Doc No: X3J16/96-0173 W21/ N0991
Dat e: Sept enber 24th, 1996
Project: Programm ng Language C++
Ref Doc:
Reply to: Josee Lajoie

(j osee@net.ibm com

+ +

| Core WG List of |ssues
+ +

The issues listed as editorial or as closed in the version of the core |ist
of issues that appeared in the Post-Stockhol mmailing (96-0167/N0985) were
resolved in the pre-Stockhol mversion of the working paper (WP) and are
therefore not listed in this version of the core |list of issues.

Notice that npst of the issues |listed below are editorial and will be handl ed
during the editorial sessions at the Hawaii neeting.

Hom e e oo - +
| Syntax |
Fommamenn +
9.2 [class. men:
692: ";opt" after nmenber "function-definition" should be omtted
S +
| C Conpatibility |
- +

1.1 [intro.scope]:

604: Should the C++ standard tal k about features in C++ prior to 19857
cl ause 16:

679: "Shall" is used incorrectly in clause 16
Annex C:

680: Annex C subclause C.1 is out of date

681: The type of string literals is array of const char - this has

inplicitions for C conmpatibility and should be in Annex C

1.7 [intro.conpliance]:
602: Are ill-formed progranms with non-required diagnostics really
necessary?
619: |Is the definition of "resource limts" needed?

Nane Look Up
3.3.6 [basic.scope.class]:
664: \When does the reevaluation rule for class scope name | ookup require a
di agnostic?
3. 4. X [basi c. | ookup. koeni g] :
686: Where is a function nanme |ooked up if an argunent type is introduced
with a typedef or a using-declaration?
3.4.2 [basic.lookup.quall]:
665: In X :~Y is Y |looked up in the context of the current expression?
3. 4.3 [basic. | ookup. el ab]:
666: Are class nanes used in an el aborat ed-type-specifier hidden by
nanmespace nanes?
3.4.4 [basic.lookup.classref]:
688: Rules for nane | ookup after :: . -> need to be clarified for
conversion-function-id, tenplate argument names and destructor nanes

7. 3.3 [nanespace. udecl]
673: Does a using-declaration for an enumtype declare aliases for the
enunerator names as well?
7.3.4 [nanmespace. udir]:
612: nane | ook up and unnanmed nanespaces
10. 2 [cl ass. nenber . | ookup] :
674: How do using-declarations affect class nenber | ookup?
10.3 [class.virtual]:
675: How do using-declarations influence the selection of a final virtua
function overrider?

Li nkage / ODR
3.5 [basic.link]:
526: What is the |inkage of nanes declared in unnamed nanespaces?
9.5 [class.union]:
505: Must anonynous unions declared i n unnaned nanmespaces al so be static?

Ohj ect/ Menory Model
3.6.3 [basic.start.tern:
663: Shoul d the neaning of a coexisting C/ C++ inplenentation be defined?
3.7.3 [basic. stc. dynani c]
667: What does "predecl ared" operator new nean?
5.3.4 [expr.new:
638: When is access/anbiguity on operator del ete checked?
669: senantics for new and del ete expressions should be separated fromthe
requi renents for operator new and del ete
690: Carify the | ookup of operator new in a new expression
6.7 [stnt.dcl]:
635: local static variable initialization and recursive function calls
7. 3. 3 [nanespace. udecl]
672: using-declarations and base cl ass assi gnnment operators
10.1 [class. m]:
624: class with direct and indirect class of the sane type: how can the
base cl ass nmenbers be referred to?
12.6 [class.init]:
138: Wien are default ctor default args evaluated for array el enents?
12.8 [cl ass. copy]:
687: The WP prohobits the copy assignment of virtual base classes to behave
i ke the copy constructor

1.8 [intro.execution]:
603: Do the WP constraints prevent nulti-threadi ng i npl enentations?
605: The execution nodel wt to sequence points and side-effects needs work

| val ue/ rval ue

6.2 [stnt.expr]:
645b: When is the result of an expression statenment converted to an rval ue?

Types / O asses / Unions

3.9 [basic.life]:
621: The terns "sane type" need to be defined

Def aul t Arguments

8.3.6 [dcl.fct.default]:

689: What if two using-declarations refer to the sane function but the
decl arations introduce different default-argunents?

Types Conversions / Function Overl oad Resol ution
4.2 [conv.array]:

668: Should the conversion fromstring-literal to pointer to char be an
"array-to-pointer" conversion which has exact match rank in function
overl oad resol ution?

670: |Is the conparison between void* and cv T* well -fornmed?

5.17 [expr.ass]:
691: is bool += 1 valid?
7.2 [dcl.enun

683: What is the underlying type of an enuneration type if the value of an

enuner ator uses the value of a previous enunerator?
13.6 [over.built]:

682: operator ?: and operands of enuneration types

13.3.1.1.2 [over.call.object]:

662: Do cv-qualifiers on the class object influence the operator() called?

13.3.3.2 [over.ics.rank]:

684: The ranking for inplicit conversion sequences for pointer types should
take into account qualification conversions in 4.4

685: What is the ranking of a user-defined conversion that conbines a
poi nter conversion with casting away cv-qualifiers?

5.5 [expr.nptr.oper]:
644: Must the operand of .* and ->* have a conplete class type?

RTTI
5.2.6 [expr.dynam c.cast]:
549: |s a dynam c_cast froma private base all owed?

Tenpl at es
6.8 [stnt.anbig]:
671: Does tenplate instantiation happen during parser anbiguity resolution?
14.7.1 [tenpl.inst]:
676: When is a tenplate instantiated?
14.8.2 [tenp. deduct]:
677: Should the text on argunent deduction be noved to a subcl ause
di scussing both function tenplates and cl ass tenpl ate parti al
speci al i zati ons?

Excepti on Handli ng

15.1 [except.throw :
678: Can the exception object created by a throw expression have array

type?
Chapter 1 - Introduction
Wirk G oup: Core
| ssue Nunber: 604
Title: Shoul d the C++ standard tal k about features in C++ prior to
1985?
Secti on: 1.1 [intro. scope]

St at us: active

Descri ption:
UK i ssue 229:

"Delete the |last sentence of 1.1 and Annex C.1.2. This is the first
standard for C++, what happened prior to 1985 is not relevant to
this docunent."”

Resol uti on:

Request or: UK i ssue 229
Owner : Tom Pl um (C Conpatibility)
Emai | s:
Papers:
Wirk G oup: Core
| ssue Nunber: 602
Title: Are ill-fornmed prograns with non-required diagnostics really
necessary?
Secti on: 1.7 [intro.conpliance]
St at us: active
Descri ption:
UK i ssue 9:

"W believe that current technol ogy now all ows nmany of the
non-requi red di agnostics to be diagnosed wi thout excessive overhead.
For exanple, the use of & on an object of inconplete type, when the
compl ete type has a user-defined operator&(). W would like to see
di agnostics for such cases.”

[note JL:]
At the Tokyo neeting, we discussed this a bit and decided that this
i ssue required nore dicussions.

Question: Do deprecated features render a programill-formed but
no di agnostic is required?

See al so UK i ssue 93.
Resol uti on:

Request or: UK issue 9
Owner : Josee Lajoi e (Conformance Mbdel)
Emai | s:
Papers:
Work G oup: Core
| ssue Nunber: 619
Title: Is the definition of "resource limts" needed?
Secti on: 1.7 [intro.conpliance]
St at us: active
Descri ption:

1.7 para 1 says

"Every conforming C++ inplementation shall, within its resource

limts, accept and correctly execute well-formed C++ prograns..."
The termresource limts is not defined anywhere.
Is this definition really needed?
Resol uti on:

Request or: ANSI Public comrent 7.12
Owner : Josee Lajoi e (Conformance Mbdel)
Emai | s:
Paper s:
Work G oup: Core
| ssue Nunber: 603
Title: Do the WP constraints prevent multi-threading
i mpl ement ati ons?
Secti on: 1.8 [intro.execution]
St at us: active
Descri ption:
UK issue 11:

"No constraints should be put into the WP that preclude an
i mpl ement ati on using multi-threading, where avail able and

appropriate.”

Bill G bbons notes:
For exanple, do the requirements on order of destruction between
sequence points preclude C++ inplenmentations on nulti-threading
architectures?

