
WG21/N1008 X3J16/96-0190 1

Allocator cleanup

Matthew Austern (austern@sgi.com) Hans Boehm (boehm@mti.sgi.com)
Nathan Myers (ncm@adder.cantrip.org)

November 5, 1996

Abstract

The description of Allocators in the September '96 WP is inconsistent, incomplete, and

unimplementable as written. Some of the 
aws can be easily corrected; others are fundamental,

traceable to the original STL proposal. Allocators were accepted on the premise that the

loose ends could be worked out before document freeze, but they have not been, yet. This

paper presents three options for �xing the WP. All options require changes to Clause 20, with

consequential changes in Clauses 21 and 23.

1 Present state of the WP

The current Allocator speci�cation su�ers from three sets of problems. First, the member

typedefs intended to support alternate memory model extensions, are not su�ciently speci�ed,

and almost certainly cannot be speci�ed adequately without major loss of intended functionality.

Second, the current description of the interface su�ers from a variety of minor errors that make

it unimplementable as written. Finally, the consequences of the model on Container semantics

have not yet been elucidated, rendering the standard container descriptions incomplete and

contradictory.

1.1 Allocator Member Typedefs

The Allocator member typedefs pointer and reference appeared in the original STL proposal,

intended for support of alternate memory models. The semantics required of them were un-

speci�ed at the time; like so many other loose ends in that very large proposal, it was assumed

that they could be dealt with in due time. No such speci�cations have been forthcoming.

The semantics of the pointer members could, in principle, be listed completely. However, at-

tempts to do so without overconstraining extensions have revealed problems in other clauses of

the draft, and have con
icted with assumptions made by those who have implemented those

clauses.

The semantics of the reference members are more troubling: because they cannot usefully be

de�ned to be any standard C++ type other than actual references, the requirements on de�ni-

tions that rely on extensions are hard to state meaningfully (and have not been). Furthermore,



WG21/N1008 X3J16/96-0190 2

any useful list of such requirements would rely on extensions to the template type deduction ap-

paratus, to deduce new type quali�ers. We do not know of any way to describe such extensions

as part of a list of required semantics for a typedef.

To see this, consider the template type deduction problem: swap has the signature

template<class T> void swap(T&, T&),

so the template type deduction will fail if it is passed arguments of type Allocator<T>::reference

if they are not actually references. A conversion from some extended reference type to to a real

reference would not be used for the type deduction, and C++ does not provide any mechanism

for writing swap in a more general way.

This problem is the reason, for example, that the WP contains the function iter swap. However,

that special-case approach doesn't help with the dozens of other standard library functions whose

arguments are const references. It doesn't, for example, provide a reasonable way of writing a

function call like

find(v1.begin(), v1.end(), v2[0]).

For the reference typedef to work, container writers would be obliged to use explicit casts from

reference to T& in all calls to standard algorithms. This is incompatible with most potential

uses.

The good news is that if the member typedefs were well-speci�ed, they would probably not

present any insuperable implementation overhead problems; it is impossible to be certain,

though, without a speci�cation to study.

1.2 Numerous Errors

The Utilities Issues list (N1000R1) lists numerous small problems with Allocator in Clause 20.

Other related problems appear on the Strings and Containers lists. Most, but not all, of these

problems are listed with proposed resolutions. Without resolutions, the Draft is inconsistent

and unimplementable as written.

1.3 Allocator Instances

The status quo Allocator is described in terms that imply it can be used as a run-time object,

with a copy stored in each container. The default allocator, allocator<T>, does not use this

feature, and exhibits only static behavior. In a careful implementation, such empty instances

need not impose any direct overhead on containers, compared to a fully static interface. However,

overhead does appear elsewhere.

The problems with allocator instances are in its implications for container semantics: it implies

signi�cant complexity in the description of the Container interface, of the standard containers,

and of their implementation.

