or more calls to the stream'swrite_somemember function.
The
completion_conditionparameter specifies a function object to be called prior to each call to the stream'swrite_somemember function. The function object is passed theerror_codevalue from the most recentwrite_somecall, and the total number of bytes transferred in the synchronous write operation so far. The function object return value specifies the maximum number of bytes to be write on the subsequentwrite_somecall. Overloads where a completion condition is not specified behave as if called with an object of classtransfer_all.
The synchronous write operation continues until:
— the total number of bytes transferred is equal to
buffer_size(buffers); or
— the completion condition returns
0.
On return,
eccontains theerror_codevalue from the most recentwrite_somecall.
Returns: The total number of bytes transferred in the synchronous write operation.
Remarks: This function shall not participate in overload resolution unless
is_const_buffer_sequence<ConstBufferSequence>::valueistrue.
template<class SyncWriteStream, class DynamicBuffer> size_t write(SyncWriteStream& stream, DynamicBuffer&& b); template<class SyncWriteStream, class DynamicBuffer> size_t write(SyncWriteStream& stream, DynamicBuffer&& b, error_code& ec); template<class SyncWriteStream, class DynamicBuffer, class CompletionCondition> size_t write(SyncWriteStream& stream, DynamicBuffer&& b, CompletionCondition completion_condition); template<class SyncWriteStream, class DynamicBuffer, class CompletionCondition> size_t write(SyncWriteStream& stream, DynamicBuffer&& b, CompletionCondition completion_condition, error_code& ec);
Effects: Writes data to the synchronous write stream object
streamby performing zero or more calls to the stream'swrite_somemember function.
Data is written from the dynamic buffer object
b. A constant buffer sequence is obtained usingb.data(). After the data has been written to the stream, the implementation performsb.consume(n), wherenis the number of bytes successfully written.
The
completion_conditionparameter specifies a function object to be called after each call to the stream'swrite_somemember function. The function object is passed theerror_codevalue from the most recentwrite_somecall, and the total number of bytes transferred in the synchronous write operation so far. Overloads where a completion condition is not specified behave as if called with an object of classtransfer_all.
The synchronous write operation continues until:
—
b.size() == 0; or
— the completion condition returns
0.
On return,
eccontains theerror_codevalue from the most recentwrite_somecall.
Returns: The total number of bytes transferred in the synchronous write operation.
Remarks: This function shall not participate in overload resolution unless
is_dynamic_buffer<DynamicBuffer>::valueistrue.
template<class AsyncWriteStream, class ConstBufferSequence, class CompletionToken> DEDUCED async_write(AsyncWriteStream& stream, const ConstBufferSequence& buffers, CompletionToken&& token); template<class AsyncWriteStream, class ConstBufferSequence, class CompletionCondition, class CompletionToken> DEDUCED async_write(AsyncWriteStream& stream, const ConstBufferSequence& buffers, CompletionCondition completion_condition, CompletionToken&& token);
Completion signature:
void(error_code ec, size_t n).
Effects: Initiates an asynchronous operation to write data to the buffer-oriented asynchronous write stream object
streamby performing zero or more asynchronous operations on the stream using the stream'sasync_write_somemember function (henceforth referred to as asynchronous write_some operations).
The
completion_conditionparameter specifies a function object to be called prior to each asynchronous write_some operation. The function object is passed theerror_codevalue from the most recent asynchronous write_some operation, and the total number of bytes transferred in the asynchronous write operation so far. The function object return value specifies the maximum number of bytes to be write on the subsequent asynchronous write_some operation. Overloads where a completion condition is not specified behave as if called with an object of classtransfer_all.
The asynchronous write operation continues until:
— the total number of bytes transferred is equal to
buffer_size(buffers); or
— the completion condition returns
0.
The program must ensure the
AsyncWriteStreamobjectstreamis valid until the handler for the asynchronous operation is invoked.
On completion of the asynchronous operation,
ecis theerror_codevalue from the most recent asynchronous write_some operation, andnis the total number of bytes transferred.
Remarks: This function shall not participate in overload resolution unless
is_const_buffer_sequence<ConstBufferSequence>::valueistrue.
template<class AsyncWriteStream, class DynamicBuffer, class CompletionToken> DEDUCED async_write(AsyncWriteStream& stream, DynamicBuffer&& b, CompletionToken&& token); template<class AsyncWriteStream, class DynamicBuffer, class CompletionCondition, class CompletionToken> DEDUCED async_write(AsyncWriteStream& stream, DynamicBuffer&& b, CompletionCondition completion_condition, CompletionToken&& token);
Completion signature:
void(error_code ec, size_t n).
Effects: Initiates an asynchronous operation to write data to the buffer-oriented asynchronous write stream object
streamby performing zero or more asynchronous write_some operations on the stream.
Data is written from the dynamic buffer object
b. A constant buffer sequence is obtained usingb.data(). After the data has been written to the stream, the implementation performsb.consume(n), wherenis the number of bytes successfully written.
The
completion_conditionparameter specifies a function object to be called prior to each asynchronous write_some operation. The function object is passed theerror_codevalue from the most recent asynchronous write_some operation, and the total number of bytes transferred in the asynchronous write operation so far. The function object return value specifies the maximum number of bytes to be write on the subsequent asynchronous write_some operation. Overloads where a completion condition is not specified behave as if called with an object of classtransfer_all.
The asynchronous write operation continues until:
—
b.size() == 0; or
— the completion condition returns
0.
The program must ensure both the
AsyncWriteStreamobjectstreamand the memory associated with the dynamic bufferbare valid until the handler for the asynchronous operation is invoked.
On completion of the asynchronous operation,
ecis theerror_codevalue from the most recent asynchronous write_some operation, andnis the total number of bytes transferred.
Remarks: This function shall not participate in overload resolution unless
is_dynamic_buffer<DynamicBuffer>::valueistrue.
template<class SyncReadStream, class DynamicBuffer> size_t read_until(SyncReadStream& s, DynamicBuffer&& b, char delim); template<class SyncReadStream, class DynamicBuffer> size_t read_until(SyncReadStream& s, DynamicBuffer&& b, char delim, error_code& ec); template<class SyncReadStream, class DynamicBuffer> size_t read_until(SyncReadStream& s, DynamicBuffer&& b, string_view delim); template<class SyncReadStream, class DynamicBuffer> size_t read_until(SyncReadStream& s, DynamicBuffer&& b, string_view delim, error_code& ec);
Effects: Reads data from the buffer-oriented synchronous read stream object
streamby performing zero or more calls to the stream'sread_somemember function, until the input sequence of the dynamic buffer objectbcontains the specified delimiterdelim.
Data is placed into the dynamic buffer object
b. A mutable buffer sequence is obtained prior to eachread_somecall usingb.prepare(N), whereNis an unspecified value such thatN <= max_size() - size(). [Note: Implementations are encouraged to useb.capacity()when determiningN, to minimize the number ofread_somecalls performed on the stream. —end note] After eachread_somecall, the implementation performsb.commit(n), wherenis the return value fromread_some.
The synchronous read_until operation continues until:
— the input sequence of
bcontains the delimiterdelim; or
—
b.size() == b.max_size(); or
— an synchronous read_some operation fails.
On exit, if the input sequence of
bcontains the delimiter,ecis set such that!ecistrue. Otherwise, ifb.size() == b.max_size(),ecis set such thatec == stream_errc::not_found. Ifb.size() < b.max_size(),eccontains theerror_codefrom the most recentread_somecall.
Returns: The number of bytes in the input sequence of
bup to and including the delimiter, if present. [Note: On completion, the buffer may contain additional bytes following the delimiter. —end note] Otherwise returns0.
template<class AsyncReadStream, class DynamicBuffer, class CompletionToken> DEDUCED async_read_until(AsyncReadStream& s, DynamicBuffer&& b, char delim, CompletionToken&& token); template<class AsyncReadStream, class DynamicBuffer, class CompletionToken> DEDUCED async_read_until(AsyncReadStream& s, DynamicBuffer&& b, string_view delim, CompletionToken&& token);
Completion signature:
void(error_code ec, size_t n).
Effects: Initiates an asynchronous operation to read data from the buffer-oriented asynchronous read stream object
streamby performing zero or more asynchronous read_some operations on the stream, until the input sequence of the dynamic buffer objectbcontains the specified delimiterdelim.
Data is placed into the dynamic buffer object
b. A mutable buffer sequence is obtained prior to eachasync_read_somecall usingb.prepare(N), whereNis an unspecified value such thatN <= max_size() - size(). [Note: Implementations are encouraged to useb.capacity()when determiningN, to minimize the number of asynchronous read_some operations performed on the stream. —end note] After the completion of each asynchronous read_some operation, the implementation performsb.commit(n), wherenis the value passed to the asynchronous read_some operation's completion handler.
The asynchronous read_until operation continues until:
— the input sequence of
bcontains the delimiterdelim; or
—
b.size() == b.max_size(); or
— an asynchronous read_some operation fails.
The program must ensure both the
AsyncReadStreamobjectstreamand the memory associated with the dynamic bufferbare valid until the handler for the asynchronous operation is invoked.
If
delimis of typestring_view, the implementation copies the underlying sequence of characters prior to initiating an asynchronous read_some operation on the stream. [Note: This means that the caller is not required to guarantee the validity of the delimiter string after the call toasync_read_untilreturns. —end note]
On completion of the asynchronous operation, if the input sequence of
bcontains the delimiter,ecis set such that!ecistrue. Otherwise, ifb.size() == b.max_size(),ecis set such thatec == stream_errc::not_found. Ifb.size() < b.max_size(),eccontains theerror_codefrom the most recent asynchronous read_some operation.nshall contain the number of bytes in the input sequence ofbup to and including the delimiter, if present, otherwise0.
namespace std { namespace experimental { inline namespace network_v1 { enum class socket_errc { already_open = implementation defined, not_found = implementation defined }; const error_category& socket_category() noexcept; error_code make_error_code(socket_errc e) noexcept; error_condition make_error_condition(socket_errc e) noexcept; // Sockets: class socket_base; template<class Protocol> class basic_socket; template<class Protocol> class basic_datagram_socket; template<class Protocol> class basic_stream_socket; template<class Protocol> class basic_socket_acceptor; // Socket streams: template<class Protocol, class Clock = chrono::steady_clock, class WaitTraits = wait_traits<Clock>> class basic_socket_streambuf; template<class Protocol, class Clock = chrono::steady_clock, class WaitTraits = wait_traits<Clock>> class basic_socket_iostream; // synchronous connect operations: template<class Protocol, class EndpointSequence> typename Protocol::endpoint connect(basic_socket<Protocol>& s, const EndpointSequence& endpoints); template<class Protocol, class EndpointSequence> typename Protocol::endpoint connect(basic_socket<Protocol>& s, const EndpointSequence& endpoints); error_code& ec); template<class Protocol, class EndpointSequence, class ConnectCondition> typename Protocol::endpoint connect(basic_socket<Protocol>& s, const EndpointSequence& endpoints, ConnectCondition c); template<class Protocol, class EndpointSequence, class ConnectCondition> typename Protocol::endpoint connect(basic_socket<Protocol>& s, const EndpointSequence& endpoints, ConnectCondition c, error_code& ec); template<class Protocol, class InputIterator> InputIterator connect(basic_socket<Protocol>& s, InputIterator first, InputIterator last); template<class Protocol, class InputIterator> InputIterator connect(basic_socket<Protocol>& s, InputIterator first, InputIterator last, error_code& ec); template<class Protocol, class InputIterator, class ConnectCondition> InputIterator connect(basic_socket<Protocol>& s, InputIterator first, InputIterator last, ConnectCondition c); template<class Protocol, class InputIterator, class ConnectCondition> InputIterator connect(basic_socket<Protocol>& s, InputIterator first, InputIterator last, ConnectCondition c, error_code& ec); // asynchronous connect operations: template<class Protocol, class EndpointSequence, class CompletionToken> DEDUCED async_connect(basic_socket<Protocol>& s, const EndpointSequence& endpoints, CompletionToken&& token); template<class Protocol, class EndpointSequence, class ConnectCondition, class CompletionToken> DEDUCED async_connect(basic_socket<Protocol>& s, const EndpointSequence& endpoints, ConnectCondition c, CompletionToken&& token); template<class Protocol, class InputIterator, class CompletionToken> DEDUCED async_connect(basic_socket<Protocol>& s, InputIterator first, InputIterator last, CompletionToken&& token); template<class Protocol, class InputIterator, class ConnectCondition, class CompletionToken> DEDUCED async_connect(basic_socket<Protocol>& s, InputIterator first, InputIterator last, ConnectCondition c, CompletionToken&& token); } // inline namespace network_v1 } // namespace experimental template<> struct is_error_code_enum< experimental::network_v1::socket_errc> : public true_type {}; } // namespace std
The figure below illustrates relationships between various types described in this Technical Specification. A solid line from A to B that is terminated by an open arrow indicates that A is derived from B. A solid line from A to B that starts with a diamond and is terminated by a solid arrow indicates that A contains an object of type B. A dotted line from A to B indicates that A is a typedef for the class template B with the specified template argument.
Several classes described in this Technical Specification have a member
type native_handle_type,
a member function native_handle,
and member functions that accept arguments of type native_handle_type.
The presence of these members and their semantics is implementation-defined.
[Note: These members allow implementations to provide
access to their implementation details. Their names are specified to
facilitate portable compile-time detection. Actual use of these members
is inherently non-portable. For operating systems that are based on POSIX,
implementations are encouraged to define the native_handle_type
for sockets as int, representing
the native file descriptor associated with the socket. —end
note]
An endpoint must meet the requirements of DefaultConstructible
types (C++ Std, [defaultconstructible]), CopyConstructible
types (C++ Std, 20.1.3), and the requirements of Assignable
types (C++ Std, 23.1).
In the table below, X
denotes an endpoint class, a
denotes a (possibly const) value of type X,
and u denotes an identifier.
Table 18. Endpoint requirements
|
expression |
type |
assertion/note |
|---|---|---|
|
|
type meeting protocol requirements | |
|
|
|
In the table below, X
denotes an endpoint class, a
denotes a (possibly const) value of type X,
b denotes a value of
type X, and s denotes a (possibly const) value
of a type that is convertible to size_t
and denotes a size in bytes.
Table 19. Endpoint requirements for extensible implementations
|
expression |
type |
assertion/note |
|---|---|---|
|
|
|
Returns a pointer suitable for passing as the address
argument to functions such as POSIX connect,
or as the dest_addr argument to functions
such as POSIX sendto.
The implementation shall perform a |
|
|
|
Returns a pointer suitable for passing as the address
argument to functions such as POSIX accept,
getpeername,
getsockname
and recvfrom.
The implementation shall perform a |
|
|
|
Returns a value suitable for passing as the address_len argument to functions such as POSIX connect, or as the dest_len argument to functions such as POSIX sendto, after appropriate integer conversion has been performed. |
|
|
pre: | |
|
|
|
Returns a value suitable for passing as the address_len argument to functions such as POSIX accept, getpeername, getsockname and recvfrom, after appropriate integer conversion has been performed. |
A protocol must meet the requirements of Destructible
(C++ Std, [destructible]), CopyConstructible
types (C++ Std, 20.1.3), and the requirements of Assignable
types (C++ Std, 23.1).
In the table below, X
denotes a protocol class.
Table 20. Protocol requirements
|
expression |
return type |
assertion/note |
|---|---|---|
|
|
type meeting endpoint requirements |
In the table below, X
denotes a protocol class, and a
denotes a (possibly const) value of type X.
Table 21. Protocol requirements for extensible implementations
|
expression |
return type |
assertion/note |
|---|---|---|
|
|
|
Returns a value suitable for passing as the domain argument to POSIX socket (or equivalent). |
|
|
|
Returns a value suitable for passing as the type argument to POSIX socket (or equivalent). |
|
|
|
Returns a value suitable for passing as the protocol argument to POSIX socket (or equivalent). |
[socket.reqmts.acceptableprotocol]
An acceptable protocol must meet the requirements for protocol as well as the additional requirements listed below.
In the table below, X
denotes an acceptable protocol class.
Table 22. AcceptableProtocol requirements
|
expression |
return type |
assertion/note |
|---|---|---|
|
|
A type that is publicly and unambiguously derived from |
[socket.reqmts.gettablesocketoption]
In the table below, X
denotes a socket option class, a
denotes a (possibly const) value of type X,
b denotes a value of
type X, p denotes a (possibly const) value
that meets the protocol
requirements, and s denotes
a (possibly const) value of a type that is convertible to size_t and denotes a size in bytes.
Table 23. GettableSocketOption requirements for extensible implementations
|
expression |
type |
assertion/note |
|---|---|---|
|
|
|
Returns a value suitable for passing as the level argument to POSIX getsockopt (or equivalent). |
|
|
|
Returns a value suitable for passing as the option_name argument to POSIX getsockopt (or equivalent). |
|
|
|
Returns a pointer suitable for passing as the option_value argument to POSIX getsockopt (or equivalent). |
|
|
|
Returns a value suitable for passing as the option_len argument to POSIX getsockopt (or equivalent), after appropriate integer conversion has been performed. |
|
|
post: |
[socket.reqmts.settablesocketoption]
In the table below, X
denotes a socket option class, a
denotes a (possibly const) value of type X,
p denotes a (possibly
const) value that meets the protocol
requirements, and u denotes
an identifier.
Table 24. SettableSocketOption requirements for extensible implementations
|
expression |
type |
assertion/note |
|---|---|---|
|
|
|
Returns a value suitable for passing as the level argument to POSIX setsockopt (or equivalent). |
|
|
|
Returns a value suitable for passing as the option_name argument to POSIX setsockopt (or equivalent). |
|
|
|
Returns a pointer suitable for passing as the option_value argument to POSIX setsockopt (or equivalent). |
|
|
|
Returns a value suitable for passing as the option_len argument to POSIX setsockopt (or equivalent), after appropriate integer conversion has been performed. |
[socket.reqmts.iocontrolcommand]
In the table below, a
denotes a (possibly const) value of an I/O control command class, and
b denotes a value of
an I/O control command class.
Table 25. IoControlCommand requirements for extensible implementations
|
expression |
type |
assertion/note |
|---|---|---|
|
|
|
Returns a value suitable for passing as the request argument to POSIX ioctl (or equivalent). |
|
|
|
[socket.reqmts.connectcondition]
A connect condition type shall satisfy the requirements of Destructible (C++ Std, [destructible])
and CopyConstructible
(C++ Std, [copyconstructible]) as well as the additional requirements
listed below.
In the table below, x
denotes an object of a connect condition type, ec
denotes a (possibly const) value of type error_code,
and ep denotes a (possibly
const) value of some type satisfying the endpoint
requirements.
Table 26. ConnectCondition requirements
|
expression |
return type |
assertion/note |
|---|---|---|
|
|
|
Returns |
const error_category& socket_category() noexcept;
Returns: A reference to an object of a type derived from class
error_category.
The object’s
default_error_conditionandequivalentvirtual functions behave as specified for the classerror_category. The object’snamevirtual function returns a pointer to the string"socket".
error_code make_error_code(socket_errc e) noexcept;
Returns:
error_code(static_cast<int>(e), socket_category()).
error_condition make_error_condition(socket_errc e) noexcept;
Returns:
error_condition(static_cast<int>(e), socket_category()).
namespace std { namespace experimental { inline namespace network_v1 { class socket_base { public: class broadcast; class debug; class do_not_route; class keep_alive; class linger; class out_of_band_inline; class receive_buffer_size; class receive_low_watermark; class reuse_address; class send_buffer_size; class send_low_watermark; typedef T1 shutdown_type; static constexpr shutdown_type shutdown_receive; static constexpr shutdown_type shutdown_send; static constexpr shutdown_type shutdown_both; typedef T2 wait_type; static constexpr wait_type wait_read; static constexpr wait_type wait_write; static constexpr wait_type wait_error; typedef T3 message_flags; static constexpr message_flags message_peek; static constexpr message_flags message_out_of_band; static constexpr message_flags message_do_not_route; static const int max_listen_connections; protected: socket_base(); ~socket_base(); }; } // inline namespace network_v1 } // namespace experimental } // namespace std
socket_base defines several
member types:
— socket option classes broadcast,
debug, do_not_route,
keep_alive, linger, out_of_band_inline,
receive_buffer_size, receive_low_watermark, reuse_address, send_buffer_size,
and send_low_watermark;
— an enumerated type, shutdown_type,
for use with the basic_socket<Protocol> class's shutdown
member function.
— an enumerated type, wait_type,
for use with the basic_socket<Protocol> and basic_socket_acceptor<Protocol> classes' wait
and async_wait member functions,
— a bitmask type, message_flags,
for use with the basic_stream_socket<Protocol> class's send,
async_send,receive, and async_receive
member functions, and the basic_datagram_socket<Protocol> class's send,
async_send, send_to, async_send_to,
receive, async_receive, receive_from,
and async_receive_from
member functions.
— a constant, max_listen_connections,
for use with the basic_socket_acceptor<Protocol> class's listen
member function.
Table 27. socket_base constants
|
Constant Name |
POSIX macro |
Definition or notes |
|---|---|---|
|
|
|
Disables further receive operations. |
|
|
|
Disables further send operations. |
|
|
|
Disables further send and receive operations. |
|
|
Wait until the socket is ready-to-read. | |
|
|
Wait until the socket is ready-to-write. | |
|
|
Wait until the socket has a pending error condition. | |
|
|
|
Leave received data in queue. |
|
|
|
Out-of-band data. |
|
|
|
Send without using routing tables. |
|
|
|
The implementation-defined limit on the length of the queue of pending incoming connections. |
The socket_base::broadcast, socket_base::debug,
socket_base::do_not_route, socket_base::keep_alive,
socket_base::out_of_band_inline and socket_base::reuse_address classes are boolean socket
options.
Boolean socket option classes satisfy the requirements for Destructible (C++ Std, [destructible]),
CopyConstructible (C++
Std, [copyconstructible]), Assignable
(C++ Std, [assignable]), GettableSocketOption, and SettableSocketOption.
The boolean socket option classes are contextually convertible to bool.
Boolean socket option classes are defined as follows:
class C { public: // constructors: C() noexcept; explicit C(bool v) noexcept; // members: C& operator=(bool v) noexcept; bool value() const noexcept; explicit operator bool() const noexcept; bool operator!() const noexcept; };
Extensible implementations provide the following member functions:
class C { public: template<class Protocol> int level(const Protocol& p) const noexcept; template<class Protocol> int name(const Protocol& p) const noexcept; template<class Protocol> void* data(const Protocol& p) noexcept; template<class Protocol> const void* data(const Protocol& p) const noexcept; template<class Protocol> size_t size(const Protocol& p) const noexcept; template<class Protocol> void resize(const Protocol& p, size_t s); // remainder unchanged private: int value_; // exposition only };
Let L and N
identify the POSIX macros to be passed as the level
and option_name arguments, respectively, to POSIX
setsockopt
and getsockopt.
Table 28. Boolean socket options
|
C |
L |
N |
Definition or notes |
|---|---|---|---|
|
|
|
|
Determines whether a socket permits sending of broadcast messages, if supported by the protocol. |
|
|
|
|
Determines whether debugging information is recorded by the underlying protocol. |
|
|
|
|
Determines whether outgoing messages bypass standard routing facilities. |
|
|
|
|
Determines whether a socket permits sending of keep_alive messages, if supported by the protocol. |
|
|
|
|
Determines whether out-of-band data (also known as urgent data) is received inline. |
|
|
|
|
Determines whether the validation of endpoints used for binding a socket should allow the reuse of local endpoints, if supported by the protocol. |
C() noexcept;
Postconditions:
!value().
explicit C(bool v) noexcept;
Postconditions:
value() == v.
C& operator=(bool v) noexcept;
Returns:
*this.
Postconditions:
value() == v.
bool value() const noexcept;
Returns: The stored socket option value. For extensible implementations, returns
value_ != 0.
explicit operator bool() const noexcept;
Returns:
value().
bool operator!() const noexcept;
Returns:
!value().
template<class Protocol> int level(const Protocol& p) const noexcept;
Returns:
L.
template<class Protocol> int name(const Protocol& p) const noexcept;
Returns:
N.
template<class Protocol> void* data(const Protocol& p) noexcept;
Returns:
std::addressof(value_).
template<class Protocol> const void* data(const Protocol& p) const noexcept;
Returns:
std::addressof(value_).
template<class Protocol> size_t size(const Protocol& p) const noexcept;
Returns:
sizeof(value_).
template<class Protocol> void resize(const Protocol& p, size_t s);
Throws:
length_errorifsis not a valid data size for the protocol specified byp.
The socket_base::receive_buffer_size, socket_base::receive_low_watermark,
socket_base::send_buffer_size and socket_base::send_low_watermark
classes are integral socket options.