Resol uti on:

Request or: UK issue 11
Owner : St eve Adantzyk (sequence points)
Emai | s:
Papers:
Work G oup: Core
| ssue Nunber: 605
Title: The execution nodel wt to sequence points and side-effects
needs wor k
Secti on: 1.8 [intro. execution]
St at us: active
Descri ption:
See UK issues 263, 264, 265, 266
1.8 para 9:

"What is a "needed side-effect"? This paragraph, along with
footnote 3 appears to be a definition of the C standard "as-if"
rule. This rule should be defined as such. [Proposed definition
of "needed": if the output of the program depends on it.]"

1.8 para 10:

"It is not true to say that values of objects at the previous
sequence point may be relied on. |f an object has a new val ue
assigned to it and is not of type sig _atonmic_t the bytes making up
that object may be individually assigned values at any point prior
to the next sequence point. So the value of any object that is
nodi fi ed between two sequence points is indeterninate between those
two points. This paragraph needs to be nodified to reflect this
state of affairs.”

Al so, para 11:

"Such an object [of automatic storage duration] exits and retains its
| ast-stored val ue during the execution of the block and while the
bl ock is suspended ..."

This is not quite correct, the object may not retain its last-stored

val ue.

Para 9, 10, 11 and 12 al so contain sonme undefined terns.
Resol uti on:

Request or: UK i ssues 263, 264, 265, 266
Owner : St eve Adantzyk (sequence points)
Emai | s:

Paper s:

Chapter 2 - Lexical Conventions

Chapter 3 - Basic Concepts

Work G oup: Core

| ssue Nunber: 664

Title: When does the reevaluation rule for class scope nane | ookup
require a diagnostic?

Secti on: 3.3.6 [basic. scope. cl ass]

St at us: active

Descri ption:

3.3.6 para 1 says

1) The potential scope of a name declared in a class consists not
only of the declarative region follow ng the name’s decl arat or
but also of all function bodies, default argunents, and

constructor ctor-initializers in that class (including such
things in nested cl asses).

2) The nane N used in a class S shall refer to the sane declaration
when re-evaluated in its context and in the conpl eted scope of S
3) If reordering nmenber declarations in a class yields an alternate
valid programunder (1) and (2), the program s behavior is

ill-fornmed, no diagnostic is required.

According to the wordi ng above, a diagnostic is required to be
i ssued for the follow ng program Should it?

typedef int 1; //1

class D {
typedef | I; //2
This is ill-formed according to rule 2) but not according to

rule 3) (i.e. this not a reordering problem. Rule 3) is the
rule for which "no diagnostic is required.”

Should Rule 2) also say: "no diagnostic is required."?
O herwise, this will require that an inplenmentation processes cl ass
menber declarations twice in order to determine if names used by the
decl aration change neani ng.
Resol uti on:

Request or: St eve Adantzyk

Owner : Josee Lajoie (Nane Lookup)

Emai | s:

Paper s:

Work G oup: Core

| ssue Nunber: 686

Title: Where is a function name | ooked up if an argunent type is
i ntroduced with a typedef or a using-declaration?

Secti on: 3. 4. X [basi c. | ookup. koeni g]

St at us: active

Descri ption:

basi c. | ookup. koeni g says:

When an unqualified name is used as the postfix-expression in a
function call (_expr.call_), other nanespaces not considered during
the usual unqualified | ook up (_basic.| ookup.unqual) may be
searched; this search depends on the types of the argunents.

For each argunent type T in the function call, there may be a set of

zero or nore associ ated nanespaces to be considered; such namespaces

are determined in the foll ow ng way:

[...]

- If Tis a class type, its associated nanmespaces are the nanespaces
in which the class and its direct and indirect base classes are
defi ned.

This text is not very clear as to what happens if the type was
introduced with a typedef or a using-declaration

nanespace N1 {

struct T { };
void f(T);
void g(T);

|

nanespace N2 {
using NL::T;

typedef NL::T U

void f(T);

void g(V;
H
void foo() {
N2::T t;
N2:: U u;
f(t); /[l which f?
g(u); /1 which g?

Proposed Resol uti ons:

Bill G bbons in core-7041:

f(t) calls Ni1::f.

A usi ng-decl aration guides the | ookup, but if the result of the

| ookup is the using-declaration then the semantics are the same as
if the result of the | ookup had been the original declaration to
whi ch the using-declaration refers.

\Y

V V VYV

Tom W1l cox in core-7042:

> | would have said NL::f and N2::g. Since T is only used and not

> declared in N2, f should conme fromNL. And since Uis declared in
> N2, we get g from N2.

Resol uti on:

Request or: Andr ew Koeni g

Owner : Josee Lajoie (Nane Lookup)
Emai | s: core-7041

Papers:

Vork Group: Core

| ssue Nunber: 665

Title: In X::~Y is Y looked up in the context of the current
expressi on?
Secti on: 3.4.2 [basic.|ookup. qual]
St at us: active
Descri ption:
In an expression like
p->X 1 ~X();
where is the "X' that follow the "~" | ooked up?

3.4.4 [basic.lookup.classref] says that in an unqualified name, the
nane after the ~ is looked up in the current context and in the class
of p. But it doesn't say anything special about the qualified case.
This inplies that it is |looked up in the scope of X only. If this is
true, it seems to me that is a problembecause it doesn’t work when X
is a typedef, as in:

struct A {
~A();

typedef A AB;
int main()
AB *p;

p- >AB: : ~AB() ;
}

This suggests that the name after ~ should al ways be | ooked up
in the current context, even for the qualified nane case
Presumably, for the qualified nane case it would al so be | ooked
up in the class of the qualifier

Resol uti on:

Request or: John Spi cer

Owner : Josee Lajoie (Nane Look Up)

Emai | s:

Paper s

Wirk G oup: Core

| ssue Nunber: 666

Title: Are class nanes used in an el aborated-type-specifier hidden
by namespace nanes?

Secti on: 3. 4.3 [basic. | ookup. el ab]

St at us: active

Descri ption:

3.4.3 para 1.

"An el aborated-type-specifier nay be used to refer to a previously
decl ared cl ass-nanme or enum nane even though the nanme has been

hi dden by an object, function, or enunerator declaration."

Shouldn’t this list also include namespace nanes?
struct S { };

nanespace A {
nanespace S {

struct S sb; // ill-fornmed?
}
Resol uti on:
Request or:
Owner : Josee Lajoie (Nane Lookup)
Email s:
Paper s:
Work G oup: Core
| ssue Nunber: 688
Title: Rul es for name | ookup after :: . -> need to be clarified for
conversion-function-id, tenplate argument names and
destructor nanes
Secti on: 3. 4.4 [basic. | ookup.cl assref]
St at us: active
Descri pti on:
How i s

0 a destructor nane

0 an id-expression of a conversion-function-id

0 atenplate-id

o the nane of a tenpl at e-argunent

| ooked up when used followi ng a nested-nane-specifier or a class
menber access operator . or -> .

Bill G bbons provided the following table, which I [Josee] filled up

l ook in nmust be ook in nmust be

nane to surroundi ng vi si bl e what vi si bl e
expr essi on | ook up cont ext there ? cl ass there
A:b b no --- A yes
A ~T T no --- A yes
A Z~T 4 no --- A yes
A Z~T T no --- A:Z yes
A::operator T T no --- A yes
A :operator Z:: T Z no --- A yes
A :operator Z:: T T no --- A Z yes
A C<D> C no --- A yes
A D> D yes yes no ---

A:X:b b no --- A X yes
A X ~T T no --- A X yes
A XZ ~T Z no --- A X yes
A X Z =T T no --- A:X:Z yes
Ar: X :operator T T no --- A X yes
A : X :operator Z:: T 4 no --- A X yes
A : X :operator Z:: T T no --- A:X:Z yes
A X CD> C no --- A X yes
A X C<D> D yes yes no ---
a.b b no --- A yes
a.~T T yes yes A yes
s.~T T yes yes --- ---
a.operator T T yes yes A yes
a.operator Z:: T Y4 yes yes A yes
a.operator Z:: T T no --- 4 yes
a. C<D> C no --- A yes
a. C<D> D yes yes no ---
a.X:b X yes no A no
a.X:b b no --- X yes
a. X :~T T no --- A X yes
s. X :~T T yes yes --- ---
a. X :operator T T no --- A X yes
a. X :operator Z:: T Z no --- A X yes
a. X::operator Z:: T T no --- A:X:Z yes
a. X : CD> C no --- A X yes
a. X : D> D yes yes --- ---

where a is an object of class type A
where s is an object of scalar type

We have to clarify the WP to ensure that the above resolutions are clear

Bill also raises the follow ng issues

* The current rules for lookup of "T" in "a.operator T" break tenplate
because "T" nust be visible in the class, which is inpractical if "T" is
a tenplate type paraneter. | propose changing the rule so the | ookup is
in the surrounding context only, as with tenplate-id argunents.