Much of this complexity has not yet been incorporated in the Draft, with the result that a user

cannot expect a standard or user-written container to work properly if specialized for a user-

written allocator that displays per-instance semantics. Most of the incomplete speci�cation is

associated with two-argument container operations, such as swap, which are generally described

as having \constant" complexity characteristics.

The \constant" constraint is incompatible with any status quo Allocator that relies on per-



WG21/N1008 X3J16/96-0190 3

instance state. Therefore, to complete the description of these two-argument operations, we

must decide for each whether it (1) takes linear time, (2) throws an exception, or (3) exhibits

unde�ned behavior, in the event it is passed containers that use unequal Allocator instances.

We must decide whether a single policy is su�cient, or whether each case demands a separate

decision.

The status quo can be interpreted to imply (2) by default, in most cases, (1) in a few, and

e�ectively (3) in Clause 21. None of these resolutions is clearly correct; we have seen convincing

arguments that each is intolerably wrong. Regardless of these arguments, and the contents of

the draft, the existing implementations seem to assume (1) in all cases.

Because there seems to be little agreement on what the correct semantics should be, it seems

unlikely that the additional speci�cation can be added at the Kona meeting. If they were to be

speci�ed, an implementation overhead issue arises: The inline operations necessary to handle

these container operations are more complicated, so it is not always possible to optimize such

container code well. These operations involve, for case (1) above, extra loops or, for (2), throws,

which might either be dead (but might not be successfully eliminated) or not (and thus could

easily interfere with inlining).

1.4 Overview

Given enough time, many of these problems could be solved without dramatically changing the

status quo design. However, the Draft changes necessary to specify these solutions would be

far larger than is currently permitted given the state of the schedule. Furthermore, some of

the problems are entirely intractable, and others do not have obviously correct solutions, which

would take more detailed committee attention to resolve.

Allocator instances were added on the assumption that their implications would become clear,

and the speci�cation completed, before document freeze. They have not, and we believe it is

time to retreat to a fallback position: a stable, well-tested subset of the status quo interface.

2 Options

2.1 Option I: Status quo, with minor �xes

As discussed above, it is impossible to solve the problems of alternative reference types. There

are three ways to deal with this problem.

1. Eliminate alternative reference types. Allocators will still have typedefs pointer and

const pointer, but they do not have typedefs reference and const reference.

2. Require that a user-de�ned memory model must also overload every function in the stan-

dard library that take a const reference argument.

3. Document the fact that calls to standard library functions will not work unless every lvalue

argument is cast to type T&. For example, document that max(v[0], v[1]) is erroneous

code.

None of these alternatives is entirely satisfactory, but the �rst is probably the least unsatisfac-

tory. Implementing this alternative implies changes in Clauses 20, 21, and 23. It isn't clear



WG21/N1008 X3J16/96-0190 4

whether alternative memory models are genuinely useful if they are restricted to using ordinary

references.

Solving the problem of underspeci�ed requirements for Allocator<T>::pointer and

Allocator<T>::const pointer requires formulating a complete and consistent description of

operations on those types. It is uncertain how di�cult or time-consuming this will be, or how

much new text is required.

The problems related to the semantics of conversion from Allocator<T>::pointer to T* and

void* can be solved in one of two ways.

1. Specify the semantics precisely. This involves an unknown amount of new text in Clause 20.

2. Eliminate the conversions. This will require rewriting the descriptions of

Allocator<T>::operator new, Allocator<T>::construct, Allocator<T>::destroy, the

specialized algorithms in x20.4.4, basic string (Clause 21), and possibly other library

components.

The problems related to allocator instances can be solved by specifying the semantics of every

operation that involves more than one allocator. This requires changes to Clauses 21 and 23.

Known issues include assignment, binary operations on strings, swap, mutative list operations,

and a general policy for mutative operations in user-de�ned containers. Some of these decisions

are controversial: there is still disagreement even about what swap should mean in the case of

two non-equivalent allocators. In the case of list operations, choices include

1. Require that list perform a copy, and modify the complexity requirements and that

semantics of pointer invalidation accordingly.