Integral socket option classes satisfy the requirements for Destructible (C++ Std, [destructible]),
CopyConstructible (C++
Std, [copyconstructible]), Assignable
(C++ Std, [assignable]), GettableSocketOption, and SettableSocketOption.
Integral socket option classes are defined as follows:
class C { public: // constructors: C() noexcept; explicit C(int v); // members: C& operator=(int v); int value() const noexcept; };
Extensible implementations provide the following member functions:
class C { public: template<class Protocol> int level(const Protocol& p) const noexcept; template<class Protocol> int name(const Protocol& p) const noexcept; template<class Protocol> void* data(const Protocol& p) noexcept; template<class Protocol> const void* data(const Protocol& p) const noexcept; template<class Protocol> size_t size(const Protocol& p) const noexcept; template<class Protocol> void resize(const Protocol& p, size_t s); // remainder unchanged private: int value_; // exposition only };
Let L and N
identify the POSIX macros to be passed as the level
and option_name arguments, respectively, to POSIX
setsockopt
and getsockopt.
Table 29. Integral socket options
|
C |
L |
N |
Definition or notes |
|---|---|---|---|
|
|
|
|
Specifies the size of the receive buffer associated with a socket. |
|
|
|
|
Specifies the minimum number of bytes to process for socket input operations. |
|
|
|
|
Specifies the size of the send buffer associated with a socket. |
|
|
|
|
Specifies the minimum number of bytes to process for socket output operations. |
[Note: The constants SOL_SOCKET,
SO_RCVBUF, SO_RCVLOWAT, SO_SNDBUF
and SO_SNDLOWAT are defined
in the POSIX header file sys/socket.h. —end note]
C() noexcept;
Postconditions:
value() == 0.
explicit C(int v);
Postconditions:
value() == v.
C& operator=(int v);
Returns:
*this.
Postconditions:
value() == v.
int value() const noexcept;
Returns: The stored socket option value. For extensible implementations, returns
value_.
template<class Protocol> int level(const Protocol& p) const noexcept;
Returns:
L.
template<class Protocol> int name(const Protocol& p) const noexcept;
Returns:
N.
template<class Protocol> void* data(const Protocol& p) noexcept;
Returns:
std::addressof(value_).
template<class Protocol> const void* data(const Protocol& p) const noexcept;
Returns:
std::addressof(value_).
template<class Protocol> size_t size(const Protocol& p) const noexcept;
Returns:
sizeof(value_).
template<class Protocol> void resize(const Protocol& p, size_t s);
Throws:
length_errorifsis not a valid data size for the protocol specified byp.
The linger class represents
a socket option for controlling the behavior when a socket is closed and
unsent data is present.
linger satisfies the requirements
for Destructible (C++ Std,
[destructible]), CopyConstructible
(C++ Std, [copyconstructible]), Assignable
(C++ Std, [assignable]), GettableSocketOption, and SettableSocketOption.
namespace std { namespace experimental { inline namespace network_v1 { class socket_base::linger { public: // constructors: linger() noexcept; linger(bool e, chrono::seconds t) noexcept; // members: bool enabled() const noexcept; void enabled(bool e) noexcept; chrono::seconds timeout() const noexcept; void timeout(chrono::seconds t) noexcept; }; } // inline namespace network_v1 } // namespace experimental } // namespace std
Extensible implementations provide the following member functions:
namespace std { namespace experimental { inline namespace network_v1 { class socket_base::linger { public: template<class Protocol> int level(const Protocol& p) const noexcept; template<class Protocol> int name(const Protocol& p) const noexcept; template<class Protocol> void data(const Protocol& p) noexcept; template<class Protocol> const void* data(const Protocol& p) const noexcept; template<class Protocol> size_t size(const Protocol& p) const noexcept; template<class Protocol> void resize(const Protocol& p, size_t s); // remainder unchanged private: ::linger value_; // exposition only }; } // inline namespace network_v1 } // namespace experimental } // namespace std
linger() noexcept;
Postconditions:
!enabled() && timeout() == chrono::seconds(0).
linger(bool e, chrono::seconds t) noexcept;
Postconditions:
enabled() == e && timeout() == t.
bool enabled() const noexcept;
Returns:
value_.l_onoff != 0.
void enabled(bool e) noexcept;
Postconditions:
enabled() == e.
chrono::seconds timeout() const noexcept;
Returns:
chrono::seconds(value_.l_linger).
void timeout(chrono::seconds t) noexcept;
Postconditions:
timeout() == t.
[socket.opt.linger.extensible]
template<class Protocol> int level(const Protocol& p) const noexcept;
Returns:
SOL_SOCKET.
[Note: The constant
SOL_SOCKETis defined in the POSIX header filesys/socket.h. —end note]
template<class Protocol> int name(const Protocol& p) const noexcept;
Returns:
SO_LINGER.
[Note: The constant
SO_LINGERis defined in the POSIX header filesys/socket.h. —end note]
template<class Protocol> void* data(const Protocol& p) const noexcept;
Returns:
std::addressof(value_).
template<class Protocol> const void* data(const Protocol& p) const noexcept;
Returns:
std::addressof(value_).
template<class Protocol> size_t size(const Protocol& p) const noexcept;
Returns:
sizeof(value_).
template<class Protocol> void resize(const Protocol& p, size_t s);
Throws:
length_errorifs != sizeof(value_).
Class template basic_socket<Protocol> is used as the base class for the
basic_datagram_socket<Protocol>
and basic_stream_socket<Protocol> class templates. It provides functionality
that is common to both types of socket.
namespace std { namespace experimental { inline namespace network_v1 { template<class Protocol> class basic_socket : public socket_base { public: // types: typedef io_service::executor_type executor_type; typedef implementation defined native_handle_type; // See native handles typedef Protocol protocol_type; typedef typename protocol_type::endpoint endpoint_type; // basic_socket operations: executor_type get_executor() noexcept; native_handle_type native_handle(); // See native handles void open(const protocol_type& protocol = protocol_type()); void open(const protocol_type& protocol, error_code& ec); void assign(const protocol_type& protocol, const native_handle_type& native_socket); // See native handles void assign(const protocol_type& protocol, const native_handle_type& native_socket, error_code& ec); // See native handles bool is_open() const noexcept; void close(); void close(error_code& ec); void cancel(); void cancel(error_code& ec); template<class SettableSocketOption> void set_option(const SettableSocketOption& option); template<class SettableSocketOption> void set_option(const SettableSocketOption& option, error_code& ec); template<class GettableSocketOption> void get_option(GettableSocketOption& option) const; template<class GettableSocketOption> void get_option(GettableSocketOption& option, error_code& ec) const; template<class IoControlCommand> void io_control(IoControlCommand& command); template<class IoControlCommand> void io_control(IoControlCommand& command, error_code& ec); void non_blocking(bool mode); void non_blocking(bool mode, error_code& ec); bool non_blocking() const; void native_non_blocking(bool mode); void native_non_blocking(bool mode, error_code& ec); bool native_non_blocking() const; bool at_mark() const; bool at_mark(error_code& ec) const; size_t available() const; size_t available(error_code& ec) const; void bind(const endpoint_type& endpoint); void bind(const endpoint_type& endpoint, error_code& ec); void shutdown(shutdown_type what); void shutdown(shutdown_type what, error_code& ec); endpoint_type local_endpoint() const; endpoint_type local_endpoint(error_code& ec) const; endpoint_type remote_endpoint() const; endpoint_type remote_endpoint(error_code& ec) const; void connect(const endpoint_type& endpoint); void connect(const endpoint_type& endpoint, error_code& ec); template<class CompletionToken> DEDUCED async_connect(const endpoint_type& endpoint, CompletionToken&& token); void wait(wait_type w); void wait(wait_type w, error_code& ec); template<class CompletionToken> DEDUCED async_wait(wait_type w, CompletionToken&& token); protected: // construct / copy / destroy: explicit basic_socket(io_service& ios); basic_socket(io_service& ios, const protocol_type& protocol); basic_socket(io_service& ios, const endpoint_type& endpoint); basic_socket(io_service& ios, const protocol_type& protocol, const native_handle_type& native_socket); // See native handles basic_socket(const basic_socket&) = delete; basic_socket(basic_socket&& rhs); template<class OtherProtocol> basic_socket(basic_socket<OtherProtocol>&& rhs); ~basic_socket(); basic_socket& operator=(const basic_socket&) = delete; basic_socket& operator=(basic_socket&& rhs); template<class OtherProtocol> basic_socket& operator=(basic_socket<OtherProtocol>&& rhs); private: protocol_type protocol_; // exposition only }; } // inline namespace network_v1 } // namespace experimental } // namespace std
explicit basic_socket(io_service& ios);
Postconditions:
—get_executor() == ios.get_executor().
—is_open() == false.
basic_socket(io_service& ios, const protocol_type& protocol);
Effects: Opens this socket as if by calling
open(protocol).
Postconditions:
—get_executor() == ios.get_executor().
—is_open() == true.
—non_blocking() == false.
—protocol_ == protocol.
basic_socket(io_service& ios, const endpoint_type& endpoint);
Effects: Opens and binds this socket as if by calling:
open(endpoint.protocol()); bind(endpoint);
Postconditions:
—get_executor() == ios.get_executor().
—is_open() == true.
—non_blocking() == false.
—protocol_ == endpoint.protocol().
basic_socket(io_service& ios, const protocol_type& protocol, const native_handle_type& native_socket);
Requires:
native_socketis a native handle to an open socket.
Effects: Assigns the existing native socket into this socket as if by calling
assign(protocol, native_socket).
Postconditions:
—get_executor() == ios.get_executor().
—is_open() == true.
—non_blocking() == false.
—protocol_ == protocol.
basic_socket(basic_socket&& rhs);
Effects: Move constructs an object of class
basic_socket<Protocol>that refers to the state originally represented byrhs.
Postconditions:
—get_executor()is equal to the prior value ofrhs.get_executor().
—is_open()returns the same value asrhs.is_open()prior to the constructor invocation.
—non_blocking()returns the same value asrhs.non_blocking()prior to the constructor invocation.
—native_handle()returns the prior value ofrhs.native_handle().
—protocol_is the prior value ofrhs.protocol_.
—rhs.is_open() == false.
template<class OtherProtocol> basic_socket(basic_socket<OtherProtocol>&& rhs);
Requires:
OtherProtocolis implicitly convertible toProtocol.
Effects: Move constructs an object of class
basic_socket<Protocol>that refers to the state originally represented byrhs.
Postconditions:
—get_executor()is equal to the prior value ofrhs.get_executor().
—is_open()returns the same value asrhs.is_open()prior to the constructor invocation.
—non_blocking()returns the same value asrhs.non_blocking()prior to the constructor invocation.
—native_handle()returns the prior value ofrhs.native_handle().
—protocol_is the result of converting the prior value ofrhs.protocol_.
—rhs.is_open() == false.
Remarks: This constructor shall not participate in overload resolution unless
OtherProtocolis implicitly convertible toProtocol.
~basic_socket();
Effects: If
is_open()istrue, cancels all outstanding asynchronous operations associated with this socket, disables the linger socket option to prevent the destructor from blocking, and releases socket resources as if by POSIXclose(native_handle()). Completion handlers for canceled operations are passed an error codeecsuch thatec == errc::operation_canceledyieldstrue.
basic_socket& operator=(basic_socket&& rhs);
Effects: If
is_open()istrue, cancels all outstanding asynchronous operations associated with this socket. Completion handlers for canceled operations are passed an error codeecsuch thatec == errc::operation_canceledyieldstrue. Disables the linger socket option to prevent the assignment from blocking, and releases socket resources as if by POSIXclose(native_handle()). Moves into*thisthe state originally represented byrhs.
Postconditions:
—get_executor()is equal to the prior value ofrhs.get_executor().
—is_open()returns the same value asrhs.is_open()prior to the assignment.
—non_blocking()returns the same value asrhs.non_blocking()prior to the assignment.
—protocol_is the prior value ofrhs.protocol_.
—rhs.is_open() == false.
Returns:
*this.
template<class OtherProtocol> basic_socket& operator=(basic_socket<OtherProtocol>&& rhs);
Requires:
OtherProtocolis implicitly convertible toProtocol.
Effects: If
is_open()istrue, cancels all outstanding asynchronous operations associated with this socket. Completion handlers for canceled operations are passed an error codeecsuch thatec == errc::operation_canceledyieldstrue. Disables the linger socket option to prevent the assignment from blocking, and releases socket resources as if by POSIXclose(native_handle()). Moves into*thisthe state originally represented byrhs.
Postconditions:
—get_executor()is equal to the prior value ofrhs.get_executor().
—is_open()returns the same value asrhs.is_open()prior to the assignment.
—non_blocking()returns the same value asrhs.non_blocking()prior to the assignment.
—protocol_is the result of converting the prior value ofrhs.protocol_.
—rhs.is_open() == false.
Returns:
*this.
Remarks: This assignment operator shall not participate in overload resolution unless
OtherProtocolis implicitly convertible toProtocol.
executor_type get_executor() noexcept;
Returns: The associated executor.
native_handle_type native_handle();
Returns: The native representation of this socket.
void open(const protocol_type& protocol); void open(const protocol_type& protocol, error_code& ec);
Effects: Establishes the postcondition, as if by POSIX
socket(protocol.family(), protocol.type(), protocol.protocol()).
Postconditions:
—is_open() == true.
—non_blocking() == false.
—protocol_ == protocol.
Error conditions:
—socket_errc::already_open— ifis_open() == true.
void assign(const protocol_type& protocol, const native_handle_type& native_socket); void assign(const protocol_type& protocol, const native_handle_type& native_socket, error_code& ec);
Requires:
native_socketis a native handle to an open socket.
Effects: Assigns the native socket handle to this socket object.
Postconditions:
—is_open() == true.
—non_blocking() == false.
—protocol_ == protocol.
Error conditions:
—socket_errc::already_open— ifis_open() == true.
bool is_open() const noexcept;
Returns: A
boolindicating whether this socket was opened by a previous call toopenorassign.
void close(); void close(error_code& ec);
Effects: If
is_open()istrue, cancels all outstanding asynchronous operations associated with this socket, and establishes the postcondition as if by POSIXclose(native_handle()). Completion handlers for canceled asynchronous operations are passed an error codeecsuch thatec == errc::operation_canceledyieldstrue.
Postconditions:
is_open() == false.
void cancel(); void cancel(error_code& ec);
Effects: Cancels all outstanding asynchronous operations associated with this socket. Completion handlers for canceled asynchronous operations are passed an error code
ecsuch thatec == errc::operation_canceledyieldstrue.
Error conditions:
—errc::bad_file_descriptor— ifis_open()isfalse.
template<class SettableSocketOption> void set_option(const SettableSocketOption& option); template<class SettableSocketOption> void set_option(const SettableSocketOption& option, error_code& ec);
Effects: Sets an option on this socket, as if by POSIX
setsockopt(native_handle(), option.level(protocol_), option.name(protocol_), option.data(protocol_), option.size(protocol_)).
template<class GettableSocketOption> void get_option(GettableSocketOption& option); template<class GettableSocketOption> void get_option(GettableSocketOption& option, error_code& ec);
Effects: Gets an option from this socket, as if by POSIX:
socklen_t option_len = option.size(protocol_); int result = getsockopt(native_handle(), option.level(protocol_), option.name(protocol_), option.data(protocol_), &option_len); if (result == 0) option.resize(option_len);
template<class IoControlCommand> void io_control(IoControlCommand& command); template<class IoControlCommand> void io_control(IoControlCommand& command, error_code& ec);
Effects: Executes an I/O control command on this socket, as if by POSIX
ioctl(native_handle(), command.name(), command.data()).
void non_blocking(bool mode); void non_blocking(bool mode, error_code& ec);
Effects: Sets the non-blocking mode of this socket. If
modeistrue, subsequent synchronous operations may fail with error conditionerrc::operation_would_blockif they are unable to perform the requested operation immediately. Ifmodeisfalse, subsequent synchronous operations block until complete.
Error conditions:
—errc::bad_file_descriptor— ifis_open()isfalse.
[Note: The non-blocking mode has no effect on the behavior of asynchronous operations. —end note]
bool non_blocking() const;
Returns: The non-blocking mode of this socket.
void native_non_blocking(bool mode); void native_non_blocking(bool mode, error_code& ec);
Effects: Sets the non-blocking mode of the underlying native socket, as if by POSIX:
int flags = fcntl(native_handle(), F_GETFL, 0); if (flags >= 0) { if (mode) flags |= O_NONBLOCK; else flags &= ~O_NONBLOCK; fcntl(native_handle(), F_SETFL, flags); }
The native non-blocking mode has no effect on the behavior of the synchronous or asynchronous operations specified in this clause.
Error conditions:
—errc::bad_file_descriptor— ifis_open()isfalse.
—errc::invalid_argument— ifmode == falseandnon_blocking() == true. [Note: As the combination does not make sense. —end note]
bool native_non_blocking() const;
Returns: The non-blocking mode of the underlying native socket.
Remarks: Implementations are permitted and encouraged to cache the native non-blocking mode that was applied through a prior call to
native_non_blocking. Implementations may return an incorrect value if a program sets the non-blocking mode directly on the socket, by calling an operating system-specific function on the result ofnative_handle().
bool at_mark() const; bool at_mark(error_code& ec) const;
Effects: Determines if this socket is at the out-of-band data mark, as if by POSIX
sockatmark(native_handle()). [Note: Theat_mark()function must be used in conjunction with thesocket_base::out_of_band_inlinesocket option. —end note]
Returns: A
boolindicating whether this socket is at the out-of-band data mark.
size_t available() const; size_t available(error_code& ec) const;
Returns: An indication of the number of bytes that may be read without blocking, or 0 if an error occurs.
Error conditions:
—errc::bad_file_descriptor— ifis_open()isfalse.
void bind(const endpoint_type& endpoint); void bind(const endpoint_type& endpoint, error_code& ec);
Effects: Binds this socket to the specified local endpoint, as if by POSIX
bind(native_handle(), endpoint.data(), endpoint.size()).
void shutdown(shutdown_type what); void shutdown(shutdown_type what, error_code& ec);
Effects: Shuts down all or part of a full-duplex connection for the socket, as if by POSIX
shutdown(native_handle(), static_cast<int>(what)).
endpoint_type local_endpoint() const; endpoint_type local_endpoint(error_code& ec) const;
Effects: Determines the locally-bound endpoint associated with the socket, as if by POSIX:
endpoint_type endpoint; socklen_t endpoint_len = endpoint.capacity(); int result == getsockname(native_handle(), endpoint.data(), &endpoint_len); if (result == 0) endpoint.resize(endpoint_len);
Returns: On success,
endpoint. Otherwiseendpoint_type().
endpoint_type remote_endpoint() const; endpoint_type remote_endpoint(error_code& ec) const;
Effects: Determines the remote endpoint associated with this socket, as if by POSIX:
endpoint_type endpoint; socklen_t endpoint_len = endpoint.capacity(); int result == getpeername(native_handle(), endpoint.data(), &endpoint_len); if (result == 0) endpoint.resize(endpoint_len);
Returns: On success,
endpoint. Otherwiseendpoint_type().
void connect(const endpoint_type& endpoint); void connect(const endpoint_type& endpoint, error_code& ec);
Effects: If
is_open()isfalse, opens this socket by performingopen(endpoint.protocol(), ec). Ifec, returns with no further action. Connects this socket to the specified remote endpoint, as if by POSIXconnect(native_handle(), endpoint.data(), endpoint.size()).
template<class CompletionToken> DEDUCED async_connect(const endpoint_type& endpoint, CompletionToken&& token);
Completion signature:
void(error_code ec).
Effects: If
is_open()isfalse, opens this socket by performingopen(endpoint.protocol(), ec). Ifec, the operation completes immediately with no further action. Initiates an asynchronous operation to connect this socket to the specified remote endpoint, as if by POSIXconnect(native_handle(), endpoint.data(), endpoint.size()).
When an asynchronous connect operation on this socket is simultaneously outstanding with another asynchronous connect, read, or write operation on this socket, the behavior is undefined.
If a program performs a synchronous operation on this socket, other than
closeorcancel, while there is an outstanding asynchronous connect operation, the behavior is undefined.
void wait(wait_type w); void wait(wait_type w, error_code& ec);
Effects: Waits for this socket to be ready to read, ready to write, or to have error conditions pending, as if by POSIX poll.
Error conditions:
—errc::bad_file_descriptor— ifis_open()isfalse.
template<class CompletionToken> DEDUCED async_wait(wait_type w, CompletionToken&& token);
Completion signature:
void(error_code ec).
Effects: Initiates an asynchronous operation to wait for this socket to be ready to read, ready to write, or to have error conditions pending, as if by POSIX poll.
When there are multiple simultaneously outstanding asynchronous wait operations on this socket with the same
wait_typevalue, all of these operations complete when this socket enters the corresponding ready state. The order of invocation of the completion handlers for these operations is unspecified.
Error conditions:
—errc::bad_file_descriptor— ifis_open()isfalse.
The class template basic_datagram_socket<Protocol> is used to send and receive discrete
messages of fixed maximum length.
namespace std { namespace experimental { inline namespace network_v1 { template<class Protocol> class basic_datagram_socket : public basic_socket<Protocol> { public: // types: typedef implementation defined native_handle_type; // See native handles typedef Protocol protocol_type; typedef typename protocol_type::endpoint endpoint_type; // construct / copy / destroy: explicit basic_datagram_socket(io_service& ios); basic_datagram_socket(io_service& ios, const protocol_type& protocol); basic_datagram_socket(io_service& ios, const endpoint_type& endpoint); basic_datagram_socket(io_service& ios, const protocol_type& protocol, const native_handle_type& native_socket); basic_datagram_socket(const basic_datagram_socket&) = delete; basic_datagram_socket(basic_datagram_socket&& rhs); template<class OtherProtocol> basic_datagram_socket(basic_datagram_socket<OtherProtocol>&& rhs); ~basic_datagram_socket(); basic_datagram_socket& operator=(const basic_datagram_socket&) = delete; basic_datagram_socket& operator=(basic_datagram_socket&& rhs); template<class OtherProtocol> basic_datagram_socket& operator=(basic_datagram_socket<OtherProtocol>&& rhs); // basic_datagram_socket operations: template<class MutableBufferSequence> size_t receive(const MutableBufferSequence& buffers); template<class MutableBufferSequence> size_t receive(const MutableBufferSequence& buffers, error_code& ec); template<class MutableBufferSequence> size_t receive(const MutableBufferSequence& buffers, socket_base::message_flags flags); template<class MutableBufferSequence> size_t receive(const MutableBufferSequence& buffers, socket_base::message_flags flags, error_code& ec); template<class MutableBufferSequence, class CompletionToken> DEDUCED async_receive(const MutableBufferSequence& buffers, CompletionToken&& token); template<class MutableBufferSequence, class CompletionToken> DEDUCED async_receive(const MutableBufferSequence& buffers, socket_base::message_flags flags, CompletionToken&& token); template<class MutableBufferSequence> size_t receive_from(const MutableBufferSequence& buffers, endpoint_type& sender); template<class MutableBufferSequence> size_t receive_from(const MutableBufferSequence& buffers, endpoint_type& sender, error_code& ec); template<class MutableBufferSequence> size_t receive_from(const MutableBufferSequence& buffers, endpoint_type& sender, socket_base::message_flags flags); template<class MutableBufferSequence> size_t receive_from(const MutableBufferSequence& buffers, endpoint_type& sender, socket_base::message_flags flags, error_code& ec); template<class MutableBufferSequence, class CompletionToken> DEDUCED async_receive_from(const MutableBufferSequence& buffers, endpoint_type& sender, CompletionToken&& token); template<class MutableBufferSequence, class CompletionToken> DEDUCED async_receive_from(const MutableBufferSequence& buffers, endpoint_type& sender, socket_base::message_flags flags, CompletionToken&& token); template<class ConstBufferSequence> size_t send(const ConstBufferSequence& buffers); template<class ConstBufferSequence> size_t send(const ConstBufferSequence& buffers, error_code& ec); template<class ConstBufferSequence> size_t send(const ConstBufferSequence& buffers, socket_base::message_flags flags); template<class ConstBufferSequence> size_t send(const ConstBufferSequence& buffers, socket_base::message_flags flags, error_code& ec); template<class ConstBufferSequence, class CompletionToken> DEDUCED async_send(const ConstBufferSequence& buffers, CompletionToken&& token); template<class ConstBufferSequence, class CompletionToken> DEDUCED async_send(const ConstBufferSequence& buffers, socket_base::message_flags flags, CompletionToken&& token); template<class ConstBufferSequence> size_t send_to(const ConstBufferSequence& buffers, const endpoint_type& destination); template<class ConstBufferSequence> size_t send_to(const ConstBufferSequence& buffers, const endpoint_type& destination, error_code& ec); template<class ConstBufferSequence> size_t send_to(const ConstBufferSequence& buffers, const endpoint_type& destination, socket_base::message_flags flags); template<class ConstBufferSequence> size_t send_to(const ConstBufferSequence& buffers, const endpoint_type& destination, socket_base::message_flags flags, error_code& ec); template<class ConstBufferSequence, class CompletionToken> DEDUCED async_send_to(const ConstBufferSequence& buffers, const endpoint_type& destination, CompletionToken&& token); template<class ConstBufferSequence, class CompletionToken> DEDUCED async_send_to(const ConstBufferSequence& buffers, const endpoint_type& destination, socket_base::message_flags flags, CompletionToken&& token); }; } // inline namespace network_v1 } // namespace experimental } // namespace std
For a given socket, a program may initiate asynchronous read or write operations such that there are multiple simultaneously outstanding asynchronous operations.