* The current rules for |ookup of "X' in "a.X :b" break tenpl ates because

when "T" is a tenplate type argunent, the instantiation will fail if
sonme base class of "A'" (which mght itself be a tenplate type argunent)
happens to have a typedef or class nenber "T". This might be fixed as a

special case in tenplate nane | ookup, but | propose the sinpler fix of
changing the rule so the Iookup is in the surrounding context only.
Resol uti on:

Request or: Bill G bbons
Owner : Josee Lajoie (Nane Lookup)
Emai | s: core-6969
Paper s
Wirk G oup: Core
| ssue Nunber: 526
Title: What is the linkage of names declared in unnaned nanmespaces?
Secti on: 3.5 [basic.link] Program and |inkage
St at us: active
Descri ption:
What is the |inkage of names declared in an unnaned namespace?
Internal |inkage?
Internal |inkage applies to variables and functions.

What woul d the status of a type definition be in an unnanmed
nanespace? No |inkage?

Can it be used to declare a function with external |inkage?
Can it be used to instantiate a tenplate?

nanespace {

class A { /* ... *[};
}
extern void f(A&); Il error?
tenplate <class T> class X { /* ... *[};
X<A> X; /] error?
If A does not have external l|inkage, then the two declarations are
probably errors. If it does have external |inkage, then the two

declarations are legal (and the inplenentation probably has to worry
about nanme mangling).
Resol uti on:

Request or: M ke Ander son

Owner : Josee Lajoi e (Linkage)

Emai | s: core-5905 and fol |l owi ng nessages.

Paper s:

Work G oup: Core

| ssue Nunber: 663

Title: Shoul d the neaning of a coexisting C C++ inplenentation be
defi ned?

Secti on: 3.6.3 [basic.start.tern]

St at us: active

Descri ption:

3.6.3 Term nation [basic.start.terni, paragraph 4 states:
"Where a C++ inplenentation coexists with a Cinplenmentation
any actions specified by the Cinplementation to take place
after the atexit functions have been call ed take place after
all destructors have been called."

What exactly does it nean for a C++ inplenmentation to "coexist"
with a Cinplenentation?

Is this quoted paragraph a constraint on confornm ng C++

i npl ementations? That would raise the spectre where a C++
i mpl ementation could be rendered non-conformng by the nere
exi stence of a certain (perhaps naliciously designed) C

i mpl enent ati on!

Is the quoted paragraph a constraint on C inplenentations?

(But how could this be? How could the C++ standard constrain C
i npl ementations, which don't claimto conformto the C++

st andar d?)

O is the quoted paragraph sinply a non-normative "hint" to
compiler witers, the sort of thing that John Skaller would
probably call neaningless waffle? (In which case, what is it
doing in the main text of the standard?)

As the draft currently stands, | believe the third alternative
is the nost reasonable interpretation, although frankly the
draft is not clear

Pr oposed Resol ution:
Del ete the paragraph in question

Resol uti on:

Request or: Fer gus Hender son

Owner : Josee Lajoie (Menory Mbdel)
Emai | s: core-6823

Papers:

Vork Goup: Core

| ssue Nunber: 667
Title: What does "predecl ared" operator new nean?

Secti on: 3.7.3 [basic. stc. dynam c]
St at us: active
Descri ption:
3.7.3 para 2 says
"The follow ng allocation and deallocation functions are inplicitly
declared in a program
::operator new(size_t)
;. operator new](size_t)
;. operator del ete(void*)
c:operator delete[](void*)

One inplication of having predeclared operators is that the

decl arations would have to be explicitly repeated if there were other
overl oads of operator new declared in global scope, otherw se the
overl oad declarations would hide the inplicit declaration. For

i nstance,

voi d* operator new(size_ t, long); // hides predeclared op new

int* i = newint; /[l ill-formed: no operator new(size_ t)
/1 visible at this point

It seems that it depends on how we define "inplicitly declared" to
work -- are "inplicit declarations” considered to be in an inmaginary
scope containing the global scope, or are inplicit declarations in
the gl obal scope itself and act just the way an explicit declaration

woul d in the global scope? Is it well-defined sonewhere what

"inplicitly declared" neans? W need to pin it down.

Resol uti on:

Request or: Mke MIler

Owner : Josee Lajoie (Menory Mbdel)

Emai | s:

Papers:

Work G oup: Core

| ssue Nunber: 621

Title: The terns "sane type" need to be defined
Secti on: 3.9 [basic.types]

St at us: active

Descri pti on:

The WP needs to define what it means for two objects/expressions
to have the sane type. The phrase is used a | ot throughout the WP
Request or:
Owner : St eve Adantzyk (Types)
Emai | s:
Papers:

Chapter 4 - Standard Conversions

Work G oup: Core
| ssue Nunber: 668
Title: Shoul d the conversion fromstring-literal to pointer to char

be an "array-to-pointer"” conversion which has exact match
rank in function overload resol ution?

Secti on: 4.2 [conv. array]
St at us: active
Descri pti on:
4.2 para 2:
"Astring literal ... can be converted to an rvalue of type
"pointer to char"... the result is a pointer to the first el enent of
the array."

The conversion of a string literal fromthe type "const char *" to
the type "char *" is in the array-to-pointer conversion section

This means that this conversion is ranked as an exact match during
function overload resolution. i.e.

void f(char*);
voi d f(const char*);
f("abc"); // anbi guous

When the conversion is eventually renoved (it is currently
deprecated), then the call above will be well-formed, and

void f(const char*) will be chosen. This is different from Kevlin
Henney’ s proposal, which suggested that the function
void f(const char*) be sel ected.

In private email, Steve Adantzyk noted that core 2 didn't notice the
i mpact of the proposed wording on the overl oad resol ution wei ghting.

Resol uti on:
Request or:

Omner:
Emai | s:
Papers:

Steve Adantzyk (Type Conversi ons)

Chapter 5 - Expressions

Work G oup: Core
| ssue Nunber: 549

Title: Is a dynanic_cast froma private base all owed?
Secti on: 5.2.6 [expr.dynam c. cast]

St at us: active

Descri ption:

par agraph 8 says:

"...if the type of the conpl ete object has an unanbi guous public base
class of type T, the result is a pointer (reference) tothe T

sub- obj ect of the conplete object. Gtherw se, the runtinme check
fails."

This contradicts the exanple that foll ows:
class A{ };
class B { };
class D: public virtual A private B { };

D d;
B* bp = (B*) &d;
D& dr = dynami c_cast<D&>(*bp); // succeeds

According to the wording in paragraph 8, the cast above should fail

Bill G bbons noted the foll ow ng:

First, the access restrictions on dynam c_casts appear to cone from
the access restrictions on static_cast, where neither upcasting nor
downcasting across private derivation is allowed.

Yet dynami c_cast does not apply these restrictions consistently, even
for sinple downcasts:

struct A { virtual void f() { } };
struct B: private A{ };
struct C: public B { };

void f() {

A *a = (A*) new C

B *b = static_cast<B*>(a); // ill-forned

B *b = dynam c_cast<B*>(a); // OK under 1st "ot herw se"
}

| see several ways to clean this up

(1) Change the first "otherw se" clause to also require that
"v points (refers) to a public base class sub-object of the
nost derived object". This seens closest to the intent of the
current wording. It would make the above exanple ill-forned.

This is equivalent to saying that a dynamic cast is OKif it
can be done with a static cast to the nost derived type
followed by a static cast to the final type, ignoring the
uni queness and virtual inheritance restrictions on static
downcast s.

(2) Say sonething I|ike:

A dynanic cast is well-forned if there exists a class X within
the nost derived object hierarchy (including the nost derived
cl ass) such that:

-- "v" refers to X or a public base class of X; and

-- Tis Xor a public base class of X
That is, a dynanmic cast is OKif it can be done with any
combi nation of two static casts, ignoring the uniqueness and
virtual inheritance restrictions on static downcasts. This
woul d al so nake the above exanple ill-fornmed.