2. Throw an exception if allocators compare non-equal.

3. List operations involving two non-equivalent allocators result in unde�ned behavior.

Option I is in one sense the least radical option, in that it might not require any renumbering of

WP sections or any wholesale creation or elimination of features. In another sense it is the most

radical option, however, because it will require many small changes in Clauses 20, 21, and 23,

and because it implies a rather complicated speci�cation whose consistency is uncertain.

Option I might permit users to de�ne non-standard memory models and to use techniques such

as persistence and shared memory. The extent to which these techniquies would be permitted,

however, depends on the outcome of decisions that haven't yet been made. The requirements

on pointer conversions, for example, are likely to be very signi�cant constraints.

2.2 Option II: Simpli�ed allocators

In this option, allocators no longer attempt to encapsulate alternate versions of pointers and

references. Additionally, containers use allocator types instead of allocator instances. This

option would still permit users to control containers' allocation strategies.

Option II requires a small amount of new text in Clause 20, and deletion of text from Clauses 21

and 23. The necessary WP changes are listed explicitly in the Appendix.

An implementation of simpli�ed allocators already exists, so we can be con�dent that they are

actually implementable and that they do not impose run-time penalties. The speci�cation is

simple enough that we can be reasonable con�dent that it has no hidden inconsistencies.



WG21/N1008 X3J16/96-0190 5

2.3 Option III: Removal of allocators from the WP

In this option, containers would not be parameterized by allocation strategy. The library would

not include any components to support such parametization. This would involve deleting x20.1.4

and x20.4 entirely, and then removing every template parameter, function argument, and mem-

ber variable that refers to allocators. Text would have to be deleted from Clauses 17, 20, 21,

and 23.

An implementation that conforms to Option II also conforms to Option III, so we can be

con�dent that Option III is implementable. This option, however, requires rather radical changes

to the WP: it requires modifying the tables in Clause 17, and extensive renumbering of sections

in Clause 20.

Although the WP would be simpler under Option III than under either Option I or Option II,

Option III does not simplify the task of library implementors. Library implementors will almost

certainly design classes for memory allocation even if the standard does not require them:

e�cient and thread-safe allocation of small objects is complicated enough that it will usually be

encapsulated in a class or function.

Since every library implementation will include memory allocation classes or functions, the real

di�erence between Option II and Option III is whether or not to make them part of the public

interface that is visible to users. The strongest argument in favor of doing so is that user-de�ned

classes have just as much need for such a scheme as the prede�ned classes do.

A Detailed WP changes for Option II

Because of the tight time constraints, we have provided a speci�c list of all WP changes that

are necessary if Option II is adopted. These changes close issues 20{032, 20{041, and 20{045.

A.1 Clause 20 changes

Delete the third paragraph of x20.1.5 [Allocator requirements], and delete the second sentence

of the second paragraph. Rewrite the second �rst and second sentences of the �rst paragraph

so that they no longer refers to alternate pointer types. The new version of x20.1.5 is:

The library describes a standard set of requirements for allocators, which are objects

that encapsulate memory allocation. All of the Containers (23), as well as Strings

(21) are parameterized in terms of allocators.

Table 41 describes the requirements on types manipulated through allocators.

Table 42 describes requirements on allocator types.

The template class member rebind in the table above is e�ectively a template

typedef: if the name Allocator is bound to SomeAllocator<T>, then

Allocator::rebind<U>::other is the same type as SomeAllocator<U>.