When there are multiple outstanding asynchronous read operations with zero
flags, the buffers are filled in the order in which
the operations were issued. The order of invocation of the handlers for
these operations is unspecified. When there are multiple asynchronous read
operations, where at least one has non-zero flags,
the behavior is unspecified.
When there are multiple outstanding asynchronous write operations with
zero flags, the buffers are transmitted in the order
in which the operations were issued. The order of invocation of the handlers
for these operations is unspecified. When there are multiple outstanding
asynchronous write operations, where at least one has non-zero flags, the behavior is unspecified.
If a program performs a synchronous operation on this socket, other than
close, cancel,
shutdown, send, or send_to,
while there is an outstanding asynchronous read operation, the behavior
is undefined.
If a program performs a synchronous operation on this socket, other than
close, cancel,
shutdown, receive, or receive_from,
while there is an outstanding asynchronous write operation, the behavior
is undefined.
explicit basic_datagram_socket(io_service& ios);
Effects: Initializes the base class with
basic_socket<Protocol>(ios).
basic_datagram_socket(io_service& ios, const protocol_type& protocol);
Effects: Initializes the base class with
basic_socket<Protocol>(ios, protocol).
basic_datagram_socket(io_service& ios, const endpoint_type& endpoint);
Effects: Initializes the base class with
basic_socket<Protocol>(ios, endpoint).
basic_datagram_socket(io_service& ios, const protocol_type& protocol, const native_handle_type& native_socket);
Effects: Initializes the base class with
basic_socket<Protocol>(ios, protocol, native_socket).
basic_datagram_socket(basic_datagram_socket&& rhs);
Effects: Move constructs an object of class
basic_datagram_socket<Protocol>, initializing the base class withbasic_socket<Protocol>(std::move(rhs)).
template<class OtherProtocol> basic_datagram_socket(basic_datagram_socket<OtherProtocol>&& rhs);
Requires:
OtherProtocolis implicitly convertible toProtocol.
Effects: Move constructs an object of class
basic_datagram_socket<Protocol>, initializing the base class withbasic_socket<Protocol>(std::move(rhs)).
Remarks: This constructor shall not participate in overload resolution unless
OtherProtocolis implicitly convertible toProtocol.
basic_datagram_socket& operator=(basic_datagram_socket&& rhs);
Effects: Equivalent to
basic_socket<Protocol>::operator=(std::move(rhs)).
Returns:
*this.
template<class OtherProtocol> basic_datagram_socket& operator=(basic_datagram_socket<OtherProtocol>&& rhs);
Requires:
OtherProtocolis implicitly convertible toProtocol.
Effects: Equivalent to
basic_socket<Protocol>::operator=(std::move(rhs)).
Returns:
*this.
Remarks: This assignment operator shall not participate in overload resolution unless
OtherProtocolis implicitly convertible toProtocol.
template<class MutableBufferSequence> size_t receive(const MutableBufferSequence& buffers); template<class MutableBufferSequence> size_t receive(const MutableBufferSequence& buffers, error_code& ec);
Returns:
receive(buffers, socket_base::message_flags(), ec).
template<class MutableBufferSequence> size_t receive(const MutableBufferSequence& buffers, socket_base::message_flags flags); template<class MutableBufferSequence> size_t receive(const MutableBufferSequence& buffers, socket_base::message_flags flags, error_code& ec);
Effects: Constructs an array
iovof POSIX typestruct iovecand lengthiovlen, corresponding tobuffers, and reads data from this socket as if by POSIX:msghdr message; message.msg_name = nullptr; message.msg_namelen = 0; message.msg_iov = iov; message.msg_iovlen = iovlen; message.msg_control = nullptr; message.msg_controllen = 0; message.msg_flags = 0; recvmsg(native_handle(), &message, static_cast<int>(flags));
Returns: On success, the number of bytes received. Otherwise
0.
[Note: This operation may be used with connection-mode or connectionless-mode sockets, but it is normally used with connection-mode sockets because it does not permit the application to retrieve the source endpoint of received data. —end note]
template<class MutableBufferSequence, class CompletionToken> DEDUCED async_receive(const MutableBufferSequence& buffers, CompletionToken&& token);
Returns:
async_receive(buffers, socket_base::message_flags(), forward<CompletionToken>(token)).
template<class MutableBufferSequence, class CompletionToken> DEDUCED async_receive(const MutableBufferSequence& buffers, socket_base::message_flags flags, CompletionToken&& token);
Completion signature:
void(error_code ec, size_t n).
Effects: Initiates an asynchronous operation to read data from this socket. Constructs an array
iovof POSIX typestruct iovecand lengthiovlen, corresponding tobuffers, then reads data as if by POSIX:msghdr message; message.msg_name = nullptr; message.msg_namelen = 0; message.msg_iov = iov; message.msg_iovlen = iovlen; message.msg_control = nullptr; message.msg_controllen = 0; message.msg_flags = 0; recvmsg(native_handle(), &message, static_cast<int>(flags));
If the operation completes successfully,
nis the number of bytes received. Otherwisenis0.
[Note: This operation may be used with connection-mode or connectionless-mode sockets, but it is normally used with connection-mode sockets because it does not permit the application to retrieve the source endpoint of received data. —end note]
Error conditions:
—errc::invalid_argument— ifsocket_base::message_peekis set in flags.
template<class MutableBufferSequence> size_t receive_from(const MutableBufferSequence& buffers, endpoint_type& sender); template<class MutableBufferSequence> size_t receive_from(const MutableBufferSequence& buffers, endpoint_type& sender, error_code& ec);
Returns:
receive_from(buffers, endpoint, socket_base::message_flags(), ec).
template<class MutableBufferSequence> size_t receive_from(const MutableBufferSequence& buffers, endpoint_type& sender, socket_base::message_flags flags); template<class MutableBufferSequence> size_t receive_from(const MutableBufferSequence& buffers, endpoint_type& sender, socket_base::message_flags flags, error_code& ec);
Effects: Constructs an array
iovof POSIX typestruct iovecand lengthiovlen, corresponding tobuffers, and reads data from this socket as if by POSIX:msghdr message; message.msg_name = sender.data(); message.msg_namelen = sender.capacity(); message.msg_iov = iov; message.msg_iovlen = iovlen; message.msg_control = nullptr; message.msg_controllen = 0; message.msg_flags = 0; ssize_t result = recvmsg(native_handle(), &message, static_cast<int>(flags)); if (result >= 0) sender.resize(message.msg_namelen);
Returns: On success, the number of bytes received. Otherwise
0.
[Note: This operation may be used with connection-mode or connectionless-mode sockets, but it is normally used with connectionless-mode sockets because it permits the application to retrieve the source endpoint of received data. —end note]
template<class MutableBufferSequence, class CompletionToken> DEDUCED async_receive_from(const MutableBufferSequence& buffers, endpoint_type& sender, CompletionToken&& token);
Effects: Returns
async_receive_from(buffers, sender, socket_base::message_flags(), forward<CompletionToken>(token)).
template<class MutableBufferSequence, class CompletionToken> DEDUCED async_receive_from(const MutableBufferSequence& buffers, endpoint_type& sender, socket_base::message_flags flags, CompletionToken&& token);
Completion signature:
void(error_code ec, size_t n).
Effects: Initiates an asynchronous operation to read data from this socket. Constructs an array
iovof POSIX typestruct iovecand lengthiovlen, corresponding tobuffers, then reads data as if by POSIX:msghdr message; message.msg_name = sender.data(); message.msg_namelen = sender.capacity(); message.msg_iov = iov; message.msg_iovlen = iovlen; message.msg_control = nullptr; message.msg_controllen = 0; message.msg_flags = 0; ssize_t result = recvmsg(native_handle(), &message, static_cast<int>(flags)); if (result >= 0) sender.resize(message.msg_namelen);
If the operation completes successfully,
nis the number of bytes received. Otherwisenis0.
[Note: This operation may be used with connection-mode or connectionless-mode sockets, but it is normally used with connectionless-mode sockets because it permits the application to retrieve the source endpoint of received data. —end note]
Error conditions:
—errc::invalid_argument— ifsocket_base::message_peekis set in flags.
template<class ConstBufferSequence> size_t send(const ConstBufferSequence& buffers); template<class ConstBufferSequence> size_t send(const ConstBufferSequence& buffers, error_code& ec);
Returns:
send(buffers, socket_base::message_flags(), ec).
template<class ConstBufferSequence> size_t send(const ConstBufferSequence& buffers, socket_base::message_flags flags); template<class ConstBufferSequence> size_t send(const ConstBufferSequence& buffers, socket_base::message_flags flags, error_code& ec);
Effects: Constructs an array
iovof POSIX typestruct iovecand lengthiovlen, corresponding tobuffers, and writes data to this socket as if by POSIX:msghdr message; message.msg_name = nullptr; message.msg_namelen = 0; message.msg_iov = iov; message.msg_iovlen = iovlen; message.msg_control = nullptr; message.msg_controllen = 0; message.msg_flags = 0; sendmsg(native_handle(), &message, static_cast<int>(flags));
Returns: On success, the number of bytes sent. Otherwise
0.
template<class ConstBufferSequence, class CompletionToken> DEDUCED async_send(const ConstBufferSequence& buffers, CompletionToken&& token);
Returns:
async_send(buffers, socket_base::message_flags(), forward<CompletionToken>(token)).
template<class ConstBufferSequence, class CompletionToken> DEDUCED async_send(const ConstBufferSequence& buffers, socket_base::message_flags flags, CompletionToken&& token);
Completion signature:
void(error_code ec, size_t n).
Effects: Initiates an asynchronous operation to write data to this socket. Constructs an array
iovof POSIX typestruct iovecand lengthiovlen, corresponding tobuffers, then writes data as if by POSIX:msghdr message; message.msg_name = nullptr; message.msg_namelen = 0; message.msg_iov = iov; message.msg_iovlen = iovlen; message.msg_control = nullptr; message.msg_controllen = 0; message.msg_flags = 0; sendmsg(native_handle(), &message, static_cast<int>(flags));
If the operation completes successfully,
nis the number of bytes sent. Otherwisenis0.
template<class ConstBufferSequence> size_t send_to(const ConstBufferSequence& buffers, const endpoint_type& destination); template<class ConstBufferSequence> size_t send_to(const ConstBufferSequence& buffers, const endpoint_type& destination, error_code& ec);
Returns:
send_to(buffers, destination, socket_base::message_flags(), ec).
template<class ConstBufferSequence> size_t send_to(const ConstBufferSequence& buffers, const endpoint_type& destination, socket_base::message_flags flags); template<class ConstBufferSequence> size_t send_to(const ConstBufferSequence& buffers, const endpoint_type& recipient, socket_base::message_flags flags, error_code& ec);
Effects: Constructs an array
iovof POSIX typestruct iovecand lengthiovlen, corresponding tobuffers, and writes data to this socket as if by POSIX:msghdr message; message.msg_name = sender.data(); message.msg_namelen = sender.size(); message.msg_iov = iov; message.msg_iovlen = iovlen; message.msg_control = nullptr; message.msg_controllen = 0; message.msg_flags = 0; sendmsg(native_handle(), &message, static_cast<int>(flags));
Returns: On success, the number of bytes sent. Otherwise
0.
template<class ConstBufferSequence, class CompletionToken> DEDUCED async_send_to(const ConstBufferSequence& buffers, const endpoint_type& recipient, CompletionToken&& token);
Returns:
async_send_to(buffers, recipient, socket_base::message_flags(), forward<CompletionToken>(token)).
template<class ConstBufferSequence, class CompletionToken> DEDUCED async_send_to(const ConstBufferSequence& buffers, const endpoint_type& recipient, socket_base::message_flags flags, CompletionToken&& token);
Completion signature:
void(error_code ec, size_t n).
Effects: Initiates an asynchronous operation to write data to this socket. Constructs an array
iovof POSIX typestruct iovecand lengthiovlen, corresponding tobuffers, then writes data as if by POSIX:msghdr message; message.msg_name = sender.data(); message.msg_namelen = sender.size(); message.msg_iov = iov; message.msg_iovlen = iovlen; message.msg_control = nullptr; message.msg_controllen = 0; message.msg_flags = 0; sendmsg(native_handle(), &message, static_cast<int>(flags));
If the operation completes successfully,
nis the number of bytes sent. Otherwisenis0.
The class template basic_stream_socket<Protocol> is used to exchange data with a peer
over a sequenced, reliable, bidirectional, connection-mode byte stream.
namespace std { namespace experimental { inline namespace network_v1 { template<class Protocol> class basic_stream_socket : public basic_socket<Protocol> { public: // types: typedef implementation defined native_handle_type; // See native handles typedef Protocol protocol_type; typedef typename protocol_type::endpoint endpoint_type; // construct / copy / destroy: explicit basic_stream_socket(io_service& ios); basic_stream_socket(io_service& ios, const protocol_type& protocol); basic_stream_socket(io_service& ios, const endpoint_type& endpoint); basic_stream_socket(io_service& ios, const protocol_type& protocol, const native_handle_type& native_socket); basic_stream_socket(const basic_stream_socket&) = delete; basic_stream_socket(basic_stream_socket&& rhs); template<class OtherProtocol> basic_stream_socket(basic_stream_socket<OtherProtocol>&& rhs); ~basic_stream_socket(); basic_stream_socket& operator=(const basic_stream_socket&) = delete; basic_stream_socket& operator=(basic_stream_socket&& rhs); template<class OtherProtocol> basic_stream_socket& operator=(basic_stream_socket<OtherProtocol>&& rhs); // basic_stream_socket operations: template<class MutableBufferSequence> size_t receive(const MutableBufferSequence& buffers); template<class MutableBufferSequence> size_t receive(const MutableBufferSequence& buffers, error_code& ec); template<class MutableBufferSequence> size_t receive(const MutableBufferSequence& buffers, socket_base::message_flags flags); template<class MutableBufferSequence> size_t receive(const MutableBufferSequence& buffers, socket_base::message_flags flags, error_code& ec); template<class MutableBufferSequence, class CompletionToken> DEDUCED async_receive(const MutableBufferSequence& buffers, CompletionToken&& token); template<class MutableBufferSequence, class CompletionToken> DEDUCED async_receive(const MutableBufferSequence& buffers, socket_base::message_flags flags, CompletionToken&& token); template<class ConstBufferSequence> size_t send(const ConstBufferSequence& buffers); template<class ConstBufferSequence> size_t send(const ConstBufferSequence& buffers, error_code& ec); template<class ConstBufferSequence> size_t send(const ConstBufferSequence& buffers, socket_base::message_flags flags); template<class ConstBufferSequence> size_t send(const ConstBufferSequence& buffers, socket_base::message_flags flags, error_code& ec); template<class ConstBufferSequence, class CompletionToken> DEDUCED async_send(const ConstBufferSequence& buffers, CompletionToken&& token); template<class ConstBufferSequence, class CompletionToken> DEDUCED async_send(const ConstBufferSequence& buffers, socket_base::message_flags flags, CompletionToken&& token); template<class MutableBufferSequence> size_t read_some(const MutableBufferSequence& buffers); template<class MutableBufferSequence> size_t read_some(const MutableBufferSequence& buffers, error_code& ec); template<class MutableBufferSequence, class CompletionToken> DEDUCED async_read_some(const MutableBufferSequence& buffers, CompletionToken&& token); template<class ConstBufferSequence> size_t write_some(const ConstBufferSequence& buffers); template<class ConstBufferSequence> size_t write_some(const ConstBufferSequence& buffers, error_code& ec); template<class ConstBufferSequence, class CompletionToken> DEDUCED async_write_some(const ConstBufferSequence& buffers, CompletionToken&& token); }; } // inline namespace network_v1 } // namespace experimental } // namespace std
Instances of the basic_stream_socket
class template meet the requirements for synchronous
read streams, synchronous
write streams, asynchronous
read streams, and asynchronous
write streams.
For a given socket, a program may initiate asynchronous read or write operations such that there are multiple simultaneously outstanding asynchronous operations.
When there are multiple outstanding asynchronous read operations with zero
flags, the buffers are filled in the order in which
the operations were issued. The order of invocation of the handlers for
these operations is unspecified. When there are multiple asynchronous read
operations, where at least one has non-zero flags,
the behavior is unspecified.
When there are multiple outstanding asynchronous write operations with
zero flags, the buffers are transmitted in the order
in which the operations were issued. The order of invocation of the handlers
for these operations is unspecified. When there are multiple outstanding
asynchronous write operations, where at least one has non-zero flags, the behavior is unspecified.
If a program performs a synchronous operation on this socket, other than
close, cancel,
shutdown, or send, while there is an outstanding asynchronous
read operation, the behavior is undefined.
If a program performs a synchronous operation on this socket, other than
close, cancel,
shutdown, or receive, while there is an outstanding
asynchronous write operation, the behavior is undefined.
explicit basic_stream_socket(io_service& ios);
Effects: Initializes the base class with
basic_socket<Protocol>(ios).
basic_stream_socket(io_service& ios, const protocol_type& protocol);
Effects: Initializes the base class with
basic_socket<Protocol>(ios, protocol).
basic_stream_socket(io_service& ios, const endpoint_type& endpoint);
Effects: Initializes the base class with
basic_socket<Protocol>(ios, endpoint).
basic_stream_socket(io_service& ios, const protocol_type& protocol, const native_handle_type& native_socket);
Effects: Initializes the base class with
basic_socket<Protocol>(ios, protocol, native_socket).
basic_stream_socket(basic_stream_socket&& rhs);
Effects: Move constructs an object of class
basic_stream_socket<Protocol>, initializing the base class withbasic_socket<Protocol>(std::move(rhs)).
template<class OtherProtocol> basic_stream_socket(basic_stream_socket<OtherProtocol>&& rhs);
Requires:
OtherProtocolis implicitly convertible toProtocol.
Effects: Move constructs an object of class
basic_stream_socket<Protocol>, initializing the base class withbasic_socket<Protocol>(std::move(rhs)).
Remarks: This constructor shall not participate in overload resolution unless
OtherProtocolis implicitly convertible toProtocol.
basic_stream_socket& operator=(basic_stream_socket&& rhs);
Effects: Equivalent to
basic_socket<Protocol>::operator=(std::move(rhs)).
Returns:
*this.
template<class OtherProtocol> basic_stream_socket& operator=(basic_stream_socket<OtherProtocol>&& rhs);
Requires:
OtherProtocolis implicitly convertible toProtocol.
Effects: Equivalent to
basic_socket<Protocol>::operator=(std::move(rhs)).
Returns:
*this.
Remarks: This assignment operator shall not participate in overload resolution unless
OtherProtocolis implicitly convertible toProtocol.
template<class MutableBufferSequence> size_t receive(const MutableBufferSequence& buffers); template<class MutableBufferSequence> size_t receive(const MutableBufferSequence& buffers, error_code& ec);
Returns:
receive(buffers, socket_base::message_flags(), ec).
template<class MutableBufferSequence> size_t receive(const MutableBufferSequence& buffers, socket_base::message_flags flags); template<class MutableBufferSequence> size_t receive(const MutableBufferSequence& buffers, socket_base::message_flags flags, error_code& ec);
Effects: If
buffer_size(buffers) == 0, returns immediately with no error. Otherwise, constructs an arrayiovof POSIX typestruct iovecand lengthiovlen, corresponding tobuffers, and reads data from this socket as if by POSIX:msghdr message; message.msg_name = nullptr; message.msg_namelen = 0; message.msg_iov = iov; message.msg_iovlen = iovlen; message.msg_control = nullptr; message.msg_controllen = 0; message.msg_flags = 0; recvmsg(native_handle(), &message, static_cast<int>(flags));
Returns: On success, the number of bytes received. Otherwise
0.
Error conditions:
—stream_errc::eof— if there is no data to be received and the peer performed an orderly shutdown.
template<class MutableBufferSequence, class CompletionToken> DEDUCED async_receive(const MutableBufferSequence& buffers, CompletionToken&& token);
Returns:
async_receive(buffers, socket_base::message_flags(), forward<CompletionToken>(token)).
template<class MutableBufferSequence, class CompletionToken> DEDUCED async_receive(const MutableBufferSequence& buffers, socket_base::message_flags flags, CompletionToken&& token);
Completion signature:
void(error_code ec, size_t n).
Effects: Initiates an asynchronous operation to read data from this socket. If
buffer_size(buffers) == 0, the asynchronous operation completes immediately with no error andn == 0. Otherwise, constructs an arrayiovof POSIX typestruct iovecand lengthiovlen, corresponding tobuffers, then reads data as if by POSIX:msghdr message; message.msg_name = nullptr; message.msg_namelen = 0; message.msg_iov = iov; message.msg_iovlen = iovlen; message.msg_control = nullptr; message.msg_controllen = 0; message.msg_flags = 0; recvmsg(native_handle(), &message, static_cast<int>(flags));
If the operation completes successfully,
nis the number of bytes received. Otherwisenis0.
Error conditions:
—errc::invalid_argument— ifsocket_base::message_peekis set in flags. —stream_errc::eof— if there is no data to be received and the peer performed an orderly shutdown.
template<class ConstBufferSequence> size_t send(const ConstBufferSequence& buffers); template<class ConstBufferSequence> size_t send(const ConstBufferSequence& buffers, error_code& ec);
Returns:
send(buffers, socket_base::message_flags(), ec).
template<class ConstBufferSequence> size_t send(const ConstBufferSequence& buffers, socket_base::message_flags flags); template<class ConstBufferSequence> size_t send(const ConstBufferSequence& buffers, socket_base::message_flags flags, error_code& ec);
Effects: If
buffer_size(buffers) == 0, returns immediately with no error. Otherwise, constructs an arrayiovof POSIX typestruct iovecand lengthiovlen, corresponding tobuffers, and writes data to this socket as if by POSIX:msghdr message; message.msg_name = nullptr; message.msg_namelen = 0; message.msg_iov = iov; message.msg_iovlen = iovlen; message.msg_control = nullptr; message.msg_controllen = 0; message.msg_flags = 0; sendmsg(native_handle(), &message, static_cast<int>(flags));
Returns: On success, the number of bytes sent. Otherwise
0.
template<class ConstBufferSequence, class CompletionToken> DEDUCED async_send(const ConstBufferSequence& buffers, CompletionToken&& token);
Returns:
async_send(buffers, socket_base::message_flags(), forward<CompletionToken>(token)).
template<class ConstBufferSequence, class CompletionToken> DEDUCED async_send(const ConstBufferSequence& buffers, socket_base::message_flags flags, CompletionToken&& token);
Completion signature:
void(error_code ec, size_t n).
Effects: Initiates an asynchronous operation to write data to this socket. If
buffer_size(buffers) == 0, the asynchronous operation completes immediately with no error andn == 0. Otherwise, constructs an arrayiovof POSIX typestruct iovecand lengthiovlen, corresponding tobuffers, then writes data as if by POSIX:msghdr message; message.msg_name = nullptr; message.msg_namelen = 0; message.msg_iov = iov; message.msg_iovlen = iovlen; message.msg_control = nullptr; message.msg_controllen = 0; message.msg_flags = 0; sendmsg(native_handle(), &message, static_cast<int>(flags));
If the operation completes successfully,
nis the number of bytes sent. Otherwisenis0.
template<class MutableBufferSequence> size_t read_some(const MutableBufferSequence& buffers); template<class MutableBufferSequence> size_t read_some(const MutableBufferSequence& buffers, error_code& ec);
Returns:
receive(buffers, ec).
template<class MutableBufferSequence, class CompletionToken> DEDUCED async_read_some(const MutableBufferSequence& buffers, CompletionToken&& token);
Returns:
async_receive(buffers, forward<CompletionToken>(token)).
template<class ConstBufferSequence> size_t write_some(const ConstBufferSequence& buffers); template<class ConstBufferSequence> size_t write_some(const ConstBufferSequence& buffers, error_code& ec);
Returns:
send(buffers, ec).
template<class ConstBufferSequence, class CompletionToken> DEDUCED async_write_some(const ConstBufferSequence& buffers, CompletionToken&& token);
Returns:
async_send(buffers, forward<CompletionToken>(token)).