(3) Change both dynam c_cast and static_cast; see bel ow

I had al so forgotten (and was sonmewhat di snayed to redi scover) that
static_cast cannot be used to break protection. For exanpl e:

struct A{ };
struct B: private A { };
void f() {
B *b = new B;
A *al = (A*) b; [l K
A *a2 = static_cast<A*>(b); // ill-forned
A *a3 = dynami c_cast<A*>(b); // well-forned,

[/ but "a3" not usable

}

Did we really intend to do this, or was it an accidental side effect
of defining static_cast in terns of the inverse of an inplicit cast?

Also, | see no reason to restrict downcasting across private
inheritance. |If static_cast were changed to allowit, | would
consider the "across private inheritance" part to be inplicit, and
the "downcasting" part to be the one that required an explicit cast.
In that light, | would propose one of these changes to dynani c_cast:

(1) Renove the first "public" from paragraph 8 and also all ow
downcasting to the nost derived class, regardl ess of access.

(2) The equival ent of (2) above:
A dynanic cast is well-fornmed if there exists a class X within
the nmost derived object hierarchy (including the nost derived
cl ass) such that:

-- "v" refers to X or a base class of X, and

-- Tis Xor a public base class of X

That is, a dynamic cast is OKif it can be done with a

combi nation of two static casts, ignoring the uniqueness and
virtual inheritance restrictions on static downcasts. This
woul d al so nake the above exanple ill-forned.

Simlarly, should upcasting of pointers to nmenbers across private
i nheritance be restricted nore than upcasting of pointers to nenbers
across public inheritance?

Resol uti on:

Request or:

Owner : Bill G bbons (RTTI)

Emai | s:

Paper s:

Work G oup: Core

| ssue Nunber: 638

Title: When i s access/anbiguity on operator del ete checked?
Secti on: 5.3.4 [expr.new] New

St at us: active

Descri ption:

5.3.4 para 15 indicates that access and anbiguity on operator del ete
are checked when a new expression i s encountered.

This does not seemquite right for objects of class type with a
virtual destructor.

Sone tricky exanples were provided on the reflector during the
di scussion on this topic:

Exanpl e 1:
Roly Perera [core-6993]:

> struct B {
> virtual ~B ();

> voi d operator delete (void*);

>}

>

> struct D: B {

> voi d operator delete (void*);

>}

>

>int main () {

> B pb =::newD; // 1. requires ::delete
> del et e pb; /1 2. should find D::operator delete
>}

The deal | ocation function used by the del ete expression could be the
cl ass operator delete even if the new expression uses gl oba

operator new. So the anbiguity/access of the class operator delete
shoul d al ways be checked.

Exanpl e 2.

Erwi n Unruh [core-6997]:
> struct B {
> virtual ~B ();
voi d operator delete (void*);
b

struct D: B {
voi d operator delete (void*) { /* does nothing !! */ }

VVVYVYV

—

int min () {
D d;
pb = &d;
del et e pb;
exit(1);

VVVVVYVYVYV

—

Erwi n’ s exanpl e (though sonmewhat sick ;-) shows that a delete
expressi on can be used w thout any new operator ever being called
to create the object. The exanple deletes a local variable and
since the operator delete does nothing, only the destructor is run
The destructor at the end of the block is bypassed by the call to
exit. (yuck!).

Erwi n says:
> | amperfectly happy to make this programill-forned. But | as
an inplenmentor would like to have a rule which nmakes sure that I
never try to call an operator delete [at runtine] which is
anbi guous or inaccessible. Having undefined behaviour is a bad
sol uti on.
Proposed Resol uti on:

To handl e these exanpl es, these resol utions were suggested:

V V VYV

0 para 15 has to be clarified to say that even if the storage for
the class object or the array of classes is allocated using the
gl obal operator new, anbiguity and access is done on the cl ass
operat or del ete.

To following two resol utions were proposed to handl e the case when
the class has a virtual destructor

0 Anmbi guity/access is checked for operator delete at the tine the
class is defined if the class has a virtual destructor

o Bill G bbons proposed the following resolution in core-7002
> [When a non-abstract class with a virtual destructor is
> defined,] for each virtual destructor in the class, consider
> those base cl asses in which
>
> - the base class destructor is virtua
>
> - it is possible to use the delete keyword (w t hout gl oba
> qualifier) on a pointer which refers (by static type) to
> t hat base cl ass
>
> For each such base class, find the operator delete which would
> have been the "final overrider"” if operator delete had been a
> virtual function (for this purpose, treat global scope as a
> base class). Each such "final overrider" nust exist and al
> of them nust be the sane.
Resol uti on:
Request or: John Skal | er
Owner : Josee Lajoie (Menory Mbdel)
Emai | s: core- 6988
Papers:
Work G oup: Core
| ssue Nunber: 669
Title: semantics for new and del ete expressi ons shoul d be
separated fromthe requirenents for operator new and
delete
Secti on: 5.3.4 [expr.new], 5.3.5 [expr.delete]

St at us: editorial

Descri ption:

Erwin Unruh wote a paper (96-0011/N0829) that suggested that the
semantics for the new expression and the del ete expressi on be
reworked so that they would only describe which operator new (or
operator delete) they call. The restrictions on the behavior of the
al | ocati on and deal |l ocation functions called should be noved to the
I'ibrary section.

Subcl ause 5. 3. 4[expr.new] and 5.3.5[expr.delete] still has sone
troubl esone passages.

5.3.4 New

o Paragraph 8, |ast sentence says:
"The pointer returned by the new expression is non-null and
distinct fromthe pointer to any other object."

The part of this sentence that says "and distinct fromthe pointer
to any other object"” should be deleted. This is really a
requirenent on the library operator new. Maybe a note should be

added to say: "If the library allocation function is called, the
pointer returned is distinct fromthe pointer to any other
obj ect."

o Paragraph 13, first sentence says:
"The allocation function shall either return null or a pointer
to a block of storage in which space for the object shall have
been reserved.”

This sentence should be noved to the note that follows. Again,
this is a requirement that applies to the semantics of the library
operator new and should not be in the normative text for 5.3.4.

Al so paragraph 13 shoul d be noved after paragraph 10, which
di scusses al l ocation functions.

o Paragraph 16 says:
"The allocation function can indicate failure by throwing a
bad all oc exception (_except , _lib.bad.alloc_). 1In this case
no initialization is done."

Thi s shoul d be changed to:
"If the allocation function exits by throwi ng an exception, no
initialization is done."

5.3.5 Del ete

o Paragraph 2, the |last few sentences say:

"In the first alternative (delete object), the value of the
operand of delete shall be a pointer to a non-array object
created by a new expression, or a pointer to a sub-object
(_intro.object_) representing a base class of such an object
(_class.derived_). |If not, the behavior is undefined. In the
second alternative (delete array), the value of the operand of
delete shall be a pointer to the first elenent of an array
created by a newexpression. |If not, the behavior is undefined.
[Note: this neans that the syntax of the del et e-expressi on nust
mat ch the type of the object allocated by new, not the syntax of
t he new expression.]"

The requirenents that the object (or array) nust be created by a
new expressi on should be renoved. |f a user operator delete is
called, and this operator does nothing, then all is fine.

o Paragraph 7 says:
"To free the storage pointed to, the delete-expression will call a

deal | ocation function (_basic.stc.dynanic.deallocation_)."

"To free the storage pointed to," should be renoved. Again, whether
the storage is freed depends on which operator delete is called. A
user operator delete may not free the storage.

Resol uti on:

Request or: Erwi n Unruh

Owner : Josee Lajoie (Menory Mbdel)

Emai | s:

Papers:

Wirk G oup: Core

| ssue Nunber: 690

Title: Clarify the | ookup of operator new in a new expression
Secti on: 5.3.4 [expr.new

St at us: active

Descri pti on:

5.3.4 shoul d describe the | ookup of operator new in a new expression
Here is an interesting exanpl e:

struct C {
operat or voi d* new(size_t);
operator void* new](size_t);

H

new C[N1][N2]; // which operator new is called?
Resol uti on:

Request or:
Owner : Josee Lajoie (Menory Mbdel)
Emai | s:
Papers:
Work G oup: Core
| ssue Nunber: 644
Title: Must the operand of .* and ->* have a conplete class type?
Secti on: 5.5 [expr.nptr. oper]
St at us: active
Descri ption:
Para 2:

"The binary operator .* binds its second operand, which shall be of
type ‘‘pointer to menber of T '’ to its first operand, which shal
be of class T or of a class of which T is an unanbi guous and
accessi bl e base class. ™"

And sonething simlar in para 3 for the ->* operator

Since pointer to nenbers of an inconplete class type are all owed,
i.e.

