Doc. no.: X3J16/96-0174

WG21/N0992
Date: September 24, 1996
Project: Programming Language C++

Reply to: William M. Miller
wmm@world.std.com

Defining Conformance

[. Introduction

The conformance model for C+implementations angrograms idefined in subclauses
1.3[intro.compliance] and 1.4intro.defs]. Together, thessubclauses defineategories

of programs (well-formedj]l-formed, having undefined behavior) atite requirements
placed on implementations whpresented with these various kinds of program input. As
it currently stands, however, the text of these subclauses is in need of improvement.

II. Analysis
There are at leasivo problematic aspects to the treatment of conformance in the current
Working Paper. The first, and most serioush# it isinconsistent, botimternally and
with the treatment of prograerrorselsewhere in the WP. Secondeftectively forbids
implementations tause more aggressive detection and reporting of prognarsthan
the minimal approach required by the WP.
ll. A. Inconsistency
The problem of inconsistency arispamarily because thesame terms or rules are
described in multipléocations and exceptions to the general formnaaee in one place
but not another. For instance, 1.4 defines an “ill-formed program” as

input to a C++ implementation that is not a well-formed progcaw) (

and a “well-formed program” as

a C++ program constructed according to $igatax rules, diagnosable semantic
rules, and the One Definition Rule (3.2).

Thus, according to this pair of definitions, ¢oalify as “ill-formed” aprogram must
contain a violation othe ODR, asyntax rule, or a diagnosable semantic ridiwever,
1.39/5 contains a much broader definition of “ill-formed:”

Whenever this Internationgtandard places a requirement on the form of a
program (that is, the characters, tokens, syntactic elements, and types that make up

96-0174=N0992: Defining Conformance (page 1)

the program), and a program does meet thatequirement, the programils
formed...

Which is the correct definition of “ill-formed?”

Similarly, there areinconsistencies ithe requirements placed onplementations when
presented withil-formed program input. The just-cited passage in 1.315 requires that all
ill-formed programs be diagnosed:

[When] a program doesot meet thatequirement, the program isformed and
the implementation shall issue a diagnostic message when processing that program.

However, 1.313 allows an implementation not to diagnose certain ill-formed programs:

If an ill-formed program contains no violations of diagnosable semantic thiss,
International Standard places no requiremeningslementations withiespect to
that prograr.

In addition to internal inconsistencies withihese two subclauses, there amso
contradictions withother parts of the WP. Fanstance, subclausels3 and 1.4 are
written with the assumption that all syntax rules are diagnosable; e.g., 1.312:

Every conforming C++ implementationshall issue atleast one diagnostic
message when presented watty ill-formedprogram thatcontains a violation of
any diagnosable semantic rule or of any syntax rule.

However, there are mumber of syntactic ruldbat that do notequire diagnostics, either
because they arexplicitly so annotated (2.711, non-whitespace charadtiswing a
form feed or verticalab in a /lcomment; 2.102dentifiers containing doublenderscore
or beginning with amnderscore and a capital letter) or because they resutdefined
behavior (2.13.23, use of an undefined escape sequence).

Il. B. Diagnostic Restrictions
According to 1.312,

Every conforming C++ implementatiahall, within itsresourcdimits, accept and
correctly execute well-formed C++ programs.

The set of‘well-formed C++ programsincludesprograms containingnly errors for
which no diagnostic isequired. Even if amplementation is capable of detecting some

11t should also be noted in passititat a program containingnly syntaxerrors — “ill-formed” but
“[containing] no violations of diagnosable semantic rules” — does not require an implementation to issue a
diagnostic message accordingtlds paragrapheventhough the preceding paragrapiatesthat such a
messagés required.

96-0174=N0992: Defining Conformance (page 2)

of these errors, it isot permitted to issue a diagnostic and refuseréate arexecutable;
instead, it must “accept and correctly execute” them. In fagt@lementation would be
rendered nonconforming if it wenmgcapable oproducing an executable in the presence of
certain of these errofs.

II. C. Rationale for Proposed Solution

One possiblapproach taectifying the problems identified aboveould be to edit the
individual offendingstatements on piecemeal basis. This editimgpuld primarily take
the form of inserting additional qualifications into overly broad existing verbiage.

This approach, however, would result gomplicating stillfurther thealready complex
existing specification. Thiauthor, at leastbelieves thathe currenproblems result
mainly rom a complexset ofoverlapping categories and tfadure to clearly specify how
they relate to eaclther. Forinstance, 1.3f%lassifiesrules into“form rules” and
“execution rules,while 1.371-2classifiesthem into syntactic rules, diagnosable semantic
rules, and semantic rulder which no diagnostic isequired. Each is a reasonable
taxonomy, butconfusion results when each is usedependently tdry to specify the
requirements on implementations. Progtant isclassified as well-formed, diagnosably
ill-formed, and otherwisell-formed; these categories doot corresponeéxactly with
either of the rules taxonomies (the Abefinition Rule is a semantic rufer which no
diagnostic is required; violations of the ODR render a progil&formed, unlike
violations of other no-diagnostic-requiredmantic rules), and thdassification is also
usedindependently tdry to specify implementatiomequirements, resulting in yet more
confusion.

The approach advocated in the proposal below takes the opposite dirgntidifying

the description by categorizing programs and rules in exact correlation with the
requirements on implementations. Implementatiars required to diagnose programs
with violations of diagnosable rules; such programee called ‘ill-formed.”
Implementations are required to accept and correctly execute those pritgrialage no
violations of rules and whose execution-tidega meets the Standard’s constraistgh
programs and data acalled“correct.” All other programs&nd data result inndefined
behavior, and themplementation is unconstrainedkatth compilation and executicime

when processing such programs.

2 One such scenario might be a failure of the programefine an otherwise-unused virtual function.
According to 3.212, no diagnostic is required for an undefined virtual funittadns neithercalled nor
used to form a pointer-to-member, so a program with suabrran is“well-formed.” The widely-used
“vtable” implementation technique, howevenjght well result in a linkage reor, thus preventing the
implementation from “accepting and correctly executing” a well-formed program.

3 Although achieving this identificatiobetween “diagnosticequired” and‘ill-formed program”was not
the primary motivatiorfor this proposal, thdraffic on the emailreflectorsduring its discussion has
indicated strong sentiment in favor of making such an identification.

96-0174=N0992: Defining Conformance (page 3)

This proposal renders oxymoronic the formulatitilsformed, no diagnostic required.”
However,only a smallnumber of locations ithe WP currenthemploy this formulation,
and they are all individually corrected below in the detailed proposal.

In addition, the proposahakes a few unrelated changes to subclaige 1.316 appears
to deal more withthe conventionemployed inthe body of the Standard thaith
implementation compliance, $loe proposal suggestsoving it tothe end ofL.1. Also,
the wording was changed in a couple of placesladfy that additional libraries are
acceptable extensions, attht it is permissiblefor extensions to changmspecified or
implementation-defined behavior.

[ll. Detailed Proposal

A. Move the text of 1.316 to the end of subclause 1.1.

B. Replace the entire subclause 1.3 with the following:
1.3 Implementation Compliance

Although this International Standardtates only requirements on C++
implementationsthose requirements are often easier to understatieeyf are
phrased as requirements on programs, parts of programs, or execution of
programs. Except for those rules fohich the Standaréxplicitly states, “No
diagnostic is required,” violations of the syntactic semantic rules in this
Standard are required to be diagnos&iiles forwhich a diagnostic is required

are calledliagnosable rules

Program text thawviolates one or moreliagnosable rules is callat-formed;
conversely, a program that contains no such violationallsd well-formed A
conforming C++ implementatioshall issue akeast one diagnostic messagieen
processing ill-formed program text.

Well-formed programs containing ostructs that violate rules fawhich no
diagnostic is required, or whose behavion@ described by this International
Standard, areaid to exhibiundefined behavior A program containing no such
constructs igalled acorrect program Undefined behavior alsmccurswhen the
values of execution-timéata uponwhich a correct program operatesolate
constraints of the Standard or when the results of a program’s operation on a value
are notdescribed by the Standard. Dathich donot cause undefined behavior

are called correct data No requirements are placed oncanforming C++
implementation with respect to programs with undefined behavior.

A conforming C++ implementatioshall, within itsresourcelimits, accept and
correctly execute (1.8) any correct program operating on correct data.

96-0174=N0992: Defining Conformance (page 4)

Two kinds of implementationare defined:hostedandfreestanding For a hosted
implementation, this Internation&tandarddefinesthe minimum set ofavailable
libraries. A freestanding implementatioroise inwhich executionmaytake place
without thebenefit of aroperating system, and hasiarplementation-defined set
of libraries that includes certain language-support libraries (17.3.1.3).

A conforming implementatiomay haveextensions (including addition&brary
functions, classetc.), provided they daoot alter thespecified behavior of any
correct program operating on correct da@ne example of such an extension is
allowing identifiers to contailcharacters outside tHeasicsource character set.
Implementationsare required to diagnose progratimat are ll-formed because of
the use of such extensionddaving doneso, howeverthey can process and
execute such programs.

C. Add or replace the following entries in subclause 1.4:

correct data: Data whose valuegroducespecified, implementation-defined, or
unspecified behavior when used in a given correct program (g.v.).

correct program: A well-formed progran{g.v.) containing no violations of rules
for which no diagnostic igequired and whose constructs dot engender
undefined behavior (q.v.).

implementation-defined behavior: Behavior, for acorrect program construct
and correct data, thatlepends on themplementation andhat each conforming
implementation shall document.

undefined behavior: Behavior by an implementation program forwhich the
Standardimposes no requirements. Such behavior results when a well-formed
program (g.v.)violates one or more rules fevhich no diagnostic isequired,
whenthe data upomwhich it operatesviolate constraints on their values,wien
the Standard does not explicitly describe the behavior of a construct or data value.

well-formed program: A C++ program containing no violations diagnosable
rules.

D. In 3.3.611, replace the phrase “the programelsavior is ill-formed, no diagnostic is
required” with “the program’s behavior is undefined.”

E. In 12.874, replace the phrase “any use of X's copy construclefioisned because of

the ambiguity; no diagnostic iequired” with “any use of X's copgonstructor results in
undefined behavior because of the ambiguity.”

96-0174=N0992: Defining Conformance (page 5)

