
- 1 / 4 -

Doc No: X3J16/96-0126
WG21/N0944

Date: July 10, 1996
Project: Programming Language C++

Reply-To: Stephen D. Clamage
stephen.clamage@eng.sun.com

Effect of openmode in IOStreams

IOStreams issue 27-604 concerns the effect ofopenmode in IOStream constructors and the
[i |o]fstream open functions. In the absence of any explict flags, allistream s default toin
mode, and allostream s default toout mode, which is obviously correct.

ifstream in1(“foo”); // input text mode

At issue is what should happen when the programmer adds additional mode flags. It appears that
the following result is typical:

ifstream in2(“foo”, ios::binary); // binary mode, “in” not set

The effect of opening a stream with neitherin norout set is not currently defined. In order to
open reliably an ifstream in binary mode, the programmer must write

ifstream in3(“foo”, ios::in|ios::binary); // binary input mode

Requiring theios::in flag seems wrong, since anifstream can usefully be opened only in
input mode anyway. It makes more sense for anyistream to set by default thein flag, and for
anyostream to set by default theout flag. Where current practice is to require an explicitin or
out flag, this recommended change is backward-compatible. Existing code with explicit flags
will still work. The results of code like that openingin2 above were not portable. The recom-
mended new rule is much easier to explain and should be less surprising for all programmers. I do
not believe we should be concerned about the possibility of existing code likein2 that was writ-
ten deliberately expecting the stream not to be readable.

Bidirectional (input/output)fstream s are a different story. A function might be declared to take
an fstream parameter, yet might operate properly when passed a stream open only for reading
(or writing). Nevertheless, neither anifstream nor anofstream can be passed to a function
expecting anfstream parameter. Thus, a programmer might want to open anfstream for just
reading or just writing, in particular because attempting to open a read-only file for read/write
may fail. We should not make such a thing impossible. Bidirectionalfstream s should therefore
have no default input or output mode; the programmer should be required to provide the mode
explicitly, and that is current practice.

IOStreams issue 27-803 and 804 concern the effect ofopenmode trunc in IOStream construc-
tors and the [io]fstream open functions. Opening a file for output but without theapp flag
should result in truncating the file. Thus, the expressionout|trunc should be equivalent to just
out .

Finally, Table 105 “File open modes” in section 27.8.1.3 [lib.filebuf.members] is incomplete. All
possible flag combinations need to be discussed. This proposal presents new wording for parts of
Chapter 27 covering all of these points.

WG21/N0944 Effect ofopenmode in IOStreams X3J16/96-0126

Proposal 1:

Modify the description ofbasic_filebuf::open in section 27.8.1.3 by changing Table 105
“File open modes” as shown below. Combinations of flags not shown in the table (such as nei-
ther in norout , or bothtrunc andapp) are invalid, and the attemptedopen operation fails.

Proposal 2:

 Modify the semantics ofistringstream (andostringstream) constructors to say that
the in (out) flag is always set automatically. (That is, the flags appear as default parameter
values, but they are set regardless of the actualopenmode passed in.)

[begin draft text, changes underlined —

27.7.2.1 basic_istringstream constructors [lib.istringstream.cons]

explicit basic_istringstream(ios_base::openmode which =
ios_base::in);

Effects: Constructs an object of classbasic_istringstream<charT,traits> , initializ-
ing the base class withbasic_istream(& sb) and initializingsb with
basic_stringbuf<charT,traits>(which |ios_base::in) (27.7.1.1).

explicit basic_istringstream(const basic_string<charT>& str,
ios_base::openmode which = ios_base::in);

Table 1: File open modes

ios_base Flag combination stdio
equivalent

binary in out trunc app

+ “w”

+ + “a”

+ + “w”

+ “r”

+ + “r+”

+ + + “a+”

+ + + “w+”

+ + “wb”

+ + + “ab”

+ + + “wb”

+ + “rb”

+ + + “r+b”

+ + + + “a+b”

+ + + + “w+b”

WG21/N0944 Effect ofopenmode in IOStreams X3J16/96-0126

Effects: Constructs an object of classbasic_istringstream<charT,traits> , initializ-
ing the base class withbasic_istream(& sb) and initializingsb with
basic_stringbuf<charT,traits>(str, which |ios_base::in) (27.7.1.1).

27.7.2.4 basic_ostringstream constructors [lib.ostringstream.cons]

explicit basic_ostringstream(ios_base::openmode which =
ios_base::out);

Effects: Constructs an object of classbasic_ostringstream , initializing the base class with
basic_ostream(& sb) and initializingsb with
basic_stringbuf<charT,traits>(which|ios_base::out) (27.7.1.1).

explicit basic_ostringstream(const basic_string<charT>& str,
ios_base::openmode which = ios_base::out);

Effects: Constructs an object of classbasic_ostringstream<charT,traits> , initializ-
ing the base class withbasic_ostream(& sb) and initializingsb with
basic_stringbuf<charT,traits>(str, which|ios_base::out) (27.7.1.1).

— end draft text]

Proposal 3:

Modify the semantics ofifstream (andofstream) constructors andopen functions to say
that thein (out) flag is always set automatically. (That is, the flags appear as default parame-
ter values, but they are set regardless of the actualopenmode passed in.)

[begin draft text, changes underlined —

27.8.1.6 basic_ifstream constructors [lib.ifstream.cons]

explicit basic_ifstream(const char* s, openmode mode = in);

Effects: Constructs an object of classbasic_ifstream , initializing the base class with
basic_istream(& sb) and initializingsb with basic_filebuf<charT,traits>()
(_lib.istream.cons_, 27.8.1.2), then calls rdbuf()->open(s, mode|in) .

27.8.1.7 Member functions [lib.ifstream.members]

void open(const char* s, openmode mode = in);

Effects: Callsrdbuf()->open(s, mode|in) . If is_open() returnsfalse , callsset-
state(failbit) (which may throwios_base::failure (27.4.4.3)).

27.8.1.9 basic_ofstream constructors [lib.ofstream.cons]

explicit basic_ofstream(const char* s, openmode mode = out);

Effects: Constructs an object of classbasic_ofstream<charT,traits> , initializing the
base class withbasic_ostream(& sb) and initializingsb with
basic_filebuf<charT,traits>() (27.6.2.2, 27.8.1.2), then calls rdbuf()->open(s,
mode|out) .

27.8.1.10 Member functions [lib.ofstream.members]

void open(const char* s, openmode mode = out);

Effects: Callsrdbuf()->open(s, mode|out) . If is_open() is thenfalse , callsset-
state(failbit) (which may throwios_base::failure (27.4.4.3)).

WG21/N0944 Effect ofopenmode in IOStreams X3J16/96-0126

— end draft text]

Note: The description of [i |o]strstream in Appendix D does not need any revisions regard-
ing in andout flags. The stream always operates in a mode consistent with its declaration,
since there is no problem of coordinating with an external device.