8.3.3 para 2 says
" class T,
char T::* pnt;
[

thé.declaration of pnt is well-formed even though T is an inconplete
type. "

Must T be a conplete class type when a pointer to nenber operator
.* or -> is applied to the pointer to nenber?
Resol uti on:

Request or: Jerry Schwar z

Owner : Bill G bbons (Pointer to nenbers)
Emai | s:

Papers:

Vork Goup: Core

| ssue Nunber: 670

Title: I's the conparison between void* and cv T* well -fornmed?
Secti on: 5.9 [expr.rel]
St at us: active
Descri pti on:
5.9 para 2
"Poi nter conversions and qualification conversions are perforned
on pointer operands ... to bring themto the sane type, which

shall be a cv-qualified or cv-unqualified version of the type of
one of the operands."”

Shoul d the followi ng be well-forned?

const int * pci

void * pv;
pv == pci; // well-formed?
The current wording indicates that it is ill-formed since the

common type of the operands, after pointer conversions and
qualification conversions are applied, is 'const void *'.

The wording says that the type to which both operands are converted
"shall be a cv-qualified or cv-unqualified version of the type of
one of the operands."

According to 3.9.3 paragraph 1, the cv-qualified versions of

"void *' is 'void * const’, 'void * volatile or 'void * const
volatile’. Because 'const void *' is not a cv-qualified version
of 'void *', the conparison above is ill-forned.

However, the code above is valid C code.

Ei t her the conparison above should be well-fornmed (in which case
the wording that says: "which shall be a cv-qualified or
cv-unqualified version of the type of one of the operands" needs to
be fixed) or, it is ill-formed (in which case annex C needs to
indicate this inconpatibility between C and C++).

5. 16[expr.cond] has simlar problens.
Resol uti on:

Request or:
Owner : Steve Adantzyk (Type Conversi ons)
Emai | s:
Papers:
Work G oup: Core
| ssue Nunber: 691
Title: is bool += 1 valid?
Secti on: 5. 17 [expr. ass]
St at us: active
Descri ption:
5.17 para 7:

"The behavi or of an expression of the formEl op= E2 is equivalent to
El = E1 op E2 except that El1 is evaluated only once. In += and -=,
E1l shall either have arithnetic or enunmeration type or be a pointer
to a possibly cv-qualified conpletely defined object type. In al
other cases, El shall have arithnetic type."

Can E1 have type bool? If yes, what are the semantics?
Resol uti on:
Request or:
Owner : St eve Adantzyk (Type Conver sions)
Emai | s:
Papers:

Chapter 6 - Statenents

Work G oup: Core
| ssue Nunber: 645b
Title: When is the result of an expression statement converted to an
rval ue?
Secti on: 6.2 [stnt.expr]
St at us: active
Descri ption:
class C
extern C& f();
void foo() {
f(); //1
Isline //1 ill-formed because the return value of f() is converted

to an rvalue and Cis an inconplete class type?
Resol uti on:

Request or:
Owner : Steve Adantzyk (Type Conversions)
Emai | s:
Papers:
Work G oup: Core
| ssue Nunber: 635
Title: local static variable initialization and recursive function
calls
Secti on: 6.7 [stnt.dcl]
St at us: active
Descri ption:
int foo(int i) {
if (i == 0) return i;
static int x (foo (i-1));
return x;
foo (10)

What is the value of x after it has been initialized?

The WP indicates that the variable "x" will be initialized with the
val ue 0.

0 There can only be one "first time control passes completely
through a decl aration.”

0 It is not possible to get to the statenent follow ng the
decl aration wi thout control passing conpletely through the
declaration, so there is no possibility that the variable wll
be uninitialized in the follow ng statenent.

0 When entering the declaration, we won’'t know if this will be the
first tine control passes conpletely through, so we nust conpute
the initializing expression each time we enter when the variabl e
has not yet been initialized.

0 If the processor conpletes conputing the initializing expression
and the variable has already been intialized, it nmust discard the
conmput ed val ue because only the first tine through should do the
initialization.

The return value fromthe function f the first time "control passes
compl etely through the declaration” is O.

This contradicts the exanple fromthe ARM (page 92)

int foo(int i) {
static int s = foo(2*i);

return i+1; // <<==

}

should result in an infinite |l oop or other undefined behavior (due to
i nteger overflow), because there is no way to reach the marked |ine
without s initialized, and there is no way to initialize s wthout
reachi ng the marked I|ine.

Pr oposed Resol uti on:
At the Stockhol mneeting, the nmenbers of the core 1 W5 favoured
gi ving such prograns undefined behavior. This will have to be
formally voted on at the Hawaii neeting.

Resol uti on:

Request or: Neal M Gafter

Owner : Josee Lajoie (Initialization)

Emai | s:

Papers:

Wirk G oup: Core

| ssue Nunber: 671

Title: Does tenplate instantiation happen during parser anbiguity
resol ution?

Secti on: 6.8 [stnt.anbig]

St at us: active

Descri ption:

6.8 [stnt.anbig] para 3:

"[Not e: because the disanbiguation is purely syntatic, tenplate
instanti ati on does not take place during the dianbiguation
step.]

Is the conpiler allowed or required to instantiate during
parser ambiguity resolution? The WP would inply "no" but how
is one otherwise to deal with "x<y>::z" during anbiguity
resol ution?

Resol uti on:

Request or: Neal Gafter

Owner : Bill G bbons / John Spicer (Tenpl ates)
Emai | s:

Papers:

Chapter 7 - Declarations

Wirk G oup: Core
| ssue Nunber: 683
Title: What is the underlying type of an enuneration type if the

val ue of an enunerator uses the value of a previous
enumer at or ?

Secti on: 7.2 [dcl . enuni
St at us: active
Descri ption:

There is a snall omission in the description of the
const ant - expressi on which is used to set an enunerator’s val ue, e.g.

enumA { a, b=a+2); // expression "a + 2"

The type of "a" in "a+2" presumably follows the usual expression
rules. But these rules say, in 4.5/2:

An rval ue of type wchar_t (3.9.1) or an enuneration type (7.2) can
be converted to an rvalue of the first of the follow ng types that
can represent all the values of its underlying type: int,

unsi gned int, long, or unsigned |ong.

So the evaluation of "a+2" depends on the underlying type of "A"
which in turn depends on the value of "b", which depends on the val ue
of "a+2".

Al though this is unlikely to affect real prograns in practice, we
should fix the definition. There are cases where it matters, e.qg.

/'l Assume an environment where "int" is 16 bits, just for

/'l conveni ence (The same probl em occurs when "int" is |arger
/1 Think of systems where "int" is 32 bits and "long" is 64
Il bits.)

enumA{ a=1, b =a-2, ¢ = 32768U };

If we assunme the underlying type will be "int", then b is -1 and the
actual underlying type is "long".

If we assune the underlying type will be "unsigned int", then b is
65535 and the actual underlying type is "unsigned int".

The answer nay seem obvi ous, but consider
enumA { a=1U b =a-2, ¢ =-11};

The underlying type will clearly be signed. Does "b" have the val ue
"-1" or is the code ill-forned?

There seemto be several possible solutions to this probl em

1) When an enunerator is used in the defining expression of a
subsequent enunerator in the sane enuneration, its type is the
type of its defining expression (where the default defining
expression is "previous-enunerator + 1" except the first one,
where it is "0").

2) G ve enunerations an "interin underlying type which is
reconputed after each enunerator, and use that underlying type
i n subsequent defining expressions.

3) Require that enunerator conputation be done with an infinite
nunber of bits - assuming that the "as if" rule makes this
practi cal .

4) Say that if the value of a definining expression depends on the
underlying type of the enuneration, the programis ill-fornmed.

Bill G bbons’ preference is (1).