Change Table 41 as follows. Delete lines 3{4 and 6{8. Change the de�nition column of line 5

to read \A value of type T* obtained by calling X::allocate," and the de�nition column of

line 10 to read \A value of type size t". Change the de�nition column of line 9 to read \A



WG21/N1008 X3J16/96-0190 6

value of type U*, obtained by calling X::rebind<U>::other::allocate." The new version of

Table 41 is:

Variable De�nition

X An Allocator class

Y The type X::rebind<U>::other, for some type U

T Any type

p A value of type T* obtained by calling X::allocate

u A value of type U*, obtained by calling Y::allocate for some Y (possibly X).

n A value of type size t

Change Table 42 as follows. Delete lines 9{10, 13{19, and 22{23. Modify lines 1{7 so that

the nested typedefs are de�ned to be speci�c types: pointer, const pointer, reference,

const reference, value type, size type, and difference type are de�ned, respectively, to

be T*, const T*, T&, const T&, T, size t, and ptrdiff t. Modify lines 11{12 and 20{21 so that

they no longer refer to allocator instances. The new version of Table 42 is:

expression return type assertion/note

pre/post-condition

X::pointer T*

X::const pointer const T*

X::reference T&

X::const reference const T&

X::value type T

X::size type size t

X::difference type ptrdiff t

typename X::rebind<U>::other Y If U is T, then Y is X.

Y::rebind<T>::other is X.

X::allocate(n)

X::allocate(n, u)

T* memory is allocated for n ob-

jects of type T but objects are

not constructed. allocate

may raise an exception of type

bad alloc or of a type derived

from bad alloc.

X::deallocate(p, n) (not used) All n T objects in the area

pointed to by p must be de-

stroyed prior to this call. n

must match the value passed

to allocate to obtain this

memory.

X::construct(p, t) (not used) E�ect: new((void*)p) T(t)

X::destroy(p) (not used) E�ect: p->~T()

Also add a footnote to the description of X::allocate that reads as follows.

It is intended that X::allocate be an e�cient means of allocating a single object

of type T, even when sizeof(T) is small. That is, there is no need for a container to

maintain its own \free list".



WG21/N1008 X3J16/96-0190 7

In x20.4 [lib.memory], delete the de�nitions of operator new, operator delete, operator==,

and operator!= from the Header <memory> synopsis. That is, delete the six lines that imme-

diately follow the line \template <> class allocator<void>".

In x20.4.1 [lib.default.allocator], delete all of the member functions except for allocate, deallocate,

construct, and destroy, and change the signatures of those member functions so that they are

declared as static. Delete the global operators operator==, operator!=, and operator new.

After these deletions, the declaration of class allocator, and of its void specialization, reads

namespace std {

template <class T> class allocator;

// specialize for void:

template <> class allocator<void> {

public:

typedef void* pointer;

typedef const void* const_pointer;

// reference-to-void members are impossible.

typedef void value_type;

template <class U> struct rebind { typedef allocator<U> other; };

};

template <class T> class allocator {

public:

typedef size_t size_type;

typedef ptrdiff_t difference_type;

typedef T* pointer;

typedef const T* const_pointer;

typedef T& reference;

typedef const T& const_reference;

typedef T value_type;

template <class U> struct rebind { typedef allocator<U> other; };

static T* allocate(size_t n, const void* hint = 0);

static void deallocate(T* p, size_t n);

static void construct(T* p, const T& val);

static void destroy(T* p);

};

}

In x20.4.1.1 [lib.allocator.members], delete the de�nitions of the members address (both ver-

sions) and max size.

Delete x20.4.1.2 [lib.allocator.globals].

Replace x20.4.1.3 [lib.allocator.example], which will be renumbered as x20.4.1.2 because of the

deletion of [lib.allocator.globals], with the following new text.

20.4.1.2 Example allocator [lib.allocator.example]

[Example: Here is a sample container parameterized on the allocator type.



WG21/N1008 X3J16/96-0190 8

template <class T, class Allocator = allocator<T> >

class AContainer {

struct Treenode;

typedef typename Allocator::rebind<Treenode>::other

Treenode_allocator;

struct Treenode { Treenode* left_, right_; T t; };

public:

AContainer() : root_(0) {}

// ...

private:

Treenode* root_;

Treenode* get_node() {

return new(Treenode_allocator::allocate(1, root_)) Treenode;

}

};

Here is a sample allocator that simply calls malloc. It is useful for debugging,

and for working with leak-detection and bounds-checking software.

template <class T>

class malloc_alloc : public allocator<T> {

template <class U> struct rebind { typedef malloc_alloc<U> other; };

static T* allocate(size_t n, const void* = 0) {

return (T*) std::malloc(n * sizeof(T));

}

static void deallocate(T* p, size_t) { std::free(p); }

};

{end example]

[Note: In addition to the default allocator allocator, it is recommended, but

not required, that implementations also supply the allocators gc allocator and

fast allocator.