An object of class template basic_socket_acceptor<AcceptableProtocol> is used to listen for, and queue, incoming
socket connections. Socket objects that represent the incoming connections
are dequeued by calling accept
or async_accept.
namespace std { namespace experimental { inline namespace network_v1 { template<class AcceptableProtocol> class basic_socket_acceptor : public socket_base { public: // types: typedef io_service::executor_type executor_type; typedef implementation defined native_handle_type; // See native handles typedef AcceptableProtocol protocol_type; typedef typename protocol_type::endpoint endpoint_type; typedef typename protocol_type::socket socket_type; // construct / copy / destroy: explicit basic_socket_acceptor(io_service& ios); basic_socket_acceptor(io_service& ios, const protocol_type& protocol); basic_socket_acceptor(io_service& ios, const endpoint_type& endpoint, bool reuse_addr = true); basic_socket_acceptor(io_service& ios, const protocol_type& protocol, const native_handle_type& native_acceptor); basic_socket_acceptor(const basic_socket_acceptor&) = delete; basic_socket_acceptor(basic_socket_acceptor&& rhs); template<class OtherProtocol> basic_socket_acceptor(basic_socket_acceptor<OtherProtocol>&& rhs); ~basic_socket_acceptor(); basic_socket_acceptor& operator=(const basic_socket_acceptor&) = delete; basic_socket_acceptor& operator=(basic_socket_acceptor&& rhs); template<class OtherProtocol> basic_socket_acceptor& operator=(basic_socket_acceptor<OtherProtocol>&& rhs); // basic_socket_acceptor operations: executor_type get_executor() noexcept; native_handle_type native_handle(); // See native handles void open(const protocol_type& protocol = protocol_type()); void open(const protocol_type& protocol, error_code& ec); void assign(const protocol_type& protocol, const native_handle_type& native_acceptor); // See native handles void assign(const protocol_type& protocol, const native_handle_type& native_acceptor, error_code& ec); // See native handles bool is_open() const; void close(); void close(error_code& ec); void cancel(); void cancel(error_code& ec); template<class SettableSocketOption> void set_option(const SettableSocketOption& option); template<class SettableSocketOption> void set_option(const SettableSocketOption& option, error_code& ec); template<class GettableSocketOption> void get_option(GettableSocketOption& option) const; template<class GettableSocketOption> void get_option(GettableSocketOption& option, error_code& ec) const; template<class IoControlCommand> void io_control(IoControlCommand& command); template<class IoControlCommand> void io_control(IoControlCommand& command, error_code& ec); void non_blocking(bool mode); void non_blocking(bool mode, error_code& ec); bool non_blocking() const; void native_non_blocking(bool mode); void native_non_blocking(bool mode, error_code& ec); bool native_non_blocking() const; void bind(const endpoint_type& endpoint); void bind(const endpoint_type& endpoint, error_code& ec); void listen(int backlog = max_listen_connections); void listen(int backlog, error_code& ec); endpoint_type local_endpoint() const; endpoint_type local_endpoint(error_code& ec) const; void enable_connection_aborted(bool mode); bool enable_connection_aborted() const; socket_type accept(); socket_type accept(error_code& ec); socket_type accept(io_service& ios); socket_type accept(io_service& ios, error_code& ec); template<class CompletionToken> DEDUCED async_accept(CompletionToken&& token); template<class CompletionToken> DEDUCED async_accept(io_service& ios, CompletionToken&& token); socket_type accept(endpoint_type& endpoint); socket_type accept(endpoint_type& endpoint, error_code& ec); socket_type accept(io_service& ios, endpoint_type& endpoint); socket_type accept(io_service& ios, endpoint_type& endpoint, error_code& ec); template<class CompletionToken> DEDUCED async_accept(endpoint_type& endpoint, CompletionToken&& token); template<class CompletionToken> DEDUCED async_accept(io_service& ios, endpoint_type& endpoint, CompletionToken&& token); void wait(wait_type w); void wait(wait_type w, error_code& ec); template<class CompletionToken> DEDUCED async_wait(wait_type w, CompletionToken&& token); private: protocol_type protocol_; // exposition only }; } // inline namespace network_v1 } // namespace experimental } // namespace std
For a given acceptor, a program may initiate asynchronous accept or wait operations such that there are multiple simultaneously outstanding asynchronous operations.
When there are multiple outstanding asynchronous accept operations the order in which the incoming connections are dequeued, and the order of invocation of the completion handlers for these operations, is unspecified.
explicit basic_socket_acceptor(io_service& ios);
Postconditions:
—get_executor() == ios.get_executor().
—is_open() == false.
basic_socket_acceptor(io_service& ios, const protocol_type& protocol);
Effects: Opens this acceptor as if by calling
open(protocol).
Postconditions:
—get_executor() == ios.get_executor().
—is_open() == true.
—non_blocking() == false.
—enable_connection_aborted() == false.
—protocol_ == protocol.
basic_socket_acceptor(io_service& ios, const endpoint_type& endpoint, bool reuse_addr = true);
Effects: Opens and binds this acceptor as if by calling:
open(endpoint.protocol()); if (reuse_addr) set_option(reuse_address(true)); bind(endpoint); listen();
Postconditions:
—get_executor() == ios.get_executor().
—is_open() == true.
—non_blocking() == false.
—enable_connection_aborted() == false.
—protocol_ == endpoint.protocol().
basic_socket_acceptor(io_service& ios, const protocol_type& protocol, const native_handle_type& native_acceptor);
Requires:
native_acceptoris a native handle to an open acceptor.
Effects: Assigns the existing native acceptor into this acceptor as if by calling
assign(protocol, native_acceptor).
Postconditions:
—get_executor() == ios.get_executor().
—is_open() == true.
—non_blocking() == false.
—enable_connection_aborted() == false.
—protocol_ == protocol.
basic_socket_acceptor(basic_socket_acceptor&& rhs);
Effects: Move constructs an object of class
basic_socket_acceptor<AcceptableProtocol>that refers to the state originally represented byrhs.
Postconditions:
—get_executor() == rhs.get_executor().
—is_open()returns the same value asrhs.is_open()prior to the constructor invocation.
—non_blocking()returns the same value asrhs.non_blocking()prior to the constructor invocation.
—enable_connection_aborted()returns the same value asrhs.enable_connection_aborted()prior to the constructor invocation.
—protocol_is equal to the prior value ofrhs.protocol_.
—rhs.is_open() == false.
template<class OtherProtocol> basic_socket_acceptor(basic_socket_acceptor<OtherProtocol>&& rhs);
Requires:
OtherProtocolis implicitly convertible toProtocol.
Effects: Move constructs an object of class
basic_socket_acceptor<AcceptableProtocol>that refers to the state originally represented byrhs.
Postconditions:
—get_executor() == rhs.get_executor().
—is_open()returns the same value asrhs.is_open()prior to the constructor invocation.
—non_blocking()returns the same value asrhs.non_blocking()prior to the constructor invocation.
—enable_connection_aborted()returns the same value asrhs.enable_connection_aborted()prior to the constructor invocation.
—native_handle()returns the prior value ofrhs.native_handle().
—protocol_is the result of converting the prior value ofrhs.protocol_.
—rhs.is_open() == false.
Remarks: This constructor shall not participate in overload resolution unless
OtherProtocolis implicitly convertible toProtocol.
~basic_socket_acceptor();
Effects: If
is_open()istrue, cancels all outstanding asynchronous operations associated with this acceptor, and releases acceptor resources as if by POSIXclose(native_handle()). Completion handlers for canceled operations are passed an error codeecsuch thatec == errc::operation_canceledyieldstrue.
basic_socket_acceptor& operator=(basic_socket_acceptor&& rhs);
Effects: If
is_open()istrue, cancels all outstanding asynchronous operations associated with this acceptor, and releases acceptor resources as if by POSIXclose(native_handle()). Then moves into*thisthe state originally represented byrhs. Completion handlers for canceled operations are passed an error codeecsuch thatec == errc::operation_canceledyieldstrue.
Postconditions:
—get_executor() == rhs.get_executor().
—is_open()returns the same value asrhs.is_open()prior to the assignment.
—non_blocking()returns the same value asrhs.non_blocking()prior to the assignment.
—enable_connection_aborted()returns the same value asrhs.enable_connection_aborted()prior to the assignment.
—native_handle()returns the same value asrhs.native_handle()prior to the assignment.
—protocol_is the same value asrhs.protocol_prior to the assignment.
—rhs.is_open() == false.
Returns:
*this.
template<class OtherProtocol> basic_socket_acceptor& operator=(basic_socket_acceptor<OtherProtocol>&& rhs);
Requires:
OtherProtocolis implicitly convertible toProtocol.
Effects: If
is_open()istrue, cancels all outstanding asynchronous operations associated with this acceptor, and releases acceptor resources as if by POSIXclose(native_handle()). Then moves into*thisthe state originally represented byrhs. Completion handlers for canceled operations are passed an error codeecsuch thatec == errc::operation_canceledyieldstrue.
Postconditions:
—get_executor() == rhs.get_executor().
—is_open()returns the same value asrhs.is_open()prior to the assignment.
—non_blocking()returns the same value asrhs.non_blocking()prior to the assignment.
—enable_connection_aborted()returns the same value asrhs.enable_connection_aborted()prior to the assignment.
—native_handle()returns the same value asrhs.native_handle()prior to the assignment.
—protocol_is the result of converting the value ofrhs.protocol_prior to the assignment.
—rhs.is_open() == false.
Returns:
*this.
Remarks: This assignment operator shall not participate in overload resolution unless
OtherProtocolis implicitly convertible toProtocol.
executor_type get_executor() noexcept;
Returns: The associated executor.
native_handle_type native_handle();
Returns: The native representation of this acceptor.
void open(const protocol_type& protocol); void open(const protocol_type& protocol, error_code& ec);
Effects: Establishes the postcondition, as if by POSIX
socket(protocol.family(), protocol.type(), protocol.protocol()).
Postconditions:
—is_open() == true.
—non_blocking() == false.
—enable_connection_aborted() == false.
—protocol_ == protocol.
Error conditions:
—socket_errc::already_open— ifis_open()istrue.
void assign(const protocol_type& protocol, const native_handle_type& native_acceptor); void assign(const protocol_type& protocol, const native_handle_type& native_acceptor, error_code& ec);
Requires:
native_acceptoris a native handle to an open acceptor.
Effects: Assigns the native acceptor handle to this acceptor object.
Postconditions:
—is_open() == true.
—non_blocking() == false.
—enable_connection_aborted() == false.
—protocol_ == protocol.
Error conditions:
—socket_errc::already_open— ifis_open()istrue.
bool is_open() const;
Returns: A
boolindicating whether this acceptor was opened by a previous call toopenorassign.
void close(); void close(error_code& ec);
Effects: If
is_open()istrue, cancels all outstanding asynchronous operations associated with this acceptor, and establishes the postcondition as if by POSIXclose(native_handle()). Completion handlers for canceled asynchronous operations are passed an error codeecsuch thatec == errc::operation_canceledyieldstrue.
Postconditions:
is_open() == false.
void cancel(); void cancel(error_code& ec);
Effects: Cancels all outstanding asynchronous operations associated with this acceptor. Completion handlers for canceled asynchronous operations are passed an error code
ecsuch thatec == errc::operation_canceledyieldstrue.
Error conditions:
—errc::bad_file_descriptor— ifis_open()isfalse.
—errc::operation_not_supported— Current conditions do not permit cancelation. The conditions under which cancelation of asynchronous operations is permitted are implementation-defined.
template<class SettableSocketOption> void set_option(const SettableSocketOption& option); template<class SettableSocketOption> void set_option(const SettableSocketOption& option, error_code& ec);
Effects: Sets an option on this acceptor, as if by POSIX
setsockopt(native_handle(), option.level(protocol_), option.name(protocol_), option.data(protocol_), option.size(protocol_)).
template<class GettableSocketOption> void get_option(GettableSocketOption& option); template<class GettableSocketOption> void get_option(GettableSocketOption& option, error_code& ec);
Effects: Gets an option from this acceptor, as if by POSIX:
socklen_t option_len = option.size(protocol_); int result = getsockopt(native_handle(), option.level(protocol_), option.name(protocol_), option.data(protocol_), &option_len); if (result == 0) option.resize(option_len);
template<class IoControlCommand> void io_control(IoControlCommand& command); template<class IoControlCommand> void io_control(IoControlCommand& command, error_code& ec);
Effects: Executes an I/O control command on this acceptor, as if by POSIX
ioctl(native_handle(), command.name(), command.data()).
void non_blocking(bool mode); void non_blocking(bool mode, error_code& ec);
Effects: Sets the non-blocking mode of this acceptor. If
modeistrue, subsequent synchronous operations may fail with error conditionerrc::operation_would_blockif they are unable to perform the requested operation immediately. Ifmodeisfalse, subsequent synchronous operations shall block until complete.
Error conditions:
—errc::bad_file_descriptor— ifis_open()isfalse.
[Note: The non-blocking mode has no effect on the behavior of asynchronous operations. —end note]
bool non_blocking() const;
Returns: The non-blocking mode of this acceptor.
void native_non_blocking(bool mode); void native_non_blocking(bool mode, error_code& ec);
Effects: Sets the non-blocking mode of the underlying native acceptor, as if by POSIX:
int flags = fcntl(native_handle(), F_GETFL, 0); if (flags >= 0) { if (mode) flags |= O_NONBLOCK; else flags &= ~O_NONBLOCK; fcntl(native_handle(), F_SETFL, flags); }
The native non-blocking mode has no effect on the behavior of the synchronous or asynchronous operations specified in this clause.
Error conditions:
—errc::bad_file_descriptor— ifis_open()isfalse.
—errc::invalid_argument— ifmode == falseandnon_blocking() == true. [Note: As the combination does not make sense. —end note]
bool native_non_blocking() const;
Returns: The non-blocking mode of the underlying native acceptor.
Remarks: Implementations are permitted and encouraged to cache the native non-blocking mode that was applied through a prior call to
native_non_blocking. Implementations may return an incorrect value if a program sets the non-blocking mode directly on the acceptor, by calling an operating system-specific function on the result ofnative_handle().
void bind(const endpoint_type& endpoint); void bind(const endpoint_type& endpoint, error_code& ec);
Effects: Binds this acceptor to the specified local endpoint, as if by POSIX
bind(native_handle(), endpoint.data(), endpoint.size()).
void listen(int backlog = socket_base::max_connections); void listen(int backlog, error_code& ec);
Effects: Marks this acceptor as ready to accept connections, as if by POSIX
listen(native_handle(), backlog).
endpoint_type local_endpoint() const; endpoint_type local_endpoint(error_code& ec) const;
Effects: Determines the locally-bound endpoint associated with this acceptor, as if by POSIX:
endpoint_type endpoint; socklen_t endpoint_len = endpoint.capacity(); int result == getsockname(native_handle(), endpoint.data(), &endpoint_len); if (result == 0) endpoint.resize(endpoint_len);
Returns: On success,
endpoint. Otherwiseendpoint_type().
void enable_connection_aborted(bool mode);
Effects: If
modeis true, subsequent synchronous or asynchronous accept operations on this acceptor are permitted to fail with error conditionerrc::connection_aborted. Ifmodeisfalse, subsequent accept operations will not fail witherrc::connection_aborted. [Note: Ifmodeisfalse, the implementation will restart the call to POSIX accept if it fails withECONNABORTED. —end note]
Error conditions:
—errc::bad_file_descriptor— ifis_open()isfalse.
bool enable_connection_aborted() const;
Returns: Whether accept operations on this acceptor are permitted to fail with
errc::connection_aborted.
socket_type accept(); socket_type accept(error_code& ec);
Returns:
accept(get_executor().context(), ec).
socket_type accept(io_service& ios); socket_type accept(io_service& ios, error_code& ec);
Effects: Extracts a socket from the queue of pending connections of the acceptor, as if by POSIX:
native_handle_type h = accept(native_handle(), nullptr, 0);
Returns: If
his an open native socket,socket_type(ios, s); otherwisesocket_type(ios).
template<class CompletionToken> DEDUCED async_accept(CompletionToken&& token);
Returns:
async_accept(get_executor().context(), forward<CompletionToken>(token)).
template<class CompletionToken> DEDUCED async_accept(io_service& ios, CompletionToken&& token);
Completion signature:
void(error_code ec, socket_type s).
Effects: Initiates an asynchronous operation to extract a socket from the queue of pending connections of the acceptor, as if by POSIX:
native_handle_type h = accept(native_handle(), nullptr, 0);On success,
sissocket_type(ios, h). Otherwise,sissocket_type(ios)`.
socket_type accept(endpoint_type& endpoint); socket_type accept(endpoint_type& endpoint, error_code& ec);
Returns:
accept(get_executor().context(), endpoint, ec).
socket_type accept(io_service& ios, endpoint_type& endpoint); socket_type accept(io_service& ios, endpoint_type& endpoint, error_code& ec);
Effects: Extracts a socket from the queue of pending connections of the acceptor, as if by POSIX:
socklen_t endpoint_len = endpoint.capacity(); native_handle_type h = accept(native_handle(), endpoint.data(), &endpoint_len); if (h >= 0) endpoint.resize(endpoint_len);
Returns: If
his an open native socket,socket_type(ios, s); otherwisesocket_type(ios).
template<class CompletionToken> DEDUCED async_accept(endpoint_type& endpoint, CompletionToken&& token);
Returns:
async_accept(get_executor().context(), endpoint, forward<CompletionToken>(token)).
template<class CompletionToken> DEDUCED async_accept(io_service& ios, endpoint_type& endpoint, CompletionToken&& token);
Completion signature:
void(error_code ec, socket_type s).
Effects: Initiates an asynchronous operation to extract a socket from the queue of pending connections of the acceptor, as if by POSIX:
socklen_t endpoint_len = endpoint.capacity(); native_handle_type h = accept(native_handle(), endpoint.data(), &endpoint_len); if (h >= 0) endpoint.resize(endpoint_len);On success,
sissocket_type(ios, h). Otherwise,sissocket_type(ios)`.
void wait(wait_type w); void wait(wait_type w, error_code& ec);
Effects: Waits for the acceptor to have a queued incoming connection, or to have error conditions pending, as if by POSIX poll.
template<class CompletionToken> DEDUCED async_wait(wait_type w, CompletionToken&& token);
Completion signature:
void(error_code ec).
Effects: Initiates an asynchronous operation to wait for the acceptor to have a queued incoming connection, or to have error conditions pending, as if by POSIX poll.
When multiple asynchronous wait operations are initiated with the same
wait_typevalue, all operations shall complete when the acceptor enters the corresponding ready state. The order of invocation of the completions handlers for these operations is unspecified.
Error conditions:
—errc::bad_file_descriptor— ifis_open()isfalse.
The class basic_socket_streambuf<Protocol, Clock, WaitTraits> associates both the input sequence
and the output sequence with a socket. The input and output sequences do
not support seeking. [Note: The input and output sequences
are independent as a stream socket provides full duplex I/O. —end
note]
[Note: This class is intended for sending and receiving bytes, not characters. The conversion from characters to bytes, and vice versa, must occur elsewhere. —end note]
namespace std { namespace experimental { inline namespace network_v1 { template<class Protocol, class Clock, class WaitTraits> class basic_socket_streambuf : public basic_streambuf<char> { public: // types: typedef Protocol protocol_type; typedef typename protocol_type::endpoint endpoint_type; typedef Clock clock_type; typedef typename clock_type::time_point time_point; typedef typename clock_type::duration duration; typedef WaitTraits traits_type; // construct / copy / destroy: basic_socket_streambuf(); explicit basic_socket_streambuf(basic_stream_socket<protocol_type> s); basic_socket_streambuf(const basic_socket_streambuf&) = delete; basic_socket_streambuf(basic_socket_streambuf&& rhs); virtual ~basic_socket_streambuf(); basic_socket_streambuf& operator=(const basic_socket_streambuf&) = delete; basic_socket_streambuf& operator=(basic_socket_streambuf&& rhs); // members: basic_socket_streambuf* connect(const endpoint_type& e); template<class... Args> basic_socket_streambuf* connect(Args&&... ); basic_socket_streambuf<protocol_type>* close(); basic_socket<protocol_type>& socket(); error_code error() const; time_point expiry() const; void expires_at(const time_point& t); void expires_after(const duration& d); protected: // overridden virtual functions: virtual int_type underflow() override; virtual int_type pbackfail(int_type c = traits_type::eof()) override; virtual int_type overflow(int_type c = traits_type::eof()) override; virtual int sync() override; virtual streambuf* setbuf(char_type* s, streamsize n) override; private: basic_stream_socket<protocol_type> socket_; // exposition only error_code ec_; // exposition only time_point expiry_; // exposition only }; } // inline namespace network_v1 } // namespace experimental } // namespace std
basic_socket_streambuf();
Effects: Initializes
socket_withios, whereiosis an unspecified object of classio_service.
Postconditions:
expiry() == clock_type::max().
explicit basic_socket_streambuf(basic_stream_socket<protocol_type> s);
Effects: Initializes
socket_withstd::move(s).
Postconditions:
expiry() == clock_type::max().
basic_socket_streambuf(basic_socket_streambuf&& rhs);
Effects: Move constructs from the rvalue
rhs. It is implementation-defined whether the sequence pointers in*this(eback(),gptr(),egptr(),pbase(),pptr(),epptr()) obtain the values whichrhshad. Whether they do or not,*thisandrhsreference separate buffers (if any at all) after the construction. Additionally*thisreferences the socket whichrhsdid before the construction, andrhsreferences no open socket after the construction.
Postconditions: Let
rhs_prefer to the state ofrhsjust prior to this construction and letrhs_arefer to the state ofrhsjust after this construction.
—is_open() == rhs_p.is_open()
—rhs_a.is_open() == false
—expiry() == rhs_p.expiry()
—rhs_a.expiry() == clock_type::max()
—gptr() - eback() == rhs_p.gptr() - rhs_p.eback()
—egptr() - eback() == rhs_p.egptr() - rhs_p.eback()
—ptr() - pbase() == rhs_p.pptr() - rhs_p.pbase()
—pptr() - pbase() == rhs_p.epptr() - rhs_p.pbase()
—if (eback()) eback() != rhs_a.eback()
—if (gptr()) gptr() != rhs_a.gptr()
—if (egptr()) egptr() != rhs_a.egptr()
—if (pbase()) pbase() != rhs_a.pbase()
—if (pptr()) pptr() != rhs_a.pptr()
—if (epptr()) epptr() != rhs_a.epptr()
virtual ~basic_socket_streambuf();
Effects: If a put area exists, calls
overflow(traits_type::eof())to flush characters. [Note: The socket is closed by thebasic_stream_socket<protocol_type>destructor. —end note]
basic_socket_streambuf& operator=(basic_socket_streambuf&& rhs);
Effects: Calls
this->close()then move assigns fromrhs. After the move assignment*thishas the observable state it would have had if it had been move constructed fromrhs.
Returns:
*this.
basic_socket_streambuf<protocol_type>* connect(const endpoint_type& e);
Effects: Resets the
streambufget and put areas, closes and re-opens the socket by performingsocket_.close(ec_)andsocket_.open(e.protocol(), ec_), then attempts to establish a connection as if by POSIXconnect(socket_.native_handle(), static_cast<sockaddr*>(e.data()), e.size()).ec_is set to reflect the error code produced by the operation. If the operation does not complete before the absolute timeout specified byexpiry_, the socket is closed andec_is set toerrc::timed_out.
Returns: if
!ec_,this; otherwise, a null pointer.
template<class... Args> basic_socket_streambuf* connect(Args&&... args);
Effects: Resets the
streambufget and put areas and closes the socket as if by callingsocket_.close(ec_). Obtains an endpoint sequenceendpointsby performingprotocol_type::resolver(ios).resolve(forward<Args>(args)...), whereiosis an unspecified object of classio_service. For each endpointein the sequence, closes and re-opens the socket by performingsocket_.close(ec_)andsocket_.open(e.protocol(), ec_), then attempts to establish a connection as if by POSIXconnect(socket_.native_handle(), static_cast<sockaddr*>(e.data()), e.size()).ec_is set to reflect the error code produced by the operation. If the operation does not complete before the absolute timeout specified byexpiry_, the socket is closed andec_is set toerrc::timed_out.
Returns: if
!ec_,this; otherwise, a null pointer.
Remarks: This function shall not participate in overload resolution unless
Protocolmeets the requirements for an internet protocol.
basic_socket_streambuf* close();
Effects: If a put area exists, calls
overflow(traits_type::eof())to flush characters. Calls:basic_socket<protocol_type>::close(ec_);then resets the get and put areas. If the call to
overflowfails, or if!ec_, thenclosefails.