Bill doesn’t think it matters nmuch what the answer is, but the shoul d
be described by the working paper

A related problemoccurs with the inplicit "next value" rule:
enum B { a = 32767, b };
Is the code well-forned? |f so, what is the underlying type? Wy?

This exanple would be fixed if solution (3) was adopted.
Resol uti on:

Request or: Bill G bbons

Owner : St eve Adantzyk (Types)

Emai | s: core- 6989

Papers:

Work G oup: Core

| ssue Nunber: 672

Title: usi ng-decl arations and base cl ass assi gnnment operators
Secti on: 7. 3. 3 [nanespace. udecl]

St at us: active

Descri pti on:

7.3.3 shoul d indicate what happens if a using-declaration refers to
a base class assignnent operator and the type of this assignnent
operator corresponds to the type of the derived class copy assi gnnent
operator.

struct B;
struct A {

B& oper at or=(const B&)
b

struct B: A{

/1 introduces B s copy-assi gnnent operator
usi ng A::operator=;

b

Pr oposed Resol uti on:

Add to 7.3.3 para 4:

"If the using-declaration refers to an assignnent operator froma
base class and this assignhnment operator has a paraneter-clause
such that it could be the copy-assignment operator for the class
cont ai ni ng the using-decl aration, the assignment operator will be
used as the copy-assi gnnent operator for the class containing the
usi ng-decl aration."

Resol uti on:

Request or: Bill G bbons

Owner : Josee Lajoie (Object Mddel)

Emai | s:

Papers:

Work G oup: Core

| ssue Nunber: 673

Title: Does a using-declaration for an enumtype declare aliases for
the enunerator nanes as well?

Secti on: 7. 3. 3 [nanespace. udecl]

St at us: editorial

Descri pti on:

nanespace N {
enumE { a, b };
}

using N :E
int i =a; //ok? |Is the enunerator 'a visible here?
Pr oposed Resol uti on:
No. A using-declaration is an alias declaration for a nane.
Only the enuneration type nanme is declared in global scope with the
usi ng- decl arat i on.
This should be clarified in the W,
Resol uti on:

Request or:

Owner : Josee Lajoie (Nane Lookup)

Emai | s:

Paper s:

Work G oup: Core

| ssue Nunber: 612

Title: nane | ook up and unnamed nanespace nenbers
Secti on: 7. 3.4 [nanespace. udi r]

St at us: active

Descri ption:

Shoul d static not be deprecated?
par agraph 5 says:

"I'f name | ook up finds a declaration for a name in two different
nanespaces, and the declarations do not declare the sane entity
and do not declare functions, the use of the name is ill-fornmed."
Consi der the program

struct S { };

static int S
int foo() { return sizeof(S); }

The sizeof will resolve to the static int S, because nontypes are
favor ed.

The standard says that unnaned namespaces will deprecate the use of
static so we should be able to rewite the program as:

struct S { };
nanespace {
int S;

int foo() { return sizeof(S); }

However, the sizeof beconmes anbi guous according to 7.3.4 para 5
because the two S are fromdifferent nanespaces. Is this right?
Doesn’t this nean that static should not be deprecated?

Resol uti on:

Request or:

Owner : Josee Lajoie (Nane Look up)

Emai | s:

Papers:

Chapter 8 - Declarators

Work G oup: Core

| ssue Nunber: 689

Title: What if two using-declarations refer to the same function but
the declarations introduce different default-argunments?

Secti on: 8.3.6 [dcl.fct.default]

St at us: active

Descri pti on:

7.3.3 para 10 says:
"If the set of declarations and using-declarations for a single
nane are given in a declarative region
-- they shall all refer to the sane entity, or all refer to
functions; or "

8.3.6 para 9 says

"When a declaration of a function is introduced by way of a using
decl aration, any default argunment information associated with the
declaration is inported as well."

This is not really clear regarding what happens in the follow ng

case:
nanespace A {
extern "C'" void f(int = 5);
}
nanespace B {
extern "C' void f(int = 7);
}
using A :f;
using B::f;
f(); 11 2?22
Resol uti on:
Request or: Bill G bbons
Owner : Josee Lajoie (Default Argunents)
Emai | s:
Papers:

Chapter 9 - d asses

Work G oup: Core
| ssue Nunber: 692

Title: ";opt" after menber "function-definition" should be onmitted
Secti on: 9.2 [class. men

St at us: active

Descri ption:

The syntax says:
menber - decl arati on

function-definition ;opt

";opt" should be omtted. Otherw se, the syntax is anbi guous.
Resol uti on:

Request or:

Owner : (Synt ax)

Emai | s:

Paper s:

Work G oup: Core

| ssue Nunber: 505

Title: Must anonynous uni ons decl ared in unnamed nanespaces al so be

decl ared static?

Secti on: 9.5 [cl ass. union] Unions

St at us: active

Descri ption:
9. 5p3 says:
"Anonynous uni ons decl ared at nanespace scope shall be declared
static."”
Must anonynous uni ons decl ared in unnamed nanespaces al so be decl ared
static?

If the use of static is deprecated, this doesn’t nmake nuch sense.

Pr oposal

Repl ace the sentence above with the foll ow ng:

"Anonynous uni ons declared in a named nanespace or in the globa
nanespace shall be declared static.”

This is related to i ssue 526
Resol uti on:

Request or: Bill G bbons

Owner : Josee Lajoie (linkage)
Emai | s:

Papers:

Chapter 10 - Derived cl asses

Wirk G oup: Core

| ssue Nunber: 624

Title: class with direct and indirect class of the sanme type: how
can the base class nenbers be referred to?

Secti ons: 10.1 [class.mi] Miltiple base cl asses

St at us: editorial

Descri ption:

para 3 says

"[Note: a class can be an indirect base class nore than once and can
be a direct and indirect base class.]"

The WP shoul d describe how base cl ass nenbers can be referred to,
how conversion to the base class type is perfornmed, how
initialization of these base class subobjects takes place.

Resol uti on:

At the Stockhol mneeting, the core 1 W5 decided to handle this

as an editorial issue.

A note will be added to the WP to clarify the restrictions on

accessi ng menbers of the direct base cl ass.

Request or:

Owner : Josee Lajoie (Ohject Mbddel)
Emai | s:

Papers:

Vork Group: Core

| ssue Nunber: 674

Title: How do usi ng-decl arations affect class nenber | ookup?
Secti on: 10. 2 [cl ass. nenber. | ookup]
St at us: active
Descri pti on:
10. 2 para 2:

"First, every declaration for the name in the class and in each
of its base class sub-objects is considered. A nenber nane f in
one sub-object B hides a nenber nane f in a sub-object Aif A
is a base class sub-object of B. Any declarations that are so
hi dden are elimnated fromconsideration. If the resulting set
of declarations are not all from sub-objects of the same type,
or the set has a nonstatic nenber and includes nmenbers from
di stinct sub-objects, there is an anbiguity and the programis
ill-forned."

struct A { static int i; }; // NOTE static nenber
struct B: A{ };

struct C: A{ using A:i; };

struct D: B, C{ void foo(); };

void D::foo()

i; /1 ambi guous?

}

I's this anbi guous?

The declarations found are from sub-objects of different types;
however, the declarations found refer to the same static nenber
froma sub-object of type A

Resol uti on:

Request or:

Owner : Josee Lajoie (Nane Lookup)
Emai | s:

Papers:

Vork Group: Core

| ssue Nunber: 675

Title: How do usi ng-declarations influence the selection of a fina
virtual function overrider?

Secti on: 10.3 [class. virtual]

St at us: editorial

Descri ption:

If a virtual function final overrider can be introduced by a

usi ng-decl aration, the WP should provide an exanpl e of what happens

for hierarchies with nultiple inheritance. The result in sone
situations will be sonmewhat surprising for the users.

class A {
void f();
H

class B {
virtual void f() = 0;
b

class C. public A public B {
using A :f; // override B::f fromA: :f
}oc

mai n()

c.f(); // call A:f

Resol uti on:

Request or: Neal Gafter
Owner : Josee Lajoie (Nane Lookup)
Emai | s:
core-7060
Papers:

Chapter 11 - Menber Access Control

Chapter 12 - Special Menber functions

Work G oup: Core

| ssue Nunber: 138 (WM 89)

Title: When are default ctor default args evaluated for array
el ement s?