The class gc allocator allocates garbage-collectable memory. Access to memory

allocated using gc allocator after the memory has become unreachable is unde�ned.

gc allocator::deallocate has no e�ect.

The template fast allocator<> works identically to the default, allocator<>,

in single-threaded environments. However, it is not necessarily safe to call its mem-

ber functions concurrently in multi-threaded environments. In such environments,

fast allocator<> can often be implemented much more e�ciently than can the

default allocator.

{End Note]

A.2 Clause 21 changes

� In x21.3 [lib.basic.string], remove the allocator argument from all of basic string's con-

structors in which it appears, and remove the explicit declaration from the default con-

structor. Also remove the member function get allocator from the \// string operations"

section.

� In x21.3.1 [lib.string.cons], remove the Allocator argument from all of basic string's con-

structors and from the headings in all of the tables that describe constructor semantics.



WG21/N1008 X3J16/96-0190 9

Remove the explicit declaration from basic string's default constructor. Delete para-

graph 1 of x21.3.1 [lib.string.cons].

� In x21.3.5.8 [lib.string::swap], change the Complexity clause (paragraph 3) to read \con-

stant time".

� In x21.3.6 [lib.string.ops], delete paragraph 6, and the member function declaration (of

get allocator) that appears immediately above it.

A.3 Clause 23 changes

� In Table 75 (which is in x23.1 [lib.container.requirements]) delete the line that de�nes the

expression a.get allocator(). In the line that de�nes the expression a.swap(), change

the entry in the complexity column to \constant time".

� Delete paragraph 8 of x23.1 [lib.container.requirements].

� In the declarations of deque, list, vector, and vector<bool>, in, respectively, x23.2.1

[lib.deque], x23.2.2 [lib.list], x23.2.4 [lib.vector], and x23.2.5 [lib.vector.bool], remove the

Allocator argument from the three constructors in which it appears. Remove the declara-

tion explicit from the default constructor (which now takes no arguments). Remove the

member function get allocator.

� In each of x23.2.1.1 [lib.deque.cons], x23.2.2.1 [lib.list.cons], and x23.2.4.1 [lib.vector.cons],

remove the Allocator argument from each constructor where it appears, and remove the

declaration explicit from the default constructor. Delete the phrase \using the speci�ed

allocator" from the descriptions of the constructors.

� In the declarations of queue, priority queue, and stack, in, respectively, x23.2.3.1 [lib.queue],

x23.2.3.2 [lib.priority.queue], and x23.2.3.3 [lib.stack], remove the get allocator member

function. Remove the Allocator argument from the constructor. In x23.2.3.1 [lib.queue]

and x23.2.3.3 [lib.stack], but not in x23.2.3.2 [lib.priority.queue], also remove the explicit

declaration from the constructor.

� In the declarations of map, multimap, set, and multiset, in, respectively, x23.3.1 [lib.map],

x23.3.2 [lib.multimap], x23.3.3 [lib.set], and x23.3.4 [lib.multiset], remove the Allocator

argument from the two constructors in which it appears. Remove the declaration of the

member function get allocator.

� In x23.3.1.1 [lib.map.cons], x23.3.2.1 [lib.multimap.cons], x23.3.3.1 [lib.set.cons], and x23.3.4.1

[lib.multiset.cons], remove the Allocator argument from the two constructors where it ap-

pears, and remove the phrase \and allocator" from paragraphs 1 and 3.

B Acknowledgments

We wish to thank Alex Stepanov and Andy Koenig for helpful suggestions, and Bjarne Strous-

trup for bringing some allocator issues to our attention.