Returns:
thison success, a null pointer otherwise.
basic_socket<protocol_type>& socket();
Returns:
socket_.
error_code error() const;
Returns:
ec_.
time_point expiry() const;
Returns:
expiry_.
void expires_at(const time_point& t);
Postconditions:
expiry_ == t.
void expires_after(const duration& d);
Effects: Equivalent to
expires_at(clock_type::now() + d).
virtual int_type underflow() override;
Effects: Behaves according to the description of
basic_streambuf<char>::underflow(), with the specialization that a sequence of characters is read from the input sequence as if by POSIX recvmsg, andec_is set to reflect the error code produced by the operation. If the operation does not complete before the absolute timeout specified byexpiry_, the socket is closed andec_is set toerrc::timed_out.
Effects: Returns
traits_type::eof()to indicate failure. Otherwise returnstraits_type::to_int_type(*gptr()).
virtual int_type pbackfail(int_type c = traits_type::eof()) override;
Effects: Puts back the character designated by
cto the input sequence, if possible, in one of three ways:
— Iftraits_type::eq_int_type(c,traits_type::eof())returnsfalse, and if the function makes a putback position available, and iftraits_type::eq(traits_type::to_char_type(c),gptr()[-1])returnstrue, decrements the next pointer for the input sequence,gptr().
Returns:c.
— Iftraits_type::eq_int_type(c,traits_type::eof())returnsfalse, and if the function makes a putback position available, and if the function is permitted to assign to the putback position, decrements the next pointer for the input sequence, and storescthere.
Returns:c.
— Iftraits_type::eq_int_type(c,traits_type::eof())returnstrue, and if either the input sequence has a putback position available or the function makes a putback position available, decrements the next pointer for the input sequence,gptr().
Returns:traits_type::not_eof(c).
Returns:
traits_type::eof()to indicate failure.
Notes: The function does not put back a character directly to the input sequence. If the function can succeed in more than one of these ways, it is unspecified which way is chosen. The function can alter the number of putback positions available as a result of any call.
virtual int_type overflow(int_type c = traits_type::eof()) override;
Effects: Behaves according to the description of
basic_streambuf<char>::overflow(c), except that the behavior of "consuming characters" is performed by output of the characters to the socket as if by one or more calls to POSIX sendmsg, andec_is set to reflect the error code produced by the operation. If the operation does not complete before the absolute timeout specified byexpiry_, the socket is closed andec_is set toerrc::timed_out.
Returns:
traits_type::not_eof(c)to indicate success, andtraits_type::eof()to indicate failure.
virtual int sync() override;
Effects: If a put area exists, calls
overflow(traits_type::eof())to flush characters.
virtual streambuf* setbuf(char_type* s, streamsize n) override;
Effects: If
setbuf(nullptr, 0)is called on a stream before any I/O has occurred on that stream, the stream becomes unbuffered. Otherwise the results are unspecified. "Unbuffered" means thatpbase()andpptr()always return null and output to the socket should appear as soon as possible.
The class template basic_socket_iostream<Protocol, Clock, WaitTraits> supports reading and writing on sockets.
It uses a basic_socket_streambuf<Protocol, Clock, WaitTraits> object to control the associated sequences.
[Note: This class is intended for sending and receiving bytes, not characters. The conversion from characters to bytes, and vice versa, must occur elsewhere. —end note]
namespace std { namespace experimental { inline namespace network_v1 { template<class Protocol, class Clock, class WaitTraits> class basic_socket_iostream : public basic_iostream<char> { public: // types: typedef Protocol protocol_type; typedef typename protocol_type::endpoint endpoint_type; typedef Clock clock_type; typedef typename clock_type::time_point time_point; typedef typename clock_type::duration duration; typedef WaitTraits traits_type; // construct / copy / destroy: basic_socket_iostream(); explicit basic_socket_streambuf(basic_stream_socket<protocol_type> s); basic_socket_iostream(const basic_socket_iostream&) = delete; basic_socket_iostream(basic_socket_iostream&& rhs); template<class... Args> explicit basic_socket_iostream(Args&&... args); basic_socket_iostream& operator=(const basic_socket_iostream&) = delete; basic_socket_iostream& operator=(basic_socket_iostream&& rhs); // members: template<class... Args> void connect(Args&&... args); void close(); basic_socket_streambuf<protocol_type, clock_type, traits_type>* rdbuf() const; basic_socket<protocol_type>& socket(); error_code error() const; time_point expiry() const; void expires_at(const time_point& t); void expires_after(const duration& d); private: basic_socket_streambuf<protocol_type, clock_type, traits_type> sb_; // exposition only }; } // inline namespace network_v1 } // namespace experimental } // namespace std
basic_socket_iostream();
Effects: Initializes the base class as
basic_iostream<char>(&sb_),sb_asbasic_socket_streambuf<Protocol, Clock, WaitTraits>(), and performssetf(std::ios_base::unitbuf).
explicit basic_socket_streambuf(basic_stream_socket<protocol_type> s);
Effects: Initializes the base class as
basic_iostream<char>(&sb_),sb_asbasic_socket_streambuf<Protocol, Clock, WaitTraits>(std::move(s)), and performssetf(std::ios_base::unitbuf).
basic_socket_iostream(basic_socket_iostream&& rhs);
Effects: Move constructs from the rvalue
rhs. This is accomplished by move constructing the base class, and the containedbasic_socket_streambuf. Nextbasic_iostream<char>::set_rdbuf(&sb_)is called to install the containedbasic_socket_streambuf.
template<class... Args> explicit basic_socket_iostream(Args&&... args);
Effects: Initializes the base class as
basic_iostream<char>(&sb_), initializessb_asbasic_socket_streambuf<Protocol, Clock, WaitTraits>(), and performssetf(std::ios_base::unitbuf). Then callsrdbuf()->connect(forward<Args>(args)...). If that function returns a null pointer, callssetstate(failbit).
basic_socket_iostream& operator=(basic_socket_iostream&& rhs);
Effects: Move assigns the base and members of
*thisfrom the base and corresponding members ofrhs.
Returns:
*this.
template<class... Args> void connect(Args&&... args);
Effects: Calls
rdbuf()->connect(forward<Args>(args)...). If that function returns a null pointer, callssetstate(failbit)(which may throwios_base::failure).
void close();
Effects: Calls
rdbuf()->close(). If that function returns a null pointer, callssetstate(failbit)(which may throwios_base::failure).
basic_socket_streambuf<protocol_type, clock_type, traits_type>* rdbuf() const;
Returns:
const_cast<basic_socket_streambuf<protocol_type, clock_type, traits_type>*>(std::addressof(sb_)).
basic_socket<protocol_type>& socket();
Returns:
rdbuf()->socket().
error_code error() const;
Returns:
rdbuf()->error().
time_point expiry() const;
Returns:
rdbuf()->expiry().
void expires_at(const time_point& t);
Effects: Equivalent to
rdbuf()->expires_at(t).
void expires_after(const duration& d);
Effects: Equivalent to
rdbuf()->expires_after(d).
template<class Protocol, class EndpointSequence> typename Protocol::endpoint connect(basic_socket<Protocol>& s, const EndpointSequence& endpoints); template<class Protocol, class InputIterator> typename Protocol::endpoint connect(basic_socket<Protocol>& s, const EndpointSequence& endpoints, error_code& ec);
Returns:
connect(s, endpoints, [](auto, auto){ return true; }, ec).
template<class Protocol, class EndpointSequence, class ConnectCondition> typename Protocol::endpoint connect(basic_socket<Protocol>& s, const EndpointSequence& endpoints, ConnectCondition c); template<class Protocol, class InputIterator, class ConnectCondition> typename Protocol::endpoint connect(basic_socket<Protocol>& s, const EndpointSequence& endpoints, ConnectCondition c, error_code& ec);
Effects: If
s.is_open()istrue, performss.close(ec). Performsec.clear(). Returns the first elementepin the sequenceendpointsfor whichc(ec, ep)yieldstrueand, if so, for which the synchronous operations.connect(ep, ec)succeeds. If no such element is found,eccontains the error code produced by the last unsuccessful connect operation and the function returnstypename Protocol::endpoint().
Error conditions:
—socket_errc::not_found— ifendpoints.empty()or if the function objectcreturnedfalsefor all elements in the sequence.
template<class Protocol, class InputIterator> InputIterator connect(basic_socket<Protocol>& s, InputIterator first, InputIterator last); template<class Protocol, class InputIterator> InputIterator connect(basic_socket<Protocol>& s, InputIterator first, InputIterator last, error_code& ec);
Returns:
connect(s, first, last, [](auto, auto){ return true; }, ec).
template<class Protocol, class InputIterator, class ConnectCondition> InputIterator connect(basic_socket<Protocol>& s, InputIterator first, InputIterator last, ConnectCondition c); template<class Protocol, class InputIterator, class ConnectCondition> InputIterator connect(basic_socket<Protocol>& s, InputIterator first, InputIterator last, ConnectCondition c, error_code& ec);
Requires:
ConnectConditionis a function object type meeting CopyConstructible requirements (C++ Std [copyconstructible]).
Effects: If
s.is_open()istrue, performss.close(ec). Performsec.clear(). Returns the first iteratoriin the range [first,last) for whichc(ec, *i)yieldstrueand, if so, for which the synchronous operations.connect(*i, ec)succeeds. If no such iterator is found,eccontains the error code produced by the last unsuccessful connect operation and the function returnslast.
Error conditions:
—socket_errc::not_found— iffirst == lastor if the function objectcreturnedfalsefor all iterators in the range.
template<class Protocol, class EndpointSequence, class CompletionToken> DEDUCED async_connect(basic_socket<Protocol>& s, const EndpointSequence& endpoints, CompletionToken&& token);
Returns:
async_connect(s, endpoints, [](auto, auto){ return true; }, forward<CompletionToken>(token)).
template<class Protocol, class InputIterator, class ConnectCondition, class CompletionToken> DEDUCED async_connect(basic_socket<Protocol>& s, const EndpointSequence& endpoints, ConnectCondition c, CompletionToken&& token);
Completion signature:
void(error_code ec, typename Protocol::endpoint ep).
Requires:
ConnectConditionis a function object type meeting CopyConstructible requirements (C++ Std [copyconstructible]).
Effects: If
s.is_open()istrue, performss.close(ec). Defineprevious_ecas an object of typeerror_codeinitialized such that!previous_ecyieldstrue. Initiates an asynchronous operation to determine the first elementepin the sequenceendpointsfor whichc(previous_ec, ep)yieldstrueand, if so, for which the asynchronous operations.async_connect(ep, unspecified)succeeds. If an asynchronous operations.async_connect(ep, unspecified)fails,previous_ecis updated with the result of the operation. If no such element is found,eccontainsprevious_ecandepistypename Protocol::endpoint(). [Note: The underlyingasync_connectoperations are performed sequentially. —end note]
Error conditions:
—socket_errc::not_found— ifendpoints.empty()or if the function objectcreturnedfalsefor all elements in the sequence.
template<class Protocol, class InputIterator, class CompletionToken> DEDUCED async_connect(basic_socket<Protocol>& s, InputIterator first, InputIterator last, CompletionToken&& token);
Returns:
async_connect(s, first, last, [](auto, auto){ return true; }, forward<CompletionToken>(token)).
template<class Protocol, class InputIterator, class ConnectCondition, class CompletionToken> DEDUCED async_connect(basic_socket<Protocol>& s, InputIterator first, InputIterator last, ConnectCondition c, CompletionToken&& token);
Completion signature:
void(error_code ec, InputIterator i).
Requires:
ConnectConditionis a function object type meeting CopyConstructible requirements (C++ Std [copyconstructible]).
Effects: If
s.is_open()istrue, performss.close(ec). Defineprevious_ecas an object of typeerror_codeinitialized such that!previous_ecyieldstrue. Initiates an asynchronous operation to determine the first iteratoriin the range [first,last) for whichc(previous_ec, *i)yieldstrueand, if so, for which the asynchronous operations.async_connect(*i, unspecified)succeeds. If an asynchronous operations.async_connect(*i, unspecified)fails,previous_ecis updated with the result of the operation. If no such iterator is found,eccontainsprevious_ecandicontainslast. [Note: The underlyingasync_connectoperations are performed sequentially. —end note]
Error conditions:
—socket_errc::not_found— iffirst == lastor if the function objectcreturnedfalsefor all iterators in the range.
namespace std { namespace experimental { inline namespace network_v1 { namespace ip { enum class resolver_errc { host_not_found = implementation defined, // EAI_NONAME host_not_found_try_again = implementation defined, // EAI_AGAIN service_not_found = implementation defined // EAI_SERVICE }; const error_category& resolver_category() noexcept; error_code make_error_code(resolver_errc e) noexcept; error_condition make_error_condition(resolver_errc e) noexcept; typedef uint16_least_t port_type; typedef uint32_least_t address_v4_uint_type; typedef uint32_least_t scope_id_type; struct v4_mapped_t {}; constexpr v4_mapped_t v4_mapped; class address; class address_v4; class address_v6; class bad_address_cast; // address comparisons: bool operator==(const address&, const address&) noexcept; bool operator!=(const address&, const address&) noexcept; bool operator< (const address&, const address&) noexcept; bool operator> (const address&, const address&) noexcept; bool operator<=(const address&, const address&) noexcept; bool operator>=(const address&, const address&) noexcept; // address_v4 comparisons: bool operator==(const address_v4&, const address_v4&) noexcept; bool operator!=(const address_v4&, const address_v4&) noexcept; bool operator< (const address_v4&, const address_v4&) noexcept; bool operator> (const address_v4&, const address_v4&) noexcept; bool operator<=(const address_v4&, const address_v4&) noexcept; bool operator>=(const address_v4&, const address_v4&) noexcept; // address_v6 comparisons: bool operator==(const address_v6&, const address_v6&) noexcept; bool operator!=(const address_v6&, const address_v6&) noexcept; bool operator< (const address_v6&, const address_v6&) noexcept; bool operator> (const address_v6&, const address_v6&) noexcept; bool operator<=(const address_v6&, const address_v6&) noexcept; bool operator>=(const address_v6&, const address_v6&) noexcept; // address creation: address make_address(const char*); address make_address(const char*, error_code&) noexcept; address make_address(string_view); address make_address(string_view, error_code&) noexcept; // address_v4 creation: constexpr address_v4 make_address_v4(const address_v4::bytes_type&); constexpr address_v4 make_address_v4(address_v4_uint_type); constexpr address_v4 make_address_v4(v4_mapped_t, const address_v6&); address_v4 make_address_v4(const char*); address_v4 make_address_v4(const char*, error_code&) noexcept; address_v4 make_address_v4(string_view); address_v4 make_address_v4(string_view, error_code&) noexcept; // address_v6 creation: constexpr address_v6 make_address_v6(const address_v6::bytes_type&, scope_id_type = 0); constexpr address_v6 make_address_v6(v4_mapped_t, const address_v4&) noexcept; address_v6 make_address_v6(const char*); address_v6 make_address_v6(const char*, error_code&) noexcept; address_v6 make_address_v6(string_view); address_v6 make_address_v6(string_view, error_code&) noexcept; // address I/O: template<class CharT, class Traits> basic_ostream<CharT, Traits>& operator<<( basic_ostream<CharT, Traits>&, const address&); // address_v4 I/O: template<class CharT, class Traits> basic_ostream<CharT, Traits>& operator<<( basic_ostream<CharT, Traits>&, const address_v4&); // address_v6 I/O: template<class CharT, class Traits> basic_ostream<CharT, Traits>& operator<<( basic_ostream<CharT, Traits>&, const address_v6&); // address conversions: template<class T> constexpr T address_cast(const address&) noexcept(see below); template<class T> constexpr T address_cast(const address_v4&) noexcept(see below); template<class T> constexpr T address_cast(const address_v6&) noexcept(see below); template<class> basic_address_iterator; // not defined template<> class basic_address_iterator<address_v4>; typedef basic_address_iterator<address_v4> address_v4_iterator; template<> class basic_address_iterator<address_v6>; typedef basic_address_iterator<address_v6> address_v6_iterator; template<class> basic_address_range; // not defined template<> class basic_address_range<address_v4>; typedef basic_address_range<address_v4> address_v4_range; template<> class basic_address_range<address_v6>; typedef basic_address_range<address_v6> address_v6_range; class network_v4; class network_v6; // network_v4 comparisons: bool operator==(const network_v4&, const network_v4&) noexcept; bool operator!=(const network_v4&, const network_v4&) noexcept; // network_v6 comparisons: bool operator==(const network_v6&, const network_v6&) noexcept; bool operator!=(const network_v6&, const network_v6&) noexcept; // network_v4 creation: network_v4 make_network_v4(const address_v4&, unsigned); network_v4 make_network_v4(const address_v4&, const address_v4&); network_v4 make_network_v4(const char*); network_v4 make_network_v4(const char*, error_code&) noexcept; network_v4 make_network_v4(string_view); network_v4 make_network_v4(string_view, error_code&) noexcept; // network_v6 creation: network_v6 make_network_v6(const address_v6&, unsigned); network_v6 make_network_v6(const char*); network_v6 make_network_v6(const char*, error_code&) noexcept; network_v6 make_network_v6(string_view); network_v6 make_network_v6(string_view, error_code&) noexcept; // network_v4 I/O: template<class CharT, class Traits> basic_ostream<CharT, Traits>& operator<<( basic_ostream<CharT, Traits>&, const network_v4&); // network_v6 I/O: template<class CharT, class Traits> basic_ostream<CharT, Traits>& operator<<( basic_ostream<CharT, Traits>&, const network_v6&); template<class InternetProtocol> class basic_endpoint; // basic_endpoint comparisons: template<class InternetProtocol> bool operator==(const basic_endpoint<InternetProtocol>&, const basic_endpoint<InternetProtocol>&); template<class InternetProtocol> bool operator!=(const basic_endpoint<InternetProtocol>&, const basic_endpoint<InternetProtocol>&); template<class InternetProtocol> bool operator< (const basic_endpoint<InternetProtocol>&, const basic_endpoint<InternetProtocol>&); template<class InternetProtocol> bool operator> (const basic_endpoint<InternetProtocol>&, const basic_endpoint<InternetProtocol>&); template<class InternetProtocol> bool operator<=(const basic_endpoint<InternetProtocol>&, const basic_endpoint<InternetProtocol>&); template<class InternetProtocol> bool operator>=(const basic_endpoint<InternetProtocol>&, const basic_endpoint<InternetProtocol>&); // basic_endpoint I/O: template<class CharT, class Traits, class InternetProtocol> basic_ostream<CharT, Traits>& operator<<( basic_ostream<CharT, Traits>&, const basic_endpoint<InternetProtocol>&); template<class InternetProtocol> basic_resolver_entry; template<class InternetProtocol> bool operator==(const basic_resolver_entry<InternetProtocol>&, const basic_resolver_entry<InternetProtocol>&); template<class InternetProtocol> bool operator!=(const basic_resolver_entry<InternetProtocol>&, const basic_resolver_entry<InternetProtocol>&); template<class InternetProtocol> basic_resolver_results; template<class InternetProtocol> bool operator==(const basic_resolver_results<InternetProtocol>&, const basic_resolver_results<InternetProtocol>&); template<class InternetProtocol> bool operator!=(const basic_resolver_results<InternetProtocol>&, const basic_resolver_results<InternetProtocol>&); class resolver_base; template<class InternetProtocol> class basic_resolver; string host_name(); string host_name(error_code&); template<class Allocator> basic_string<char, char_traits<char>, Allocator> host_name(const Allocator&) const; template<class Allocator> basic_string<char, char_traits<char>, Allocator> host_name(const Allocator&, error_code&) const; class tcp; // tcp comparisons: bool operator==(const tcp& a, const tcp& b); bool operator!=(const tcp& a, const tcp& b); class udp; // udp comparisons: bool operator==(const udp& a, const udp& b); bool operator!=(const udp& a, const udp& b); class v6_only; namespace unicast { class hops; } // namespace unicast namespace multicast { class join_group; class leave_group; class outbound_interface; class hops; class enable_loopback; } // namespace multicast } // namespace ip } // inline namespace network_v1 } // namespace experimental template<> struct is_error_condition_enum< experimental::ip::resolver_errc> : public true_type {}; // hash support template<class T> struct hash; template<> struct hash<experimental::ip::address>; template<> struct hash<experimental::ip::address_v4>; template<> struct hash<experimental::ip::address_v6>; } // namespace std
An internet protocol must meet the requirements for requirements.acceptable_protocol, as well as the additional requirements listed below.
In the table below, X
denotes an internet protocol class, a
denotes a (possibly const) value of type X,
and b denotes a (possibly
const) value of type X.
Table 30. InternetProtocol requirements
|
expression |
return type |
assertion/note |
|---|---|---|
|
|
|
The type of a resolver for the protocol. |
|
|
|
Returns an object representing the IP version 4 protocol. |
|
|
|
Returns an object representing the IP version 6 protocol. |
|
|
convertible to |
Returns |
|
|
convertible to |
Returns |
const error_category& resolver_category() noexcept;
Returns: A reference to an object of a type derived from class
error_category.
The object’s
default_error_conditionandequivalentvirtual functions behave as specified for the classerror_category. The object’snamevirtual function returns a pointer to the string"resolver".
error_code make_error_code(resolver_errc e) noexcept;
Returns:
error_code(static_cast<int>(e), resolver_category()).
error_condition make_error_condition(resolver_errc e) noexcept;
Returns:
error_condition(static_cast<int>(e), resolver_category()).
The class address is a
version-independent representation for an IP address. An object of class
address holds either an
IPv4 address, an IPv6 address, or no valid address.
namespace std { namespace experimental { inline namespace network_v1 { namespace ip { class address { public: // constructors: constexpr address() noexcept; constexpr address(const address& a) noexcept; template<class T> constexpr address(const T& t) noexcept(see below); // assignment: address& operator=(const address& a) noexcept; // members: constexpr bool is_v4() const noexcept; constexpr bool is_v6() const noexcept; constexpr bool is_unspecified() const noexcept; constexpr bool is_loopback() const noexcept; constexpr bool is_multicast() const noexcept; template<class Allocator = allocator<char>> basic_string<char, char_traits<char>, Allocator> to_string(const Allocator& a = Allocator()) const; private: address_v4 v4_; // exposition only address_v6 v6_; // exposition only }; // address comparisons: bool operator==(const address& a, const address& b) noexcept; bool operator!=(const address& a, const address& b) noexcept; bool operator< (const address& a, const address& b) noexcept; bool operator> (const address& a, const address& b) noexcept; bool operator<=(const address& a, const address& b) noexcept; bool operator>=(const address& a, const address& b) noexcept; // address creation: address make_address(const char* str); address make_address(const char* str, error_code& ec) noexcept; address make_address(string_view str); address make_address(string_view str, error_code& ec) noexcept; // address I/O: template<class CharT, class Traits> basic_ostream<CharT, Traits>& operator<<( basic_ostream<CharT, Traits>& os, const address& addr); } // namespace ip } // inline namespace network_v1 } // namespace experimental } // namespace std
constexpr address() noexcept;
Postconditions:
is_v4() == true,is_v6() == false, andis_unspecified() == true.
constexpr address(const address& a) noexcept;
Postconditions:
*this == a
template<class T> constexpr address(const T& t) noexcept(see below);
Remarks: This constructor shall not participate in overload resolution unless
address_cast<address>(t)is valid and yields an rvalue of typeaddress. The expression insidenoexceptshall be equivalent tonoexcept(address_cast<address>(t)).
Effects: Constructs an object of type
addresswith the result of the expressionaddress_cast<address>(t).
Throws: Nothing unless the expression
address_cast<address>(t)throws an exception.
address& operator=(const address& a) noexcept;
Postconditions:
*this == a
Returns:
*this
constexpr bool is_v4() const noexcept;
Returns:
trueif the object contains an IP version 4 address, otherwisefalse.
constexpr bool is_v6() const noexcept;
Returns:
trueif the object contains an IP version 6 address, otherwisefalse.
constexpr bool is_unspecified() const noexcept;
Returns: If
is_v4(), returnsv4_.is_unspecified(). Otherwise returnsv6_.is_unspecified().
constexpr bool is_loopback() const noexcept;
Returns: If
is_v4(), returnsv4_.is_loopback(). Otherwise returnsv6_.is_loopback().
constexpr bool is_multicast() const noexcept;
Returns: If
is_v4(), returnsv4_.is_multicast(). Otherwise returnsv6_.is_multicast().
template<class Allocator = allocator<char>> basic_string<char, char_traits<char>, Allocator> to_string(const Allocator& a = Allocator()) const;
Returns: If
is_v4(), returnsv4_.to_string(a). Otherwise returnsv6_.to_string(a).
[internet.address.comparisons]
bool operator==(const address& a, const address& b) noexcept;
Returns:
— ifa.is_v4() != b.is_v4(),false;
— ifa.is_v4(), the result ofa.v4_ == b.v4_;
— otherwise, the result ofa.v6_ == b.v6_.
bool operator!=(const address& a, const address& b) noexcept;
Returns:
!(a == b).
bool operator< (const address& a, const address& b) noexcept;
Returns:
— ifa.is_v4() && !b.is_v4(),true;
— if!a.is_v4() && b.is_v4(),false;
— ifa.is_v4(), the result ofa.v4_ < b.v4_;
— otherwise, the result ofa.v6_ < b.v6_.
bool operator> (const address& a, const address& b) noexcept;
Returns:
b < a.
bool operator<=(const address& a, const address& b) noexcept;
Returns:
!(b < a).
bool operator>=(const address& a, const address& b) noexcept;
Returns:
!(a < b).
address make_address(const char* str); address make_address(const char* str, error_code& ec) noexcept; address make_address(string_view str); address make_address(string_view str, error_code& ec) noexcept;
Effects: Converts a textual representation of an address into an object of class
address, as if by calling:address a; address_v6 v6a = make_address_v6(str, ec); if (!ec) a = v6a; else { address_v4 v4a = make_address_v4(str, ec); if (!ec) a = v4a; }
Returns:
a.
template<class CharT, class Traits> basic_ostream<CharT, Traits>& operator<<( basic_ostream<CharT, Traits>& os, const address& addr);
Returns:
os << addr.to_string().c_str().
namespace std { namespace experimental { inline namespace network_v1 { namespace ip { class address_v4 { public: // types: struct bytes_type; // constructors: constexpr address_v4() noexcept; constexpr address_v4(const address_v4& a) noexcept; constexpr address_v4(const bytes_type& bytes); explicit constexpr address_v4(address_v4_uint_type val); // assignment: address_v4& operator=(const address_v4& a) noexcept; // members: constexpr bool is_unspecified() const noexcept; constexpr bool is_loopback() const noexcept; constexpr bool is_class_a() const noexcept; constexpr bool is_class_b() const noexcept; constexpr bool is_class_c() const noexcept; constexpr bool is_multicast() const noexcept; constexpr bytes_type to_bytes() const noexcept; constexpr address_v4_uint_type to_uint() const noexcept; template<class Allocator = allocator<char>> basic_string<char, char_traits<char>, Allocator> to_string(const Allocator& a = Allocator()) const; // static members: static constexpr address_v4 any() noexcept; static constexpr address_v4 loopback() noexcept; static constexpr address_v4 broadcast() noexcept; static constexpr address_v4 broadcast(const address_v4& addr, const address_v4& mask) noexcept; }; // address_v4 comparisons: constexpr bool operator==(const address_v4& a, const address_v4& b) noexcept; constexpr bool operator!=(const address_v4& a, const address_v4& b) noexcept; constexpr bool operator< (const address_v4& a, const address_v4& b) noexcept; constexpr bool operator> (const address_v4& a, const address_v4& b) noexcept; constexpr bool operator<=(const address_v4& a, const address_v4& b) noexcept; constexpr bool operator>=(const address_v4& a, const address_v4& b) noexcept; // address_v4 creation: constexpr address_v4 make_address_v4(const address_v4::bytes_type& bytes); constexpr address_v4 make_address_v4(address_v4_uint_type val); constexpr address_v4 make_address_v4(v4_mapped_t, const address_v6& a); address_v4 make_address_v4(const char* str); address_v4 make_address_v4(const char* str, error_code& ec) noexcept; address_v4 make_address_v4(string_view str); address_v4 make_address_v4(string_view str, error_code& ec) noexcept; // address_v4 I/O: template<class CharT, class Traits> basic_ostream<CharT, Traits>& operator<<( basic_ostream<CharT, Traits>& os, const address_v4& addr); } // namespace ip } // inline namespace network_v1 } // namespace experimental } // namespace std
namespace std { namespace experimental { inline namespace network_v1 { namespace ip { struct address_v4::bytes_type : array<unsigned char, 4> { template<class... T> explicit constexpr bytes_type(T... t) : array<unsigned char, 4>{{static_cast<unsigned char>(t)...}} {} }; } // namespace ip } // inline namespace network_v1 } // namespace experimental } // namespace std
The ip::address_v4::bytes_type type is a standard-layout
struct that provides a byte-level representation of an IPv4 address in
network byte order.
constexpr address_v4() noexcept;
Effects: Constructs an object of class
address_v4.
Postconditions:
to_bytes()yields{0, 0, 0, 0}andto_uint() == 0.
constexpr address_v4(const address_v4& a) noexcept;
Effects: Constructs an object of class
address_v4.
Postconditions:
*this == a
constexpr address_v4(const bytes_type& bytes);
Throws:
out_of_rangeif any element ofbytesis not in the range[0, 0xFF]. [Note: For implementations wherenumeric_limits<unsigned char>::max() == 0xFF, no out-of-range detection is needed. —end note]
Postconditions:
to_bytes() == bytesandto_uint() == (bytes[0] << 24) | (bytes[1] << 16) | (bytes[2] << 8) | bytes[3].
explicit constexpr address_v4(address_v4_uint_type val);
Throws:
out_of_rangeifvalis not in the range[0, 0xFFFFFFFF]. [Note: For implementations wherenumeric_limits<address_v4_uint_type>::max() == 0xFFFFFFFF, no out-of-range detection is needed. —end note]
Postconditions:
to_uint() == valandto_bytes()is{ (val >> 24) & 0xFF, (val >> 16) & 0xFF, (val >> 8) & 0xFF, val & 0xFF }.
address_v4& operator=(const address_v4& a) noexcept;
Postconditions:
*this == a
Returns:
*this
constexpr bool is_unspecified() const noexcept;
Returns:
to_uint() == 0.
constexpr bool is_loopback() const noexcept;
Returns:
(to_uint() & 0xFF000000) == 0x7F000000.
constexpr bool is_class_a() const noexcept;
Returns:
(to_uint() & 0x80000000) == 0.
constexpr bool is_class_b() const noexcept;
Returns:
(to_uint() & 0xC0000000) == 0x80000000.
constexpr bool is_class_c() const noexcept;
Returns:
(to_uint() & 0xE0000000) == 0xC0000000.
constexpr bool is_multicast() const noexcept;
Returns:
(to_uint() & 0xF0000000) == 0xE0000000.
constexpr bytes_type to_bytes() const noexcept;
Returns: A representation of the address in network byte order.
constexpr address_v4_uint_type to_uint() const noexcept;
Returns: A representation of the address in host byte order.
template<class Allocator = allocator<char>> basic_string<char, char_traits<char>, Allocator> to_string(const Allocator& a = Allocator()) const;
Returns: If successful, the textual representation of the address, determined as if by POSIX inet_ntop when invoked with address family
AF_INET. Otherwisebasic_string<char, char_traits<char>, Allocator>(a).
static constexpr address_v4 any() noexcept;
Returns:
address_v4().
static constexpr address_v4 loopback() noexcept;
Returns:
address_v4(0x7F000001).
static constexpr address_v4 broadcast() noexcept;
Returns:
address_v4(0xFFFFFFFF).
static constexpr address_v4 broadcast(const address_v4& addr, const address_v4& mask) noexcept;
Returns:
address_v4(addr.to_uint() | ~mask.to_uint()).
[internet.address.v4.comparisons]
constexpr bool operator==(const address_v4& a, const address_v4& b) noexcept;
Returns:
a.to_uint() == b.to_uint().
constexpr bool operator!=(const address_v4& a, const address_v4& b) noexcept;
Returns:
!(a == b).
constexpr bool operator< (const address_v4& a, const address_v4& b) noexcept;
Returns:
a.to_uint() < b.to_uint().
constexpr bool operator> (const address_v4& a, const address_v4& b) noexcept;
Returns:
b < a.
constexpr bool operator<=(const address_v4& a, const address_v4& b) noexcept;
Returns:
!(b < a).
constexpr bool operator>=(const address_v4& a, const address_v4& b) noexcept;
Returns:
!(a < b).
[internet.address.v4.creation]
constexpr address_v4 make_address_v4(const address_v4::bytes_type& bytes);
Returns:
address_v4(bytes).
constexpr address_v4 make_address_v4(address_v4_uint_type val);
Returns:
address_v4(val).
constexpr address_v4 make_address_v4(v4_mapped_t, const address_v6& a);
Returns: An
address_v4object corresponding to the IPv4-mapped IPv6 address, as if computed by the following method:bytes_type v6b = a.to_bytes(); address_v4::bytes_type v4b(v6b[12], v6b[13], v6b[14], v6b[15]); return address_v4(v4b);
Throws:
bad_address_castifa.is_v4_mapped()isfalse.
address_v4 make_address_v4(const char* str); address_v4 make_address_v4(const char* str, error_code& ec) noexcept; address_v4 make_address_v4(string_view str); address_v4 make_address_v4(string_view str, error_code& ec) noexcept;
Effects: Converts a textual representation of an address into a corresponding
address_v4value, as if by POSIX inet_pton when invoked with address familyAF_INET.
Returns: If successful, an
address_v4value corresponding to the stringstr. Otherwiseaddress_v4().
Error conditions:
—errc::invalid_argument— ifstris not a valid textual representation of an IPv4 address.
template<class CharT, class Traits> basic_ostream<CharT, Traits>& operator<<( basic_ostream<CharT, Traits>& os, const address_v4& addr);
Returns:
os << addr.to_string().c_str().
namespace std { namespace experimental { inline namespace network_v1 { namespace ip { class address_v6 { public: // types: struct bytes_type; // constructors: constexpr address_v6() noexcept; constexpr address_v6(const address_v6& a) noexcept; constexpr address_v6(const bytes_type& bytes, scope_id_type scope = 0); // assignment: address_v6& operator=(const address_v6& a) noexcept; // members: void scope_id(scope_id_type id) noexcept; constexpr scope_id_type scope_id() const noexcept; constexpr bool is_unspecified() const noexcept; constexpr bool is_loopback() const noexcept; constexpr bool is_multicast() const noexcept; constexpr bool is_link_local() const noexcept; constexpr bool is_site_local() const noexcept; constexpr bool is_v4_mapped() const noexcept; constexpr bool is_multicast_node_local() const noexcept; constexpr bool is_multicast_link_local() const noexcept; constexpr bool is_multicast_site_local() const noexcept; constexpr bool is_multicast_org_local() const noexcept; constexpr bool is_multicast_global() const noexcept; constexpr bytes_type to_bytes() const noexcept; template<class Allocator = allocator<char>> basic_string<char, char_traits<char>, Allocator> to_string(const Allocator& a = Allocator()) const; // static members: static constexpr address_v6 any() noexcept; static constexpr address_v6 loopback() noexcept; }; // address_v6 comparisons: constexpr bool operator==(const address_v6& a, const address_v6& b) noexcept; constexpr bool operator!=(const address_v6& a, const address_v6& b) noexcept; constexpr bool operator< (const address_v6& a, const address_v6& b) noexcept; constexpr bool operator> (const address_v6& a, const address_v6& b) noexcept; constexpr bool operator<=(const address_v6& a, const address_v6& b) noexcept; constexpr bool operator>=(const address_v6& a, const address_v6& b) noexcept; // address_v6 creation: constexpr address_v6 make_address_v6(const address_v6::bytes_type& bytes, scope_id_type scope_id = 0); constexpr address_v6 make_address_v6(v4_mapped_t, const address_v4& a) noexcept; address_v6 make_address_v6(const char* str); address_v6 make_address_v6(const char* str, error_code& ec) noexcept; address_v6 make_address_v6(string_view str); address_v6 make_address_v6(string_view str, error_code& ec) noexcept; // address_v6 I/O: template<class CharT, class Traits> basic_ostream<CharT, Traits>& operator<<( basic_ostream<CharT, Traits>& os, const address_v6& addr); } // namespace ip } // inline namespace network_v1 } // namespace experimental } // namespace std
[Note: The implementations of the functions is_unspecified, is_loopback,
is_multicast, is_link_local, is_site_local,
is_v4_mapped, is_multicast_node_local, is_multicast_link_local, is_multicast_site_local, is_multicast_org_local and is_multicast_global are determined by
[RFC4291]. —end note]
namespace std { namespace experimental { inline namespace network_v1 { namespace ip { struct address_v6::bytes_type : array<unsigned char, 16> { template<class... T> explicit constexpr bytes_type(T... t) : array<unsigned char, 16>{{static_cast<unsigned char>(t)...}} {} }; } // namespace ip } // inline namespace network_v1 } // namespace experimental } // namespace std
The ip::address_v6::bytes_type type is a standard-layout
struct that provides a byte-level representation of an IPv6 address in
network byte order.
constexpr address_v6() noexcept;
Postconditions:
is_unspecified() == trueandscope_id() == 0.
constexpr address_v6(const address_v6& a) noexcept;
Postconditions:
*this == a
constexpr address_v6(const bytes_type& bytes, scope_id_type scope = 0);
Throws:
out_of_rangeif any element ofbytesis not in the range[0, 0xFF]. [Note: For implementations wherenumeric_limits<unsigned char>::max() == 0xFF, no out-of-range detection is needed. —end note]
Postconditions:
to_bytes() == bytesandscope_id() == scope.
address_v6& operator=(const address_v6& a) noexcept;
Postconditions:
*this == a
Returns:
*this
void scope_id(scope_id_type id) noexcept;
Postconditions:
scope_id() == id.
constexpr scope_id_type scope_id() const noexcept;
Returns: The scope identifier associated with the address.
constexpr bool is_unspecified() const noexcept;
Returns:
*this == make_address_v6("::").
constexpr bool is_loopback() const noexcept;
Returns:
*this == make_address_v6("::1").
constexpr bool is_multicast() const noexcept;
Returns: A boolean indicating whether the
address_v6object represents a multicast address, as if computed by the following method:bytes_type b = to_bytes(); return b[0] == 0xFF;
constexpr bool is_link_local() const noexcept;
Returns: A boolean indicating whether the
address_v6object represents a unicast link-local address, as if computed by the following method:bytes_type b = to_bytes(); return b[0] == 0xFE && (b[1] & 0xC0) == 0x80;
constexpr bool is_site_local() const noexcept;
Returns: A boolean indicating whether the
address_v6object represents a unicast site-local address, as if computed by the following method:bytes_type b = to_bytes(); return b[0] == 0xFE && (b[1] & 0xC0) == 0xC0;
constexpr bool is_v4_mapped() const noexcept;
Returns: A boolean indicating whether the
address_v6object represents an IPv4-mapped IPv6 address, as if computed by the following method:bytes_type b = to_bytes(); return b[ 0] == 0 && b[ 1] == 0 && b[ 2] == 0 && b[ 3] == 0 && b[ 4] == 0 && b[ 5] == 0 && b[ 6] == 0 && b[ 7] == 0 && b[ 8] == 0 && b[ 9] == 0 && b[10] == 0xFF && b[11] == 0xFF;
constexpr bool is_multicast_node_local() const noexcept;
Returns:
is_multicast() && (to_bytes()[1] & 0x0F) == 0x01.
constexpr bool is_multicast_link_local() const noexcept;
Returns:
is_multicast() && (to_bytes()[1] & 0x0F) == 0x02.
constexpr bool is_multicast_site_local() const noexcept;
Returns:
is_multicast() && (to_bytes()[1] & 0x0F) == 0x05.
constexpr bool is_multicast_org_local() const noexcept;
Returns:
is_multicast() && (to_bytes()[1] & 0x0F) == 0x08.
constexpr bool is_multicast_global() const noexcept;
Returns:
is_multicast() && (to_bytes()[1] & 0x0F) == 0x0E.
constexpr bytes_type to_bytes() const noexcept;
Returns: A representation of the address in network byte order.
template<class Allocator = allocator<char>> basic_string<char, char_traits<char>, Allocator> to_string(const Allocator& a = Allocator()) const;
Effects: Converts an address into a textual representation. If
scope_id() == 0, converts as if by POSIX inet_ntop when invoked with address familyAF_INET6. Ifscope_id() != 0, the format isaddress%scope-id, whereaddressis the textual representation of the equivalent address havingscope_id() == 0, andscope-idis an implementation-defined textual representation of the scope identifier.
Returns: If successful, the textual representation of the address. Otherwise
basic_string<char, char_traits<char>, Allocator>(a).
static constexpr address_v6 any() noexcept;
Returns: An address
asuch that thea.is_unspecified() == trueanda.scope_id() == 0.
static constexpr address_v6 loopback() noexcept;
Returns: An address
asuch that thea.is_loopback() == trueanda.scope_id() == 0.
[internet.address.v6.comparisons]
constexpr bool operator==(const address_v6& a, const address_v6& b) noexcept;
Returns:
a.to_bytes() == b.to_bytes() && a.scope_id() == b.scope_id().
constexpr bool operator!=(const address_v6& a, const address_v6& b) noexcept;
Returns:
!(a == b).
constexpr bool operator< (const address_v6& a, const address_v6& b) noexcept;
Returns:
a.to_bytes() < b.to_bytes() || (!(b.to_bytes() < a.to_bytes()) && a.scope_id() < b.scope_id()).
constexpr bool operator> (const address_v6& a, const address_v6& b) noexcept;
Returns:
b < a.
constexpr bool operator<=(const address_v6& a, const address_v6& b) noexcept;
Returns:
!(b < a).
constexpr bool operator>=(const address_v6& a, const address_v6& b) noexcept;
Returns:
!(a < b).
[internet.address.v6.creation]
constexpr address_v6 make_address_v6(const address_v6::bytes_type& bytes, scope_id_type scope_id);
Returns:
address_v6(bytes, scope_id).
constexpr address_v6 make_address_v6(v4_mapped_t, const address_v4& a) noexcept;
Returns: An
address_v6object containing the IPv4-mapped IPv6 address corresponding to the specified IPv4 address, as if computed by the following method:address_v4::bytes_type v4b = a.to_bytes(); bytes_type v6b(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF, v4b[0], v4b[1], v4b[2], v4b[3]); return address_v6(v6b);
address_v6 make_address_v6(const char* str); address_v6 make_address_v6(const char* str, error_code& ec) noexcept; address_v6 make_address_v6(string_view str); address_v6 make_address_v6(string_view str, error_code& ec) noexcept;
Effects: Converts a textual representation of an address into a corresponding
address_v6value. The format is eitheraddressoraddress%scope-id, whereaddressis in the format specified by POSIX inet_pton when invoked with address familyAF_INET6, andscope-idis an optional string specifying the scope identifier. All implementations shall accept asscope-ida textual representation of an unsigned decimal integer. It is implementation-defined whether alternative scope identifier representations are permitted. Ifscope-idis not supplied, anaddress_v6object shall be returned such thatscope_id() == 0.
Returns: If successful, an
address_v6value corresponding to the stringstr. Otherwise returnsaddress_v6().
Error conditions:
—errc::invalid_argument— ifstris not a valid textual representation of an IPv6 address.
template<class CharT, class Traits> basic_ostream<CharT, Traits>& operator<<( basic_ostream<CharT, Traits>& os, const address_v6& addr);
Returns:
os << addr.to_string().c_str().
An exception of type bad_address_cast
is thrown by a failed address_cast.
namespace std { namespace experimental { inline namespace network_v1 { namespace ip { class bad_address_cast : bad_cast { public: // constructor: bad_address_cast() noexcept; }; } // namespace ip } // inline namespace network_v1 } // namespace experimental } // namespace std bad_address_cast() noexcept;
Effects: constructs a
bad_address_castobject.
Postconditions:
what()returns an implementation-defined NTBS.
This implementation shall specialize
address_castfor the typesTlisted in the tables below.
template<class T> constexpr T address_cast(const address& a) noexcept(see below);
Table 31. template<class T> constexpr T address_cast(const address&) effects
|
T |
noexcept |
remarks |
|---|---|---|
|
|
|
Returns |
|
|
|
If |
|
|
|
If |
template<class T> constexpr T address_cast(const address_v4& a) noexcept(see below);
This function template shall participate in overload resolution only for the types
Tlisted in the table below.
Table 32. template<class T> constexpr T address_cast(const address_v4&) effects
|
T |
noexcept |
remarks |
|---|---|---|
|
|
|
Returns a version-independent |
|
|
|
Returns |
|
|
Function overload is deleted. |
template<class T> constexpr T address_cast(const address_v6& a) noexcept(see below);
This function template shall participate in overload resolution only for the types
Tlisted in the table below.
Table 33. template<class T> constexpr T address_cast(const address_v6&) effects
|
T |
noexcept |
remarks |
|---|---|---|
|
|
|
Returns a version-independent |
|
|
Function overload is deleted. | |
|
|
|
Returns |
template<> struct hash<experimental::network_v1::ip::address>; template<> struct hash<experimental::network_v1::ip::address_v4>; template<> struct hash<experimental::network_v1::ip::address_v6>;
Requires: the template specializations shall meet the requirements of class template
hash(C++ Std [unord.hash]).
The class template basic_address_iterator
enables iteration over IP addresses in network byte order. This clause
defines two specializations of the class template basic_address_iterator:
basic_address_iterator<address_v4> and basic_address_iterator<address_v6>. The members and operational semantics
of these specializations are defined below.
namespace std { namespace experimental { inline namespace network_v1 { namespace ip { template<> class basic_address_iterator<Address> { public: // types: typedef Address value_type; typedef ptrdiff_t difference_type; typedef const Address* pointer; typedef const Address& reference; typedef input_iterator_tag iterator_category; // constructors: basic_address_iterator(const Address& a) noexcept; // members: reference operator*() const noexcept; pointer operator->() const noexcept; basic_address_iterator& operator++() noexcept; basic_address_iterator& operator++(int) noexcept; basic_address_iterator& operator--() noexcept; basic_address_iterator& operator--(int) noexcept; // other members as required by C++ Std [input.iterators] private: Address address_; // exposition only }; } // namespace ip } // inline namespace network_v1 } // namespace experimental } // namespace std basic_address_iterator(const Address& a) noexcept;
Effects: Initializes
address_witha.
reference operator*() const noexcept;
Returns:
address_.
pointer operator->() const noexcept;
Returns:
std::addressof(address_).
basic_address_iterator& operator++() noexcept;
Effects: Sets
address_to the next unique address in network byte order.
Returns:
*this.
basic_address_iterator& operator++(int) noexcept;
Effects: Sets
address_to the next unique address in network byte order.
Returns: The prior value of
*this.
basic_address_iterator& operator--() noexcept;
Effects: Sets
address_to the prior unique address in network byte order.
Returns:
*this.
basic_address_iterator& operator--(int) noexcept;
Effects: Sets
address_to the prior unique address in network byte order.
Returns: The prior value of
*this.
The class template basic_address_range
represents a range of IP addresses in network byte order. This clause defines
two specializations of the class template basic_address_range:
basic_address_range<address_v4>
and basic_address_range<address_v6>. The members and operational semantics
of these specializations are defined below.
namespace std { namespace experimental { inline namespace network_v1 { namespace ip { template<> class basic_address_range<Address> { public: // types: typedef basic_address_iterator<Address> iterator; // constructors: basic_address_range() noexcept; basic_address_range(const Address& first, const Address& last) noexcept; // members: iterator begin() const noexcept; iterator end() const noexcept; bool empty() const noexcept; size_t size() const noexcept; // not always defined iterator find(const Address& addr) const noexcept; }; } // namespace ip } // inline namespace network_v1 } // namespace experimental } // namespace std basic_address_range() noexcept;
Effects: Constructs an object of type
basic_address_range<Address>that represents an empty range.
basic_address_range(const Address& first, const Address& last) noexcept;
Effects: Constructs an object of type
basic_address_range<Address>that represents the half open range [first,last).
iterator begin() const noexcept;
Returns: An iterator that points to the beginning of the range.
iterator end() const noexcept;
Returns: An iterator that points to the end of the range.
bool empty() const noexcept;
Returns:
trueif*thisrepresents an empty range, otherwisefalse.
size_t size() const noexcept;
Returns: The number of unique addresses in the range.
Remarks: This member function is not defined when
Addressis typeaddress_v6.
iterator find(const Address& addr) const noexcept;
Returns: If
addris in the range, an iterator that points toaddr; otherwise,end().
Complexity: Constant time.
namespace std { namespace experimental { inline namespace network_v1 { namespace ip { class network_v4 { public: // constructors: constexpr network_v4() noexcept; constexpr network_v4(const address_v4& addr, unsigned prefix_len); constexpr network_v4(const address_v4& addr, const address_v4& mask); // members: constexpr address_v4 address() const noexcept; constexpr unsigned prefix_length() const noexcept; constexpr address_v4 netmask() const noexcept; constexpr address_v4 network() const noexcept; constexpr address_v4 broadcast() const noexcept; address_v4_range hosts() const noexcept; constexpr network_v4 canonical() const noexcept; constexpr bool is_host() const noexcept; constexpr bool is_subnet_of(const network_v4& other) const noexcept; template<class Allocator = allocator<char>> basic_string<char, char_traits<char>, Allocator> to_string(const Allocator& a = Allocator()) const; }; // network_v4 comparisons: constexpr bool operator==(const network_v4& a, const network_v4& b) noexcept; constexpr bool operator!=(const network_v4& a, const network_v4& b) noexcept; // network_v4 creation: constexpr network_v4 make_network_v4(const address_v4& addr, unsigned prefix_len); constexpr network_v4 make_network_v4(const address_v4& addr, const address_v4& mask); network_v4 make_network_v4(const char* str); network_v4 make_network_v4(const char* str, error_code& ec) noexcept; network_v4 make_network_v4(string_view str); network_v4 make_network_v4(string_view str, error_code& ec) noexcept; // network_v4 I/O: template<class CharT, class Traits> basic_ostream<CharT, Traits>& operator<<( basic_ostream<CharT, Traits>& os, const network_v4& addr); } // namespace ip } // inline namespace network_v1 } // namespace experimental } // namespace std
constexpr network_v4() noexcept;
Postconditions:
this->address().is_unspecified() == trueandprefix_length() == 0.
constexpr network_v4(const address_v4& addr, unsigned prefix_len);
Postconditions:
this->address() == addrandprefix_length() == prefix_len.
Throws:
out_of_rangeifprefix_len > 32.
constexpr network_v4(const address_v4& addr, const address_v4& mask);
Postconditions:
this->address() == addrandprefix_length()is equal to the number of contiguous non-zero bits.
Throws:
invalid_argumentifmaskcontains non-contiguous non-zero bits, or if the most significant bit is zero and any other bits are non-zero.
constexpr address_v4 address() const noexcept;
Returns: The address specified when the
network_v4object was constructed.
constexpr unsigned prefix_length() const noexcept;
Returns: The prefix length of the network.
constexpr address_v4 netmask() const noexcept;
Returns: An
address_v4object withprefix_length()contiguous non-zero bits set, starting from the most significant bit in network byte order. All other bits are zero.
constexpr address_v4 network() const noexcept;
Returns: An
address_v4object with the firstprefix_length()bits, starting from the most significant bit in network byte order, set to the corresponding bit value ofthis->address(). All other bits are zero.
constexpr address_v4 broadcast() const noexcept;
Returns: An
address_v4object with the firstprefix_length()bits, starting from the most significant bit in network byte order, set to the corresponding bit value ofthis->address(). All other bits are non-zero.
address_v4_range hosts() const noexcept;
Returns: If
is_host() == true, anaddress_v4_rangeobject representing the single addressthis->address().Otherwise, anaddress_v4_rangeobject representing the range of unique host IP addresses in the network.
[Note: For IPv4, the network address and the broadcast address are not included in the range of host IP addresses. For example, given a network
192.168.1.0/24, the range returned byhosts()is from192.168.1.1to192.168.1.254inclusive, and neither192.168.1.0nor the broadcast address192.168.1.255are in the range. —end note]
constexpr network_v4 canonical() const noexcept;
Returns:
network_v4(network(), prefix_length()).
constexpr bool is_host() const noexcept;
Returns:
prefix_length() == 32.
constexpr bool is_subnet_of(const network_v4& other) const noexcept;
Returns:
trueifother.prefix_length() < prefix_length()andnetwork_v4(this->address(), other.prefix_length()).canonical() == other.canonical(), otherwisefalse.
template<class Allocator = allocator<char>> basic_string<char, char_traits<char>, Allocator> to_string(const Allocator& a = Allocator()) const;
Returns:
this->address().to_string(a) + "/" + to_string(prefix_length()).c_str().
[internet.network.v4.comparisons]
constexpr bool operator==(const network_v4& a, const network_v4& b) noexcept;
Returns:
trueifa.address() == b.address()anda.prefix_length() == b.prefix_length(), otherwisefalse.
constexpr bool operator!=(const network_v4& a, const network_v4& b) noexcept;
Returns:
!(a == b).
[internet.network.v4.creation]
constexpr network_v4 make_network_v4(const address_v4& addr, unsigned prefix_len);
Returns:
network_v4(addr, prefix_len).
constexpr network_v4 make_network_v4(const address_v4& addr, const address_v4& mask);
Returns:
network_v4(addr, mask).
network_v4 make_network_v4(const char* str); network_v4 make_network_v4(const char* str, error_code& ec) noexcept; network_v4 make_network_v4(string_view str); network_v4 make_network_v4(string_view str, error_code& ec) noexcept;
Returns: If
strcontains a value of the form address'/'prefix-length, anetwork_v4object constructed with the result of applyingmake_address_v4()to the address portion of the string, and the result of converting prefix-length to an integer of typeunsigned. Otherwise returnsnetwork_v4()and setsecto reflect the error.
Error conditions:
—errc::invalid_argument— ifstris not a valid textual representation of an IPv4 address and prefix length.
template<class CharT, class Traits> basic_ostream<CharT, Traits>& operator<<( basic_ostream<CharT, Traits>& os, const network_v4& net);
Returns:
os << net.to_string().c_str().
namespace std { namespace experimental { inline namespace network_v1 { namespace ip { class network_v6 { public: // constructors: constexpr network_v6() noexcept; constexpr network_v6(const address_v6& addr, unsigned prefix_len); // members: constexpr address_v6 address() const noexcept; constexpr unsigned prefix_length() const noexcept; constexpr address_v6 network() const noexcept; address_v6_range hosts() const noexcept; constexpr network_v6 canonical() const noexcept; constexpr bool is_host() const noexcept; constexpr bool is_subnet_of(const network_v6& other) const noexcept; template<class Allocator = allocator<char>> basic_string<char, char_traits<char>, Allocator> to_string(const Allocator& a = Allocator()) const; }; // network_v6 comparisons: constexpr bool operator==(const network_v6& a, const network_v6& b) noexcept; constexpr bool operator!=(const network_v6& a, const network_v6& b) noexcept; // network_v6 creation: constexpr network_v6 make_network_v6(const address_v6& addr, unsigned prefix_len); network_v6 make_network_v6(const char* str); network_v6 make_network_v6(const char* str, error_code& ec) noexcept; network_v6 make_network_v6(const string_v6& str); network_v6 make_network_v6(const string_v6& str, error_code& ec) noexcept; // network_v6 I/O: template<class CharT, class Traits> basic_ostream<CharT, Traits>& operator<<( basic_ostream<CharT, Traits>& os, const network_v6& addr); } // namespace ip } // inline namespace network_v1 } // namespace experimental } // namespace std
constexpr network_v6() noexcept;
Postconditions:
this->address().is_unspecified() == trueandprefix_length() == 0.
constexpr network_v6(const address_v6& addr, unsigned prefix_len);
Postconditions:
this->address() == addrandprefix_length() == prefix_len.
Throws:
out_of_rangeifprefix_len > 128.
constexpr address_v6 address() const noexcept;
Returns: The address specified when the
network_v6object was constructed.
constexpr unsigned prefix_length() const noexcept;
Returns: The prefix length of the network.
constexpr address_v6 network() const noexcept;
Returns: An
address_v6object with the firstprefix_length()bits, starting from the most significant bit in network byte order, set to the corresponding bit value ofthis->address(). All other bits are zero.
address_v6_range hosts() const noexcept;
Returns: If
is_host() == true, anaddress_v6_rangeobject representing the single addressthis->address().Otherwise, anaddress_v6_rangeobject representing the range of unique host IP addresses in the network.
constexpr network_v6 canonical() const noexcept;
Returns:
network_v6(network(), prefix_length()).
constexpr bool is_host() const noexcept;
Returns:
prefix_length() == 128.
constexpr bool is_subnet_of(const network_v6& other) const noexcept;
Returns:
trueifother.prefix_length() < prefix_length()andnetwork_v6(this->address(), other.prefix_length()).canonical() == other.canonical(), otherwisefalse.
template<class Allocator = allocator<char>> basic_string<char, char_traits<char>, Allocator> to_string(const Allocator& a = Allocator()) const;
Returns:
this->address().to_string(a) + "/" + to_string(prefix_length()).c_str().
[internet.network.v6.comparisons]
constexpr bool operator==(const network_v6& a, const network_v6& b) noexcept;
Returns:
trueifa.address() == b.address()anda.prefix_length() == b.prefix_length(), otherwisefalse.
constexpr bool operator!=(const network_v6& a, const network_v6& b) noexcept;
Returns:
!(a == b).
[internet.network.v6.creation]
constexpr network_v6 make_network_v6(const address_v6& addr, unsigned prefix_len);
Returns:
network_v6(addr, prefix_len).
network_v6 make_network_v6(const char* str); network_v6 make_network_v6(const char* str, error_code& ec) noexcept; network_v6 make_network_v6(const string_v6& str); network_v6 make_network_v6(const string_v6& str, error_code& ec) noexcept;
Returns: If
strcontains a value of the form address'/'prefix-length, anetwork_v6object constructed with the result of applyingmake_address_v6()to the address portion of the string, and the result of converting prefix-length to an integer of typeunsigned. Otherwise returnsnetwork_v6()and setsecto reflect the error.
Error conditions:
—errc::invalid_argument— ifstris not a valid textual representation of an IPv6 address and prefix length.
template<class CharT, class Traits> basic_ostream<CharT, Traits>& operator<<( basic_ostream<CharT, Traits>& os, const network_v6& net);
Returns:
os << net.to_string().c_str().
Instances of the basic_endpoint
class template meet the requirements for an Endpoint.
namespace std { namespace experimental { inline namespace network_v1 { namespace ip { template<class InternetProtocol> class basic_endpoint { public: // types: typedef InternetProtocol protocol_type; // constructors: constexpr basic_endpoint() noexcept; constexpr basic_endpoint(const protocol_type& proto, port_type port_num) noexcept; constexpr basic_endpoint(const ip::address& addr, port_type port_num) noexcept; // members: constexpr protocol_type protocol() const noexcept; constexpr ip::address address() const noexcept; void address(const ip::address& addr) noexcept; constexpr port_type port() const noexcept; void port(port_type port_num) noexcept; }; // basic_endpoint comparisons: template<class InternetProtocol> constexpr bool operator==(const basic_endpoint<InternetProtocol>& a, const basic_endpoint<InternetProtocol>& b) noexcept; template<class InternetProtocol> constexpr bool operator!=(const basic_endpoint<InternetProtocol>& a, const basic_endpoint<InternetProtocol>& b) noexcept; template<class InternetProtocol> constexpr bool operator< (const basic_endpoint<InternetProtocol>& a, const basic_endpoint<InternetProtocol>& b) noexcept; template<class InternetProtocol> constexpr bool operator> (const basic_endpoint<InternetProtocol>& a, const basic_endpoint<InternetProtocol>& b) noexcept; template<class InternetProtocol> constexpr bool operator<=(const basic_endpoint<InternetProtocol>& a, const basic_endpoint<InternetProtocol>& b) noexcept; template<class InternetProtocol> constexpr bool operator>=(const basic_endpoint<InternetProtocol>& a, const basic_endpoint<InternetProtocol>& b) noexcept; // basic_endpoint I/O: template<class CharT, class Traits, class InternetProtocol> basic_ostream<CharT, Traits>& operator<<( basic_ostream<CharT, Traits>& os, const basic_endpoint<InternetProtocol>& ep); } // namespace ip } // inline namespace network_v1 } // namespace experimental } // namespace std
Extensible implementations provide the following member functions:
namespace std { namespace experimental { inline namespace network_v1 { namespace ip { template<class InternetProtocol> class basic_endpoint { public: void* data() noexcept; const void* data() const noexcept; constexpr size_t size() const noexcept; void resize(size_t s); constexpr size_t capacity() const noexcept; // remainder unchanged private: union { sockaddr_in v4_; sockaddr_in6 v6_; } data_; // exposition only }; } // namespace ip } // inline namespace network_v1 } // namespace experimental } // namespace std
constexpr basic_endpoint() noexcept;
Postconditions:
this->address() == ip::address()andport() == 0.
constexpr basic_endpoint(const protocol_type& proto, port_type port_num) noexcept;
Requires:
proto == protocol_type::v4() || proto == protocol_type::v6().
Postconditions:
— Ifproto == protocol_type::v6(),this->address() == ip::address_v6(); otherwise,this->address() == ip::address_v4().
—port() == port_num.
constexpr basic_endpoint(const ip::address& addr, port_type port_num) noexcept;
Postconditions:
this->address() == addrandport() == port_num.
constexpr protocol_type protocol() const noexcept;
Returns:
protocol_type::v6()if the expressionthis->address().is_v6()istrue, otherwiseprotocol_type::v4().
constexpr ip::address address() const noexcept;
Returns: The address associated with the endpoint.
void address(const ip::address& addr) noexcept;
Postconditions:
this->address() == addr.
constexpr port_type port() const noexcept;
Returns: The port number associated with the endpoint.
void port(port_type port_num) noexcept;
Postconditions:
port() == port_num.
[internet.endpoint.comparisons]
template<class InternetProtocol> constexpr bool operator==(const basic_endpoint<InternetProtocol>& a, const basic_endpoint<InternetProtocol>& b) noexcept;
Returns:
a.address() == b.address() && a.port() == b.port()).
template<class InternetProtocol> constexpr bool operator!=(const basic_endpoint<InternetProtocol>& a, const basic_endpoint<InternetProtocol>& b) noexcept;
Returns:
!(a == b).
template<class InternetProtocol> constexpr bool operator< (const basic_endpoint<InternetProtocol>& a, const basic_endpoint<InternetProtocol>& b) noexcept;
Returns:
a.address() < b.address() || (!(b.address() < a.address()) && a.port() < b.port()).
template<class InternetProtocol> constexpr bool operator> (const basic_endpoint<InternetProtocol>& a, const basic_endpoint<InternetProtocol>& b) noexcept;
Returns:
b < a.
template<class InternetProtocol> constexpr bool operator<=(const basic_endpoint<InternetProtocol>& a, const basic_endpoint<InternetProtocol>& b) noexcept;
Returns:
!(b < a).
template<class InternetProtocol> constexpr bool operator>=(const basic_endpoint<InternetProtocol>& a, const basic_endpoint<InternetProtocol>& b) noexcept;
Returns:
!(a < b).
template<class CharT, class Traits, class InternetProtocol> basic_ostream<CharT, Traits>& operator<<( basic_ostream<CharT, Traits>& os, const basic_endpoint<InternetProtocol>& ep);
Effects: Outputs a representation of the endpoint to the stream, as if it were implemented as follows:
basic_ostringstream<CharT, Traits> ss; if (ep.protocol() == protocol_type::v6()) ss << "[" << ep.address() << "]"; else ss << ep.address(); ss << ":" << ep.port(); os << ss.str();
Returns:
os.
[Note: The representation of the endpoint when it contains an IP version 6 address is based on [RFC2732]. —end note]
[internet.endpoint.extensible]
void* data() noexcept;
Returns:
std::addressof(data_).
const void* data() const noexcept;
Returns:
std::addressof(data_).
constexpr size_t size() const noexcept;
Returns:
sizeof(sockaddr_in6)ifprotocol().family() == AF_INET6, otherwisesizeof(sockaddr_in).
void resize(size_t s);
Throws:
length_errorif the conditionprotocol().family() == AF_INET6 && s != sizeof(sockaddr_in6)||protocol().family() == AF_INET4 && s != sizeof(sockaddr_in)istrue.
constexpr size_t capacity() const noexcept;
Returns:
sizeof(data_).
An object of type basic_resolver_entry<InternetProtocol> represents a single element in the
results returned by a name resolution operation.
namespace std { namespace experimental { inline namespace network_v1 { namespace ip { template<class InternetProtocol> class basic_resolver_entry { public: // types: typedef InternetProtocol protocol_type; typedef typename InternetProtocol::endpoint endpoint_type; // constructors: basic_resolver_entry(); basic_resolver_entry(const endpoint_type& ep, string_view h, string_view s); // members: endpoint_type endpoint() const; operator endpoint_type() const; template<class Allocator = allocator<char>> basic_string<char, char_traits<char>, Allocator> host_name(const Allocator& a = Allocator()) const; template<class Allocator = allocator<char>> basic_string<char, char_traits<char>, Allocator> service_name(const Allocator& a = Allocator()) const; }; // basic_resolver_entry comparisons: template<class InternetProtocol> bool operator==(const basic_resolver_entry<InternetProtocol>& a, const basic_resolver_entry<InternetProtocol>& b); template<class InternetProtocol> bool operator!=(const basic_resolver_entry<InternetProtocol>& a, const basic_resolver_entry<InternetProtocol>& b); } // namespace ip } // inline namespace network_v1 } // namespace experimental } // namespace std
[internet.resolver.entry.cons]
basic_resolver_entry();
Effects: Equivalent to
basic_resolver_entry<InternetProtocol>(endpoint_type(), "", "").
basic_resolver_entry(const endpoint_type& ep, string_view h, string_view s);
Postconditions:
—endpoint() == ep.
—host_name() == h.
—service_name() == s.
[internet.resolver.entry.members]
endpoint_type endpoint() const;
Returns: The endpoint associated with the resolver entry.
operator endpoint_type() const;
Returns:
endpoint().
template<class Allocator = allocator<char>> basic_string<char, char_traits<char>, Allocator> host_name(const Allocator& a = Allocator()) const;
Returns: The host name associated with the resolver entry.
template<class Allocator = allocator<char>> basic_string<char, char_traits<char>, Allocator> service_name(const Allocator& a = Allocator()) const;
Returns: The service name associated with the resolver entry.
[internet.resolver.entry.comparisons]
template<class InternetProtocol> bool operator==(const basic_resolver_entry<InternetProtocol>& a, const basic_resolver_entry<InternetProtocol>& b);
Returns:
a.endpoint() == b.endpoint() && a.host_name() == b.host_name() && a.service_name() == b.service_name().
template<class InternetProtocol> bool operator!=(const basic_resolver_entry<InternetProtocol>& a, const basic_resolver_entry<InternetProtocol>& b);
Returns:
!(a == b).
An object of type basic_resolver_results<InternetProtocol> represents a sequence of basic_resolver_entry<InternetProtocol>
elements resulting from a single name resolution operation.
namespace std { namespace experimental { inline namespace network_v1 { namespace ip { template<class InternetProtocol> class basic_resolver_results { public: // types: typedef InternetProtocol protocol_type; typedef typename protocol_type::endpoint endpoint_type; typedef basic_resolver_entry<protocol_type> value_type; typedef const value_type& const_reference; typedef value_type& reference; typedef implementation-defined const_iterator; typedef const_iterator iterator; typedef ptrdiff_t difference_type; typedef size_t size_type; // construct / copy / destroy: basic_resolver_results(); basic_resolver_results(const basic_resolver_results& rhs); basic_resolver_results(basic_resolver_results& rhs) noexcept; basic_resolver_results& operator=(const basic_resolver_results& rhs); basic_resolver_results& operator=(basic_resolver_results&& rhs); ~basic_resolver_results(); // size: size_type size() const noexcept; size_type max_size() const noexcept; bool empty() const noexcept; // element access: const_iterator begin() const; const_iterator end() const; const_iterator cbegin() const; const_iterator cend() const; // swap: void swap(basic_resolver_results& that) noexcept; }; // basic_resolver_results comparisons: template<class InternetProtocol> bool operator==(const basic_resolver_results<InternetProtocol>& a, const basic_resolver_results<InternetProtocol>& b); template<class InternetProtocol> bool operator!=(const basic_resolver_results<InternetProtocol>& a, const basic_resolver_results<InternetProtocol>& b); } // namespace ip } // inline namespace network_v1 } // namespace experimental } // namespace std
The class template basic_resolver_results
satisfies the requirements of a sequence container (C++Std [sequence.reqmts]),
except that only the operations defined for const-qualified sequence containers
are supported. The class template basic_resolver_results
supports forward iterators.
A default-constructed basic_resolver_results
object is empty. A non-empty results object is obtained only by calling
a basic_resolver object's
wait or async_wait
operations, or otherwise by copy construction, move construction, assignment,
or swap from another non-empty results object.
[internet.resolver.results.cons]
basic_resolver_results();
Postconditions:
size() == 0.
basic_resolver_results(const basic_resolver_results& rhs);
Postconditions:
*this == rhs.
basic_resolver_results(basic_resolver_results& rhs) noexcept;
Postconditions:
*thisis equal to the prior value ofrhs.
[internet.resolver.results.assign]
basic_resolver_results& operator=(const basic_resolver_results& rhs);
Postconditions:
*this == rhs.
Returns:
*this.
basic_resolver_results& operator=(basic_resolver_results& rhs) noexcept;
Postconditions:
*thisis equal to the prior value ofrhs.
Returns:
*this.
[internet.resolver.results.size]
size_type size() const noexcept;
Returns: The number of
basic_resolver_entryelements in*this.
size_type max_size() const noexcept;
Returns: The maximum number of
basic_resolver_entryelements that can be stored in*this.
bool empty() const noexcept;
Returns:
size() == 0.
[internet.resolver.results.access]
const_iterator begin() const; const_iterator cbegin() const;
Returns: A starting iterator that enumerates over all the
basic_resolver_entryelements stored in*this.
const_iterator end() const; const_iterator cend() const;
Returns: A terminating iterator that enumerates over all the
basic_resolver_entryelements stored in*this.
[internet.resolver.results.swap]
void swap(basic_resolver_results& that) noexcept;
Postconditions:
*thisis equal to the prior value ofthat, andthatis equal to the prior value of*this.
[internet.resolver.results.comparisons]
template<class InternetProtocol> bool operator==(const basic_resolver_results<InternetProtocol>& a, const basic_resolver_results<InternetProtocol>& b);
Returns:
a.size() == b.size() && equal(a.cbegin(), a.cend(), b.cbegin()).
template<class InternetProtocol> bool operator!=(const basic_resolver_results<InternetProtocol>& a, const basic_resolver_results<InternetProtocol>& b);
Returns:
!(a == b).
namespace std { namespace experimental { inline namespace network_v1 { namespace ip { class resolver_base { public: typedef T1 flags; static const flags passive; static const flags canonical_name; static const flags numeric_host; static const flags numeric_service; static const flags v4_mapped; static const flags all_matching; static const flags address_configured; protected: resolver_base(); ~resolver_base(); }; } // namespace ip } // inline namespace network_v1 } // namespace experimental } // namespace std
resolver_base defines a
bitmask type, flags, with
the bitmask elements shown above.
Table 34. resolver flags
|
Constant name |
POSIX macro |
Definition or notes |
|---|---|---|
|
|
|
Returned endpoints are intended for use as locally bound socket endpoints. |
|
|
|
Determine the canonical name of the host specified in the query. |
|
|
|
Host name should be treated as a numeric string defining an IPv4 or IPv6 address and no host name resolution should be attempted. |
|
|
|
Service name should be treated as a numeric string defining a port number and no service name resolution should be attempted. |
|
|
|
If the protocol is specified as an IPv6 protocol, return IPv4-mapped IPv6 addresses on finding no IPv6 addresses. |
|
|
|
If used with |
|
|
|
Only return IPv4 addresses if a non-loopback IPv4 address is configured for the system. Only return IPv6 addresses if a non-loopback IPv6 address is configured for the system. |
Objects of type basic_resolver<InternetProtocol> are used to perform name resolution.
Name resolution is the translation of a host name and service name into
a sequence of endpoints, or the translation of an endpoint into its corresponding
host name and service name.
namespace std { namespace experimental { inline namespace network_v1 { namespace ip { template<class InternetProtocol> class basic_resolver : public resolver_base { public: // types: typedef io_service::executor_type executor_type; typedef InternetProtocol protocol_type; typedef typename InternetProtocol::endpoint endpoint_type; typedef basic_resolver_results<InternetProtocol> results_type; // construct / copy / destroy: explicit basic_resolver(io_service& ios); basic_resolver(const basic_resolver&) = delete; basic_resolver(basic_resolver&& rhs) noexcept; ~basic_resolver(); basic_resolver& operator=(const basic_resolver&) = delete; basic_resolver& operator=(basic_resolver&& rhs); // basic_resolver operations: executor_type get_executor() noexcept; void cancel(); results_type resolve(string_view host_name, string_view service_name); results_type resolve(string_view host_name, string_view service_name, error_code& ec); results_type resolve(string_view host_name, string_view service_name, flags f); results_type resolve(string_view host_name, string_view service_name, flags f, error_code& ec); template<class CompletionToken> DEDUCED async_resolve(string_view host_name, string_view service_name, CompletionToken&& token); template<class CompletionToken> DEDUCED async_resolve(string_view host_name, string_view service_name, flags f, CompletionToken&& token); results_type resolve(const protocol_type& protocol, string_view host_name, string_view service_name); results_type resolve(const protocol_type& protocol, string_view host_name, string_view service_name, error_code& ec); results_type resolve(const protocol_type& protocol, string_view host_name, string_view service_name, flags f); results_type resolve(const protocol_type& protocol, string_view host_name, string_view service_name, flags f, error_code& ec); template<class CompletionToken> DEDUCED async_resolve(const protocol_type& protocol, string_view host_name, string_view service_name, CompletionToken&& token); template<class CompletionToken> DEDUCED async_resolve(const protocol_type& protocol, string_view host_name, string_view service_name, flags f, CompletionToken&& token); results_type resolve(const endpoint_type& e); results_type resolve(const endpoint_type& e, error_code& ec); template<class CompletionToken> DEDUCED async_resolve(const endpoint_type& e, CompletionToken&& token); }; } // namespace ip } // inline namespace network_v1 } // namespace experimental } // namespace std
explicit basic_resolver(io_service& ios);
Postconditions:
get_executor() == ios.get_executor().
basic_resolver(basic_resolver&& rhs) noexcept;
Effects: Move constructs an object of class
basic_resolver<InternetProtocol>that refers to the state originally represented byrhs.
Postconditions:
get_executor() == rhs.get_executor().
~basic_resolver();
Effects: Destroys the resolver, canceling all asynchronous operations associated with this resolver as if by calling
cancel().
basic_resolver& operator=(basic_resolver&& rhs);
Effects: Cancels all outstanding asynchronous operations associated with
*thisas if by callingcancel(), then moves into*thisthe state originally represented byrhs.
Postconditions:
get_executor() == ios.get_executor().
Returns:
*this.
executor_type& get_executor() noexcept;
Returns: The associated executor.
void cancel();
Effects: Cancels all outstanding asynchronous resolve operations associated with
*this. Completion handlers for canceled operations are passed an error codeecsuch thatec == errc::operation_canceledyieldstrue.
results_type resolve(string_view host_name, string_view service_name); results_type resolve(string_view host_name, string_view service_name, error_code& ec);
Returns:
resolve(host_name, service_name, resolver_base::flags(), ec).
results_type resolve(string_view host_name, string_view service_name, flags f); results_type resolve(string_view host_name, string_view service_name, flags f, error_code& ec);
Effects: If
host_name.data() != nullptr, letHbe an NTBS constructed fromhost_name; otherwise, letHbenullptr. Ifservice_name.data() != nullptr, letSbe an NTBS constructed fromservice_name; otherwise, letSbenullptr. Resolves a host name and service name, as if by POSIX:addrinfo hints; hints.ai_flags = static_cast<int>(f); hints.ai_family = AF_UNSPEC; hints.ai_socktype = endpoint_type().protocol().type(); hints.ai_protocol = endpoint_type().protocol().protocol(); hints.ai_addr = nullptr; hints.ai_addrlen = 0; hints.ai_canonname = nullptr; hints.ai_next = nullptr; addrinfo* result = nullptr; getaddrinfo(H, S, &hints, &result);
Returns: On success, a non-empty results object containing the results of the resolve operation. Otherwise
results_type().
template<class CompletionToken> DEDUCED async_resolve(string_view host_name, string_view service_name, CompletionToken&& token);
Returns:
async_resolve(host_name, service_name, resolver_base::flags(), forward<CompletionToken>(token)).
template<class CompletionToken> DEDUCED async_resolve(string_view host_name, string_view service_name, flags f, CompletionToken&& token);
Completion signature:
void(error_code ec, results_type r).
Effects: If
host_name.data() != nullptr, letHbe an NTBS constructed fromhost_name; otherwise, letHbenullptr. Ifservice_name.data() != nullptr, letSbe an NTBS constructed fromservice_name; otherwise, letSbenullptr. Initiates an asynchronous operation to resolve a host name and service name, as if by POSIX:addrinfo hints; hints.ai_flags = static_cast<int>(f); hints.ai_family = AF_UNSPEC; hints.ai_socktype = endpoint_type().protocol().type(); hints.ai_protocol = endpoint_type().protocol().protocol(); hints.ai_addr = nullptr; hints.ai_addrlen = 0; hints.ai_canonname = nullptr; hints.ai_next = nullptr; addrinfo* result = nullptr; getaddrinfo(H, S, &hints, &result);On success,
ris a non-empty results object containing the results of the resolve opeation. Otherwise,risresults_type().
results_type resolve(const protocol_type& protocol, string_view host_name, string_view service_name); results_type resolve(const protocol_type& protocol, string_view host_name, string_view service_name, error_code& ec);
Returns:
resolve(protocol, host_name, service_name, resolver_base::flags(), ec).
results_type resolve(const protocol_type& protocol, string_view host_name, string_view service_name, flags f); results_type resolve(const protocol_type& protocol, string_view host_name, string_view service_name, flags f, error_code& ec);
Effects: If
host_name.data() != nullptr, letHbe an NTBS constructed fromhost_name; otherwise, letHbenullptr. Ifservice_name.data() != nullptr, letSbe an NTBS constructed fromservice_name; otherwise, letSbenullptr. Resolves a host name and service name, as if by POSIX:addrinfo hints; hints.ai_flags = static_cast<int>(f); hints.ai_family = protocol.family(); hints.ai_socktype = protocol.type(); hints.ai_protocol = protocol.protocol(); hints.ai_addr = nullptr; hints.ai_addrlen = 0; hints.ai_canonname = nullptr; hints.ai_next = nullptr; addrinfo* result = nullptr; getaddrinfo(H, S, &hints, &result);
Returns: On success, a non-empty results object containing the results of the resolve operation. Otherwise
results_type().
template<class CompletionToken> DEDUCED async_resolve(const protocol_type& protocol, string_view host_name, string_view service_name, CompletionToken&& token);
Returns:
async_resolve(protocol, host_name, service_name, resolver_base::flags(), forward<CompletionToken>(token)).
template<class CompletionToken> DEDUCED async_resolve(const protocol& protocol, string_view host_name, string_view service_name, flags f, CompletionToken&& token);
Completion signature:
void(error_code ec, results_type r).
Effects: If
host_name.data() != nullptr, letHbe an NTBS constructed fromhost_name; otherwise, letHbenullptr. Ifservice_name.data() != nullptr, letSbe an NTBS constructed fromservice_name; otherwise, letSbenullptr. Initiates an asynchronous operation to resolve a host name and service name, as if by POSIX:addrinfo hints; hints.ai_flags = static_cast<int>(f); hints.ai_family = protocol.family(); hints.ai_socktype = protocol.type(); hints.ai_protocol = protocol.protocol(); hints.ai_addr = nullptr; hints.ai_addrlen = 0; hints.ai_canonname = nullptr; hints.ai_next = nullptr; addrinfo* result = nullptr; getaddrinfo(H, S, &hints, &result);On success,
ris a non-empty results object containing the results of the resolve opeation. Otherwise,risresults_type().
results_type resolve(const endpoint_type& e); results_type resolve(const endpoint_type& e, error_code& ec);
Effects: Let
S1andS2be implementation-defined values that are sufficiently large to hold the host name and service name respectively. Resolves an endpoint as if by POSIX:char host_name[S1]; char service_name[S2]; int flags = 0; if (endpoint_type().protocol().type() == SOCK_DGRAM) flags |= NI_DGRAM; int result = getnameinfo(e.data(), e.size(), host_name, S1, service_name, S2, flags); if (result != 0) { flags |= NI_NUMERICSERV; result = getnameinfo(e.data(), e.size(), host_name, S1, service_name, S2, flags); }
Returns: On success, a results object with
size() == 1containing the results of the resolve operation. Otherwiseresults_type().
template<class CompletionToken> DEDUCED async_resolve(const endpoint_type& e, CompletionToken&& token);
Completion signature:
void(error_code ec, results_type r).
Effects: Let
S1andS2be implementation-defined values that are sufficiently large to hold the host name and service name respectively. Initiates an asynchronous operation to resolve an endpoint as if by POSIX:char host_name[S1]; char service_name[S2]; int flags = 0; if (endpoint_type().protocol().type() == SOCK_DGRAM) flags |= NI_DGRAM; int result = getnameinfo(e.data(), e.size(), host_name, S1, service_name, S2, flags); if (result != 0) { flags |= NI_NUMERICSERV; result = getnameinfo(e.data(), e.size(), host_name, S1, service_name, S2, flags); }On success,
ris a results object withsize() == 1containing the results of the resolve operation; otherwise,risresults_type().
string host_name(); string host_name(error_code& ec); template<class Allocator> basic_string<char, char_traits<char>, Allocator> host_name(const Allocator& a) const; template<class Allocator> basic_string<char, char_traits<char>, Allocator> host_name(const Allocator& a, error_code& ec) const;
Returns: The standard host name for the current machine, determined as if by POSIX gethostname.
The tcp class meets the
requirements for an InternetProtocol.
namespace std { namespace experimental { inline namespace network_v1 { namespace ip { class tcp { public: // types: typedef basic_endpoint<tcp> endpoint; typedef basic_resolver<tcp> resolver; typedef basic_stream_socket<tcp> socket; typedef basic_socket_acceptor<tcp> acceptor; typedef basic_socket_iostream<tcp> iostream; class no_delay; // static members: static constexpr tcp v4() noexcept; static constexpr tcp v6() noexcept; tcp() = delete; }; // tcp comparisons: constexpr bool operator==(const tcp& a, const tcp& b) noexcept; constexpr bool operator!=(const tcp& a, const tcp& b) noexcept; } // namespace ip } // inline namespace network_v1 } // namespace experimental } // namespace std
Extensible implementations provide the following member functions:
namespace std { namespace experimental { inline namespace network_v1 { namespace ip { class tcp { public: constexpr int family() const noexcept; constexpr int type() const noexcept; constexpr int protocol() const noexcept; // remainder unchanged }; } // namespace ip } // inline namespace network_v1 } // namespace experimental } // namespace std
The return values for these member functions are listed in the table below.
Table 35. Behavior of extensible implementations
|
value |
|
|
|
|---|---|---|---|
|
|
|
|
|
|
|
|
|
|
[Note: The constants AF_INET,
AF_INET6 and SOCK_STREAM are defined in the POSIX
header file sys/socket.h. The constant IPPROTO_TCP is defined in the POSIX header
file netinet/in.h.
—end note]
constexpr bool operator==(const tcp& a, const tcp& b) noexcept;
Returns: A boolean indicating whether two objects of class
tcpare equal, such that the expressiontcp::v4() == tcp::v4()istrue, the expressiontcp::v6() == tcp::v6()istrue, and the expressiontcp::v4() == tcp::v6()isfalse.
constexpr bool operator!=(const tcp& a, const tcp& b) noexcept;
Returns:
!(a == b).
The no_delay class represents
a socket option that determines whether a TCP socket will avoid coalescing
of small segments. [Note: That is, setting this option
disables the Nagle algorithm. —end note] It is defined
as a boolean socket
option.
Let L and N
identify POSIX macros to be passed as the level and
option_name arguments, respectively, to POSIX setsockopt
and getsockopt.
[Note: The constant IPPROTO_TCP
is defined in the POSIX header file netinet/in.h.
The constant TCP_NODELAY
is defined in the POSIX header file netinet/tcp.h. —end note]
The udp class meets the
requirements for an InternetProtocol.
namespace std { namespace experimental { inline namespace network_v1 { namespace ip { class udp { public: // types: typedef basic_endpoint<udp> endpoint; typedef basic_resolver<udp> resolver; typedef basic_datagram_socket<udp> socket; // static members: static constexpr udp v4() noexcept; static constexpr udp v6() noexcept; udp() = delete; }; // udp comparisons: constexpr bool operator==(const udp& a, const udp& b) noexcept; constexpr bool operator!=(const udp& a, const udp& b) noexcept; } // namespace ip } // inline namespace network_v1 } // namespace experimental } // namespace std
Extensible implementations provide the following member functions:
namespace std { namespace experimental { inline namespace network_v1 { namespace ip { class udp { public: constexpr int family() const noexcept; constpexr int type() const noexcept; constexpr int protocol() const noexcept; // remainder unchanged }; } // namespace ip } // inline namespace network_v1 } // namespace experimental } // namespace std
The return values for these member functions are listed in the table below.
Table 37. Behavior of extensible implementations
|
value |
|
|
|
|---|---|---|---|
|
|
|
|
|
|
|
|
|
|
[Note: The constants AF_INET,
AF_INET6 and SOCK_DGRAM are defined in the POSIX header
file sys/socket.h. The constant IPPROTO_UDP is defined in the POSIX header
file netinet/in.h.
—end note]
constexpr bool operator==(const udp& a, const udp& b) noexcept;
Returns: A boolean indicating whether two objects of class
udpare equal, such that the expressionudp::v4() == udp::v4()istrue, the expressionudp::v6() == udp::v6()istrue, and the expressionudp::v4() == udp::v6()isfalse.
constexpr bool operator!=(const udp& a, const udp& b) noexcept;
Returns:
!(a == b).
The v6_only class represents
a socket option for determining whether a socket created for an IPv6 protocol
is restricted to IPv6 communications only. It shall be defined as a boolean socket option
with the name and values in the table below:
[Note: The constants IPPROTO_IPV6
and IPV6_V6ONLY are defined
in the POSIX header file netinet/in.h.
—end note]
The hops class represents
a socket option for specifying the default number of hops (also known as
time-to-live or TTL) on outbound datagrams. It is an integral
socket option.
L and N
identify POSIX macros to be passed as the level and
option_name arguments, respectively, to POSIX setsockopt
and getsockopt.
In the table below, p denotes
a (possibly const) value of a type meeting the protocol
requirements, as passed to the socket option's level
and name member functions.
Table 39. hops integral socket option
|
C |
L if |
N if |
L if |
N if |
|---|---|---|---|---|
|
|
|
|
|
|
[Note: The constants IPPROTO_IP,
IPPROTO_IPV6 and IPV6_UNICAST_HOPS are defined in the
POSIX header file netinet/in.h.
—end note]
The constructor and assignment operator for the hops
class that accept an int throw
out_of_range if the argument
is not in the range [0, 255].
The ip::multicast::join_group and ip::multicast::leave_group
classes are socket options for multicast group management.
Multicast group management socket option classes satisfy the requirements
for Destructible (C++ Std,
[destructible]), CopyConstructible
(C++ Std, [copyconstructible]), Assignable
(C++ Std, [assignable]), and SettableSocketOption.
[Example: Creating a UDP socket and joining a multicast group:
// Open an IPv4 UDP socket bound to a specific port. ip::udp::endpoint ep(ip::udp::v4(), 12345); ip::udp::socket sock(io_svc, ep); // Join a multicast group. ip::address addr = ip::make_address("239.255.0.1"); sock.set_option(ip::multicast::join_group(addr));
—end example]
Multicast group management socket option classes shall be defined as follows:
class C { public: // constructors: explicit C(const address& multicast_group) noexcept; explicit C(const address_v4& multicast_group, const address_v4& network_interface = address_v4::any()) noexcept; explicit C(const address_v6& multicast_group, unsigned int network_interface = 0) noexcept; };
Extensible implementations shall provide the following member functions:
class C { public: template<class Protocol> int level(const Protocol& p) const noexcept; template<class Protocol> int name(const Protocol& p) const noexcept; template<class Protocol> const void* data(const Protocol& p) const noexcept; template<class Protocol> size_t size(const Protocol& p) const noexcept; // remainder unchanged private: ip_mreq v4_value_; // exposition only ipv6_mreq v6_value_; // exposition only };
Let L and N
identify POSIX macros to be passed as the level and
option_name arguments, respectively, to POSIX setsockopt
and getsockopt.
In the table below, p denotes
a (possibly const) value of a type meeting the protocol
requirements, as passed to the socket option's level
and name member functions.
Table 40. Multicast group management socket options
|
C |
L if |
N if |
L if |
N if |
|---|---|---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
[Note: The constants IPPROTO_IP
and IPPROTO_IPV6 are defined
in the POSIX header file netinet/in.h.
The constants IPV6_JOIN_GROUP
and IPV6_LEAVE_GROUP are
defined in the POSIX header file netinet/in.h.
—end note]
[internet.multicast.group.cons]
explicit C(const address& multicast_group) noexcept;
Effects: If
multicast_group.is_v6()istrue, callsC(address_cast<address_v6>(multicast_group)); otherwise, callsC(address_cast<address_v4>(multicast_group)).
explicit C(const address_v4& multicast_group, const address_v4& network_interface = address_v4::any()) noexcept;
Effects: For extensible implementations,
v4_value_.imr_multiaddris initialized to correspond to the addressmulticast_group,v4_value_.imr_interfaceis initialized to correspond to addressnetwork_interface, andv6_value_is zero-initialized.
explicit C(const address_v6& multicast_group, unsigned int network_interface = 0) noexcept;
Effects: For extensible implementations,
v6_value_.ipv6mr_multiaddris initialized to correspond to the addressmulticast_group,v6_value_.ipv6mr_interfaceis initialized tonetwork_interface, andv4_value_is zero-initialized.
[internet.multicast.group.extensible]
template<class Protocol> int level(const Protocol& p) const noexcept;
Returns:
L.
template<class Protocol> int name(const Protocol& p) const noexcept;
Returns:
N.
template<class Protocol> const void* data(const Protocol& p) const noexcept;
Returns:
std::addressof(v6_value_)ifp.family() == AF_INET6, otherwisestd::addressof(v4_value_).
template<class Protocol> size_t size(const Protocol& p) const noexcept;
Returns:
sizeof(v6_value_)ifp.family() == AF_INET6, otherwisesizeof(v4_value_).
The outbound_interface
class represents a socket option that specifies the network interface to
use for outgoing multicast datagrams.
outbound_interface satisfies
the requirements for Destructible
(C++ Std, [destructible]), CopyConstructible
(C++ Std, [copyconstructible]), Assignable
(C++ Std, [assignable]), and SettableSocketOption.
namespace std { namespace experimental { inline namespace network_v1 { namespace ip { namespace multicast { class outbound_interface { public: // constructors: explicit outbound_interface(const address_v4& network_interface) noexcept; explicit outbound_interface(unsigned int network_interface) noexcept; }; } // namespace multicast } // namespace ip } // inline namespace network_v1 } // namespace experimental } // namespace std
Extensible implementations shall provide the following member functions:
namespace std { namespace experimental { inline namespace network_v1 { namespace ip { namespace multicast { class outbound_interface { public: template<class Protocol> int level(const Protocol& p) const noexcept; template<class Protocol> int name(const Protocol& p) const noexcept; template<class Protocol> const void* data(const Protocol& p) const noexcept; template<class Protocol> size_t size(const Protocol& p) const noexcept; // remainder unchanged private: in_addr v4_value_; // exposition only unsigned int v6_value_; // exposition only }; } // namespace multicast } // namespace ip } // inline namespace network_v1 } // namespace experimental } // namespace std
Let L and N
identify POSIX macros to be passed as the level and
option_name arguments, respectively, to POSIX setsockopt
and getsockopt.
In the table below, p denotes
a (possibly const) value of a type meeting the protocol
requirements, as passed to the socket option's level
and name member functions.
Table 41. outbound_interface socket option
|
L if |
N if |
L if |
N if |
|---|---|---|---|
|
|
|
|
|
[Note: The constants
IPPROTO_IP,IPPROTO_IPV6, andIPV6_MULTICAST_IFare defined in the POSIX header filenetinet/in.h. —end note]
[internet.multicast.outbound.cons]
explicit outbound_interface(const address_v4& network_interface) noexcept;
Effects: For extensible implementations,
v4_value_is initialized to correspond to the IPv4 addressnetwork_interface, andv6_value_is zero-initialized.
explicit outbound_interface(unsigned int network_interface) noexcept;
Effects: For extensible implementations,
v6_value_is initialized tonetwork_interface, andv4_value_is zero-initialized.
[internet.multicast.outbound.extensible]
template<class Protocol> int level(const Protocol& p) const noexcept;
Returns:
L.
template<class Protocol> int name(const Protocol& p) const noexcept;
Returns:
N.
template<class Protocol> const void* data(const Protocol& p) const noexcept;
Returns:
std::addressof(v6_value_)ifp.family() == AF_INET6, otherwisestd::addressof(v4_value_).
template<class Protocol> size_t size(const Protocol& p) const noexcept;
Returns:
sizeof(v6_value_)ifp.family() == AF_INET6, otherwisesizeof(v4_value_).
The hops class represents
a socket option for specifying the default number of hops (also known as
time-to-live or TTL) on outbound multicast datagrams. It is defined as
an integral socket
option.
L and N
identify POSIX macros to be passed as the level and
option_name arguments, respectively, to POSIX setsockopt
and getsockopt.
In the table below, p denotes
a (possibly const) value of a type meeting the protocol
requirements, as passed to the socket option's level
and name member functions.
Table 42. hops integral socket option
|
C |
L if |
N if |
L if |
N if |
|---|---|---|---|---|
|
|
|
|
|
|
[Note: The constants IPPROTO_IP,
IPPROTO_IPV6 and IPV6_MULTICAST_HOPS are defined in the
POSIX header file netinet/in.h.
—end note]
Constructors for the hops
class shall throw out_of_range
if the argument is not in the range [0, 255].
[internet.multicast.enable.loopback]
The enable_loopback class
represents a socket option for determining whether multicast datagrams
are delivered back to the local application. It is defined as a boolean
socket option.
L and N
identify POSIX macros to be passed as the level and
option_name arguments, respectively, to POSIX setsockopt
and getsockopt.
In the table below, p denotes
a (possibly const) value of a type meeting the protocol
requirements, as passed to the socket option's level
and name member functions.
Table 43. enable_loopback boolean socket option
|
C |
L if |
N if |
L if |
N if |
|---|---|---|---|---|
|
|
|
|
|
|
[Note: The constants IPPROTO_IP,
IPPROTO_IPV6 and IPV6_MULTICAST_LOOP are defined in the
POSIX header file netinet/in.h.
—end note]
In the eleven years since Asio's inception, hundreds of people have contributed to its development through design review, patches, feature suggestions, bug reports, and usage feedback from the field. With respect to the 2014 refresh of the Networking Library Proposal, the author would particularly like to thank Jamie Allsop for providing feedback during the drafting process, and Oliver Kowalke for contributing towards the design and implementation of the CIDR support.
Thanks go to Marshall Clow, Jens Maurer, Arash Partow, Jamie Allsop, Dietmar Kühl, Detlef Vollmann, Jonathan Wakely, Mikael Kilpeläinen, Jens Weller, Michael Wong, Eric Fisselier, and Jeffrey Yasskin for participating in the Cologne wording review, and also to Roger Orr for some pre-Cologne review feedback.
[POSIX] ISO/IEC 9945:2003, IEEE Std 1003.1-2001, and The Open Group Base Specifications, Issue 6. Also known as The Single Unix Specification, Version 3.
[N4045] Kohlhoff, Christopher, Library Foundations for Asynchronous Operations, Revision 2, 2014.
[N4242] Kohlhoff, Christopher, Executors and Asynchronous Operations, Revision 1, 2014.
[N4099] Draft Filesystem Technical Specification, 2014.
[ACE] Schmidt, Douglas C., ADAPTIVE Communication Environment, http://www.cs.wustl.edu/~schmidt/ACE.html.
[SYMBIAN] Symbian Ltd, Sockets Client, http://www.symbian.com/developer/techlib/v70sdocs/doc_source/reference/cpp/SocketsClient/index.html.
[MS-NET] Microsoft Corporation, .NET Framework Class Library, Socket Class, http://msdn2.microsoft.com/en-us/library/system.net.sockets.socket.aspx.
[ES-API] The Interconnect Software Consortium / The Open Group, Extended Sockets API (ES-API), Issue 1.0, 2005, http://opengroup.org/icsc/uploads/40/6415/ES_API_1_0.pdf.
[UNPV1] Stevens, W. Richard, UNIX Network Programming, Volume 1, 2nd Edition, Prentice Hall, 1998.
[POSA2] Schmidt, Douglas C. et al, Pattern Oriented Software Architecture, Volume 2, Wiley, 2000.
[RFC821] Postel, J., RFC 821: Simple Mail Transfer Protocol, 1982, http://www.ietf.org/rfc/rfc0821.txt.
[RFC959] Postel, J. and Reynolds, J., RFC 959: File Transfer Protocol (FTP), 1985, http://www.ietf.org/rfc/rfc0959.txt.
[RFC2616] Fielding, R. et al, RFC 2616: Hypertext Transfer Protocol -- HTTP/1.1, 1999, http://www.ietf.org/rfc/rfc2616.txt.
[RFC2732] Hinden, R., Carpenter, B. and Masinter, L., RFC 2732: Format for Literal IPv6 Addresses in URL's, 1999, http://www.ietf.org/rfc/rfc2732.txt.
[RFC3513] Hinden, R. and Deering, S., RFC 3513: Internet Protocol Version 6 (IPv6) Addressing Architecture, 2003, http://www.ietf.org/rfc/rfc3513.txt.
[1] POSIX® is a registered trademark of The IEEE. Windows® is a registered trademark of Microsoft Corporation. This information is given for the convenience of users of this document and does not constitute an endorsement by ISO or IEC of these products.