Secti on: 12.6 [class.init] Initialization

St at us: editorial

Descri pti on:

FromMke MIller's list of issues.
WWM 89. Are default constructor argunments eval uated for each el enent
of an array or just once for the entire array?

int count = O;

class T {

int i;
publi c:

T(int j =count++) : i (j) {}

~T () { printf ("%, %\n", i, count); }
} .

T,arranyTs[4 1;
Shoul d this produce the output :-
0,4

- hbhD

or should it produce :-

QOO Q WNPF

el

0,1
Pr oposed Resol uti on:
8.3.6[dcl.fct.default] para 9 says:
"Default argunments are evaluated at each point of call before the
entry into a function."
This should also be true if the function call is inplicit.
That is, the test case above shoul d produce the first out put
suggest ed above.

Para 9 should be clarified to say that it also applies to functions
that are inplicitly called
Resol uti on:
At the Stockhol mneeting, the core 2 W5 decided to handle this issue
as an editorial issue.

Request or: Mke MIler / Martin O Ri ordan
Owner : Josee Lajoie (Object Mdel)
Email s:

core-668
Papers:
Work G oup: Core

| ssue Nunber: 687
Title: The WP prohobits the copy assignnent of virtual base cl asses

to behave like the copy constructor

Secti on: 12. 8 [cl ass. copy]
St at us: active
Descri pti on:
The ARM specifi ed:
"(bj ects representing virtual base classes will be assigned only once

by a generated assignment operator.”

This restriction has been renoved.

The current WP says in 12.8 para 13:

"The direct base classes of X are assigned first, in the order of
their declaration in the base-specifier-list, and then the i medi ate
nonstatic data nenbers of X are assigned, in the order in which
they were declared in the class definition
[...]

It is unspecified whether subobjects representing virtual base
cl asses are assigned nore than once by the inplicitlys-defined copy
assi gnnent operator."

The new specification does not allow the copy constructor ordering.
Resol uti on:

Request or: Bill G bbons
Owner : Josee Lajoie (Object Mdel)
Email s:

Papers: 96- 0107/ N0925

Chapter 13 - Overl oadi ng

Work G oup: Core

| ssue Nunber: 662

Title: Do cv-qualifiers on the class object influence the
operator() called?

Secti on: 13.3.1.1.2 [over.call.object]

St at us: active

Descri ption:

Shoul d t his be unambi guous?

typedef int (*pf)(char);
int foo(char);

struct S {
operator pf() const { return cl; }
operator pf() volatile { return c2; }

H

void f() {
volatile S vs;
vs('a');

If so, paragraph 2 needs to be changed to only allow
conversion functions whose cv-qualifiers are at | east as
qualified as the expression’s qualifiers.

Resol uti on:

Request or:

Owner : Steve Adantzyk (Type Conversions)

Emai | s:

Papers:

Vork Group: Core

| ssue Nunber: 684

Title: The ranking for inplicit conversion sequences for pointer
types should take into account qualification conversions in
4. 4.

Secti on: 13.3.3.2 [over.ics.rank]

St at us: active

Descri ption:

Section 13.3.3.2 [over.ics.rank] says:

Two inplicit conversion sequences of the same formare
i ndi stingui shabl e conversi on sequences unless one of the foll ow ng
rul es apply:

- Standard conversion sequence S1 is a better conversion sequence
than standard conversion sequence S2 if

[...]

- S1 and S2 differ only in their qualification conversion
and they yield types identical except for cv-qualifiers and
S2 adds all the cv-qualifiers that S1 adds (and in the sane
pl aces) and S2 adds yet nore cv-qualifiers than S1, or if
not that,

This may predate the Koenig & Smith papers on safe cv-qualification
conversions in multi-level pointer and reference types. Shouldn’'t
t he ranki ng be based on whet her one type can safely be converted
into the other? O course that involves nore than just

"nore qualifiers”

Pr oposed Resol ution:

| suggest the following fix for the |ast paragraph

- S1 and S2 differ only in their qualification conversion and
they yield types identical except for cv-qualifiers and there
is an inplicit qualification [conv.qual] fromSl to S2, or if
not that,

Resol uti on:

Request or: Bill G bbons

Onner : St eve Adantzyk (Type Conversi ons)
Emai | s: core-6996

Paper s:

Vork Goup: Core

| ssue Nunber: 685

Title: What is the ranking of a user-defined conversion that
combi nes a pointer conversion with casting away
cv-qualifiers?

Secti on: 13.3.3.2 [over.ics.rank]

St at us: active

Descri pti on:

5.4 para 5 says

The conversions perforned by

-- a const_cast (_expr.const.cast),

-- a static_cast (_expr.static.cast),

-- a static_cast followed by a const_cast,

-- areinterpret_cast (_expr.reinterpret.cast_), or

-- areinterpret_cast followed by a const_cast,

can be performed using the cast notation of explicit type conversion
The sane senantic restrictions and behaviors apply.

This neans that this code is well-forned:

struct A {

operator const char *();
}oa
main () {

/]l const_cast<char *>(static_cast<const char*>(a))
char *p = (char *) a;

}

In which case the overloading rules in chapter 13 need to describe
what happens in this case:

struct A {

operator const char *();

operator const volatile char *();
}oa

main () {
char *p = (char *) a;

Resol uti on:

Request or: Jason Merrill

Ownner : St eve Adantzyk (Type Conversi ons)
Emai | s: core-7023

Paper s:

Vork Group: Core

| ssue Nunber: 682

Title: operator ?: and operands of enumeration types
Secti on: 13.6 [over. built]

St at us: active

Descri ption:

The type of a conditional expression choosing between two enuns of
the sane type was changed in the May WP fromthat enumtype to the
integral type it pronotes to, breaking code. | propose changing
paragraph 27 of 13.6 [over.built] from

27 For every type T, where T is a pointer or pointer-to-nenber type,
there exi st candi date operator functions of the form
T operator?(bool, T, T);

to

27 For every type T, where T is an enuneration, pointer or
poi nter-to-nenber type, there exi st candi date operator functions
of the form
T operator?(bool, T, T);

Shoul d the follow ng testcase be anbi guous?
const char c;
enumE { a} e;
bool b;
main ()

return b ? ¢ : e;

}

The builtin candi dates are:
operator ?(bool, const char & const char &)

operator ?(bool, int, int)
Resol uti on:
Request or: Jason Merrill
Onner : St eve Adantzyk (Type Conversions)
Emai | s: core-6983, core-6987
Paper s:

Chapter 14 - Tenpl ates

| ssue Nunber: 676

Title: When is a tenplate instantiated?
Secti on: 14.7.1 [tenpl.inst]

St at us: active

Descri pti on:

14.7.1 para 3 says:

"If a class tenplate for which a definition is in scope is used in a
way that involves overload resol ution, conversion to a base cl ass,

or pointer to nenber conversion, the tenplate specializationis
implicitly instantiated."

"In a way that involves overload resolution” is not very precise.
Consi der the foll ow ng case:
tenpl ate <class T> class foo {

publi c:
operator int();
b

void bar(int);

voi d bar(float);

voi d bar (foo<i nt >&)

voi d foo_bar(foo<int>& fi)

bar (fi);
}

Is the tenplate instantiated during overl oad resolution for the cal

to bar?

Suppose that bar(foo<int>& isn't there, is the instantiation stil
required?

What about calls to friend functions:

extern void foo(int&)

tenpl ate <class T> class X {
friend void foo(X&);

}s

void bar(X<int>& t) {
foo(t); // is X<int> instantiated?
/1 1f not, does this call fail?

The description in 14.7.1 should be inproved to clarified these
cases.

Resol uti on:

Request or: Neal Gafter

Owner : Bil | G bbons/John Spicer (Tenpl ates)
Emai | s:

Paper s:

Vork Group: Core

| ssue Nunber: 677

Title: Shoul d the text on argunent deduction be noved to a subcl ause
di scussing both function tenplates and class tenplate partia
speci al i zati ons?

Secti on: 14. 8.2 [tenp. deduct]

St at us: active

Descri pti on:

Tenpl at e argunent deduction is now used both for function
tenpl ates and for class tenplate partial specializations. The

text for tenp.deduct should be noved out of the function tenplate
speci al i zati ons subcl ause.

Here is the reorgani zation Bill G bbons suggested in private

emai | :

> 14.2 Nanmes of tenpl ate specializations (including functions)

> 14.3 Tenpl ate argunents (including functions; cross-ref arg

> deducti on)

> L.

> 14.8 Tenpl ate argunment deduction

> 14.8.1 Deducing a tenplate argunment from an expression

> 14.8.2 Argunent deduction for function calls

> 14.8.3 Argunent deduction for partial specialization ordering

>

> 14.9 Function calls

> 14.9.1 Mxing explicit and deduced tenpl ate argunents

> 14.9.2 Overload resolution

> 14.9.3 Overloading and tenpl ate specializations
Resol uti on:
Request or: Sean Corfield
Owner : Bil | G bbons/John Spicer (Tenpl ates)
Emai | s:
Paper s:

Chapter 15 - Exception Handling

Work G oup: Core
| ssue Nunber: 678
Title: Can the exception object created by a throw expressi on have

array type?
Secti on: 15.1 [except.throw
St at us: active
Descri pti on:

try {
int a[5];
throw a;

}
catch (int (&array)[5]) { }

Does the handl er catch the exception? O is an array-to-pointer

conversion applied to the operand of the throw expression, neaning
that the exception thrown has type pointer to int and that the
handl er does not catch the exception?

15.1 para 3 refers to the subclause on function calls (5.2.2) and to
its description of conversions on function call argunments to describe
the conversions that apply to a throw expression

5.2.2 says that whether the array-to-pointer conversion is applied to
an argunent in a function call depends on the type of the function
par aneter.

In the case of the throw expression, either the conversion is al ways
performed or it is never performed, but | don't believe saying that
it depends on the type of the handler makes any sense. | think this
shoul d be clearer in 15.1

Resol uti on:

Request or:

Owner : Bill G bbons (Exceptions)

Emai | s:

Paper s:

Chapter 16 - Preprocessing Directives

| ssue Nunber: 679

Title: "Shall" is used incorrectly in clause 16

Secti on: cl ause 16

St at us: editorial

Descri pti on:
John Spicer pointed out the follow ng:
> There are nunerous uses of "shall" in clause 16 (nuch of which
> cane directly fromthe C standard). The problemis that
> "shal | " does not always nean the sane thing in the two
> docunments (in only nmeans the sanme thing when it appears in a
> "constraint" in the C standard).
>
> |t seens that soneone shoul d go though clause 16 and change
> "shall" to the appropriate wordi ng about undefined behavi or.
> |f >this is not done, certain prograns that are undefined in
> Cwll become ill-fornmed in C++.

Resol uti on:

Request or: John Spi cer

Owner : Tom Pl um (C Conpatibility)

Emai | s:
conpat - 324

Papers:

Annex C - Conpatibility

Work G oup: Core
| ssue Number: 680
Title: Annex C subclause C. 1 is out of date
Secti on: C1lI([diff.c]
St at us: editori al
Descri ption:
Jonat han Schilling wote the foll ow ng:

The introduction to Annex C (Conpatibility) and subclause C 1
(Extensions) both look Iike they were quickly edited fromthe
base docunent for use in the standard, but the edit m ssed sone
spots and | eft others naking no sense ("... fromthe dial ects of
Classic Cused up till now', "... since the 1985 version of this
manual). More attention is given to Cassic Cthan is now
necessary, and the new features list is very inconplete.

The proposed rewite of the introduction and subclause C 1 is
bel ow.

An alternative course of action would be to drop C. 1 altogether,

but | think that once made accurate it serves a useful purpose.
Proposed Resol uti on:

Replaced C.1 and C. 1.1 with:

Annex C (informative)
Conpatibility [diff]

This Annex summari zes the evolution of C++ and explains in
detail the differences between C++ and 1SO C, both in the
| anguage and in the standard library.

Wth the exceptions listed in this Annex, prograns that are both
C++ and C have the same nmeaning in both | anguages. All

di fferences between C++ and C can be di agnosed by an

i mpl ement ati on, although converting prograns between C++ and C

may be subject to the vicissitudes of unspecified and undefined
behavi or.

C. 1 Extensions [diff.c]

This subcl ause summari zes the nmmjor extensions to C provided
by C++. Because C++ was originally based upon the C of the
first edition of _The C Programmi ng Language_, before C becane
an | SO standard, there was sonme parallel evolution between the
two | anguages. This is noted here by the phrase "also in I SO C'.
C. 1.1 C++ features available in 1985 [diff.early]
Thi s subcl ause summari zes the extensions to C provided by C++
by 1985, as described in the first edition of _The C++

Pr ogramm ng Language_:

< sane feature list that's in current [diff.early] >

C. 1.2 C++ features added 1985 - 1991 [diff.md]
Thi s subcl ause summari zes the major extensions to C++ between
1985 and 1991, as described in the second edition of _The C++
Pr ogramm ng Language_:

< same feature list that’'s in current [diff.c++], except:

take out "The bool type" (20)

take out the references to things being "noved to the
anachroni sm subcl ause" (5, 8) >

C. 1.3 C++ features added since 1991 [diff.late]

Thi s subcl ause summari zes the mgjor extensions to C++ since
1991, as described in this International Standard:

Uni versal character nanes ([l ex.charset]), trigraphs
([lex.trigraph]), and operator keywords ([l ex.key]).

The bool type; [basic.fundanental]
The wchar t type; [basic.fundanmental].

User-defined new and del ete operators for arrays; [expr.new],
[expr.delete].

Pl acenent del ete; [expr.new.

Run-time type identification, including dynam c_cast and typeid;
[expr.dynanic.cast], [expr.typeid].

A new formfor casts: static_cast ([expr.static.cast]),
reinterpret_cast ([expr.reinterpret.cast]), and const_cast
([expr.const.cast]).

Declarations in tested conditions in if, switch, for, and while
statements; [stnt.select], [stnt.iter].

Nanespaces; [basic. nanespace].
Cl ass nenbers can be declared nutable; [decl.stc].

The explicit keyword for providing non-converting constructors;
[dcl.fct.spec].

Forward decl aration of nested cl asses; [class. nnest].

Static data menber constants; [class.static.data].

Rel axation of the rule for return types of overriding functions;
[class.virtual].

Overl oadi ng based on enunerations; [over.|oad].

Refi nement of the tenplate conpilation nodel and addition of
the export keyword; [tenp].

The typenane keyword in tenplate paraneters; [tenp.parani.
Default argunments for tenplate type parameters; [tenp.parani.
Default argunments for tenplate type parameters; [tenp.parani.

Explicit tenplate argunent specification in tenplate function
calls; [tenp.arg.explicit].

Explicit tenplate instantiation; [tenp.explicit].

New syntax for tenplate specialization; [tenp.expl.spec].
Partial specialization of class tenplates; [tenp.class. spec].
Menber tenpl ates; [tenp.neni.

Function try bl ocks; [except].

The uncaught exception() function; [except.uncaught].

The C++ Standard library; [lib.library].

Resol uti on:
Request or: Jonat han Schilling
Owner : Tom Pl um (C conpatibility)
Emai | s:
conpat - 352
Paper s:
Work G oup: Core

| ssue Nunmber: 681

Title: The type of string literals is array of const char - this
has inplicitions for C conpatibility and should be in
Annex C
Secti on: C 2.1 [diff.lex]
St at us: editorial
Descri ption:
Jonat han Schilling wote the foll ow ng:

The WP changes for the notion at Stockholmto change the type of
string literals didn't include anything for Annex C. 2. Somet hing
is needed, since this represents a new inconpatibility with C

If no one has witten up the new entry, | propose the attached.

Pr oposed Resol uti on:

C21 Clause 2: l|exical conventions [diff.]lex]
(insert as paragraph 4)

Subcl ause 2.13.4

Change: Type of string literal is changed fromarray of char

to array of const char, and type of wide string literal from array
of wchar_t to array of const wchar _t.

Rationale: This inproves the consistency of the C++ type system

Effect on original feature: Change to semantics of well-defined
feature.

Difficulty of converting: Syntactic transformation. The nobst
common cases are handl ed by a new but deprecated standard
conversi on:

"abc"; /1 valid in C, deprecated in C++
expr ? "abc" : "de"; // validin C invalid in C++

char* p =
char* q =

How wi dely used: Common.
Resol uti on:

Request or: Jonat han Schilling
Onner : Tom Pl um (C Conpati blity)
Emai | s:

conpat - 350

Papers:

