Accredited Standards Committee X3 Doc No: X3J16/96-0124 WE21/ N0942
I nformation Processing Systens Dat e: May 28th, 1996
Operating under the procedures of Project: Programm ng Language C++
Aneri can National Standards Institute Ref Doc:
Reply to: Josee Lajoie
(j osee@net.ibm com

| Menory Model |ssues and Proposed Resol utions

641 - Which allocation/deallocation functions are predefined and which
ones may be overridden in a progranf

3.7.3 [basic.stc.dynanmic] para 1 & 2 says
"A C++ inplenentation provides access to, and managenent of,
dynani ¢ storage via the global allocation functions operator new
and operator new] and the gl obal deallocation functions operator
del ete and operator delete[].

The gl obal allocation and deall ocation functions are al ways
implicitly declared. The library provides default definitions for
them (_lib.new delete_). A C++ programshall provide at npbst one
definition of any of the functions ::operator new(size_t),
::operator new(size_t, void*), ::operator new(size_t, const
std::nothrow&), ::operator new](size t), ::operator new](size_t,
voi d*), ::operator new](size_t, const std::nothrow&), ::operator
del ete(void*), ::operator del ete(void*, void*), ::operator

del et e(voi d*, const std::nothrow&), ::operator delete[](void*),
operator delete[](void*, void*), and/or ::operator delete[](void*,
const nothrow&) . Any such function definitions replace the default
versions. This replacenent is global and takes effect upon program
startup (_basic.start_). Allocation and/or deallocation functions
can al so be declared and defined for any class (_class.free_)."

1) Para 2 seens to indicate that all allocation/deallocation functions
can be overridden by the user in a program This contradicts what
18.4 [lib. support.dynanic] says.

2) The text above does not nake it very clear which
al | ocati on/deal |l ocation functions are predefined by the
i mpl ementation, that is, which allocation functions can be called
as the result of a new expression w thout the need to include
<new>.

The above paragraphs seemto inply that the answers to questions
1) and 2) are the same. | don't believe this is right.

Proposed Resol uti on:

1) 18.4 [lib.support.dynamic] indicates that the follow ng
al | ocati on/ deal | ocati on functions are repl aceabl e:
::operator new(size_t)
::operator new(size_t, const std::nothrow&)
;. operator new](size_t)
.. operator new](size_t, const std::nothrow&)
.. operator del ete(void*)
::operator del ete(void*, const std::nothrow&)
::operator delete[](void*)
::operator delete[](void*, const nothrow&)

and that the follow ng are not replaceabl e:

;. operator new(size_t, void*)
::operator new](size_t, void*)

::operator del ete(void*, void*)
;. operator delete[](void*, void*)

The text in 3.7.3 should match what 18.4 [lib. support.dynam c] says.

2) | believe any allocation or deallocation function can be called
as the result of a new expression w thout the need to include
<new> (even if the allocation and deallocation function is not
replaceable). In particular, the following is well-forned, even if
<new> is not included in the source file to declare placenent
;. operator new(size_t, void*).

struct C {
int i;
void f();
const C& operator=(const C&);

H
const C& C:.:operator=(const C& other)

if (this !'= &other)

this->~C();
new (this) C(other); // well-formed
HOK

return *this;

}

The text in 3.7.3 should make this clear.

577 - Are there any requirement on the alignment of the pointer used

with new with placenent?

For exanple, 12.4 para 10 gives exanpl es of placenent new used with a
buffer created as foll ows:

class X { };
static char buf[sizeof (X)];

Is the alignment of a static array of char guaranteed to satisfy the
al i gnnment requirenents of an arbitrary class X?

Proposed Resol uti on:

Either 3.7.3.1[basic.stc.dynam c.allocation] or
18.4.1.3[1lib. new. del ete. placenent] should indicate that the second
ar gunent of

;. operator new(size_t, void*)

::operator new](size_t, void*)
shoul d be a pointer to a storage location that is suitably aligned to
hol d an object of the type bei ng newed.

The exanple in 12.4 para 10 should be rewitten as foll ows
class X { };

static union {
static char buf[sizeof (X)];
X dunmy;

b

so that the constraint above is respected.

453 - Can operator new be called to allocate storage for tenporaries
RTTI or exception handling data structures?

Is it pernmitted for an inplenentation to create tenporaries by
calling operator newm()? |If so, does that require that operator new)
be accessible in the context in which such a tenporary is created?

Is an inplenmentation allowed to call a replaced operator new()
whenever it likes (storage for RTTI, exception handling, initializing
objects with static storage duration in a library)?

Pr oposed Resol uti on:

The Core 1 WG discussed this issue in Monterey and this is the
resolution it seened to converge towards:
The storage for variables with static storage duration, for data
structures used for RTTI and exception handling shall not be
acqui red using operator new.

The followi ng words should be added to 3.7.3 to nake this clear

"A global allocation function is only called as the result of a new
expression (5.3.4[expr.newj) or indirectly through calls to the
functions in the C++ standard library. [Note: in particular, a
gl obal allocation function is never called to allocate storage for
variables with static storage duration, for the data structures
used for RTTI or exception handling.]"

NEW - Can a pointer to an inconplete class type be the operand of a
del et e expression?

class X
void f(X* px)
{

déiete pPX;

/'l undefined if X has a destructor or operator delete.

}

At the Santa Cruz neeting, the WG decided that the ability to delete
a pointer to an inconplete POD class type was inportant enough to
keep the undefined behavior in this case. C allows a pointer to an

i nconplete class type to be the operand of free and people
participating in the discussions felt that users should be allowed to
use delete where free was used in C. The WG believed that it should
be a quality-of-inplementation issue to generate a warning if a
pointer to a inconplete POD class type was the operand of a delete
expr essi on.

M ke MIler core-6607

> | don’t understand the C conpatibility argunment in this context.

> 1t’s clearly not source conpatibility, since C doesn’t support the
> "del ete" syntax. The only conpatibility | can see is the ability
> to deallocate an inconpletely-typed pointer in the sane contexts

> in which "free()" could be called in C however, that capability

> would not be lost if the rule were changed to require a conplete

> type, since you could just cast to char* if you really needed to

> del ete an inconplete type

Nat han Myers core-6774:

Er

> [All owi ng the operand of delete to be a pointer to an inconplete

> class type for reasons of C conpatibility] In nmy view, that’'s

> pretty thin reasoning -- not |east because it encourages people to
> say "delete p" when they really need to check whether "delete[] p"
> is required, and a conpiler can't detect that to warn about it.

>

> To del ete, deliberately, an object *p of inconplete type, | would

> expect to be obliged to replace "free(p)" with

> "delete static_cast<void*>(p)", which makes visible that something
> unsavory is going on. Then "delete p" could be diagnosed as the

> error it quite likely is.

win Unruh in core-6603

> This problemis related with a nore general problem

>

> \When is the use of a type a reason to instantiate a tenplate?

>

> The nmental nodel answering this question was: "whenever the

> conpl eteness of a class tenplate specialization changes the

> semantics of the progrant.

>

> A delete expression is one of these situations.

> W then have situations where a class may be inconplete, but a

> class tenplate specialization nmay not be.

>

> Requiring the class to be conplete when a pointer to this class

> type is used as the operand of a del ete expression would renove

> one problematic situation for defining when tenplate instantiation
> nust take place.

Pr oposed Resol uti on:

I don’t care greatly but | sonewhat favor |eaving things as is.

I still believe it is a quality-of-inplementation issue to generate
a warning if a pointer to a inconplete POD class type is the operand
of a del ete expression

- Shoul d &* (array+upperbound) be all owed?

.3.1 [expr.unary.op] para 1 says:

"The unary * operator performs indirection: the expression to which
it is applied shall be a pointer to an object type or a pointer to
function type and the result is an Ivalue referring to the object
or function to which the expression points."

int a[4];
*(a+4) ... /] well-formed?

The problemis that a+4 does not point to an object.

Is it ill-forned to apply the * operator to such an expression?

If it is then the common idiom &J[n] where n is one past the end of
the array is ill-formed since one nmust be able to rewite a[n]

as & (atn).

Possi bl e Sol uti ons:

1) Leave things the way they are now.

M ke MIIler core-6570:

>
>

It hasn’t seened to hurt the C standard all that rmuch, and there
is asinple idiomthat is conformant (a+upper).
agai nst 1):

Bj arne in core-6590:

(without rewiting major tracts of standardese) would be an
excel l ent idea.

> 1t was a surprise to ne to find that the

>

> &v[si ze]

>

> that | have relied on for the last 20 years or so and widely
> recommended isn’t allowed by the C standard. | suspect that
> 1"mnot the only one caught with a surprise and a | ot of

> nonconfornming code. | think finding a way of allowing this

>

>

2) allow &aJupper] and nothing el se.

Ton1VVIcox cor e- 6586

VVVVYVYVYVYV

> Perhaps we could avoid the whole issue of |-values and
interaction with * by recognizing this as an idi omand DEFI NI NG
(in the definition of unary & the special case

& (poi nter-expression) [index-expression]
as being equivalent to

poi nt er - expressi on + i ndex-expression
agai nst 2):

M ke MIler core-6591

> The problem | have with this approach is that it breaks the
fundanental identity between E1[E2] and *((E1l)+(E2)).
Currently, the two are _always_ equivalent. Period. Nothing
further to say. That’s why we can get away with less than 5
lines total (1.5 of which are non-nornative notes) to describe
subscripting. Al the semantics are described under * and +.

If we take this approach, we would have to change 5.2.1 to

say, "The expression E1[E2] is identical (by definition) to
*((El)+(E2)) UNLESS E1 HAS A PO NTER TYPE, E2 HAS AN ARl THVETI C
TYPE, AND THE EXPRESSION | S THE OPERAND OF THE (BUI LT-1N) UNARY
& OPERATOR, I N WHI CH CASE SPECI AL SEMANTI CS APPLY." This
strikes nme, at |east, as unesthetic.

That’ s why approach 3) dealt with the descriptions of * and &
| really don’t think we ought to get into the business of
creating and describing a set of circunstances in which E1[E2]
and *((E1)+(E2)) are different fromeach other. (I’'m assum ng
from Tonmi s comment that &array[nmax] woul d be | egal but

& (array+max) would not.)

VVVVVVVVVVVVVVVYVYVYVYV

3) allow & upper] and &* (a+upper), but nothing el se.

M ke MIler core-6570:

\%

VVVVYVYVVYV

Per haps sonething like the follow ng could be done in 5.3.1pl:

"If the value of the pointer is the address of an object or
function, the result of the expression is an |val ue
designating that object or function; otherw se, any use of the
result of the expression other than as the operand of the
(built-in) unary & operator or the sizeof operator produces
undefi ned behavior."

4)

5.3.1p2 woul d al so have to be changed to descri be what happens
when the operand of & is a non-lvalue, perhaps sonething like:

"If the operand is the result of applying (built-in) unary * to

a poi nter whose value is not the address of an object or
function, the result of unary & is the sane value as the operand
of the unary *. Oherw se, the operand shall be an |val ue..
[remai nder of original description]."

VVVVVYVYVYV

all ow a[upper] to participate in the |language as fully as possible.

Andr ew Koeni g core-6592:
I think the way to correct the definition of pointer arithmetic

\

>is to pernmt an off-the-end pointer to be dereferenced but to
> prohibit any operation on the resulting reference except taking
> its address or binding another reference to it. Thus, | see
> nothing wong with the follow ng exanpl e:

>

> int a[100];

>

> int& f() { return a[100]; }

>

> and | would even allow

>

> int& x = f();

> int&y = x;

>

> but not

>

> int z = x;

John Skal | er core-6592:

> More nmay be necessary than just that.

> * reinterpret cast SHOULD be allowed, since it doesn’t change
the address referred to.

* typeid SHOULD be allowed if the type is not pol ynorphic

* constant nenber selection of the FIRST nenmber of a PCD
struct or union should be allowed (because this is just a
reinterpret _cast).
Note this includes both constants as in "x.nmenber" and
variable as in "x.*ptn' provided the ptm denotes the first
menber .

VVVVVYVVYV

Il G bbons core-6614:
| suggest that we base the rule on the existing linitations on
the use of objects with inconplete types:

If a pointer refers to the menory |ocation just after the end
of an array, any operation on that pointer which, if applied to
an ordinary pointer of that type, would have different
semantics (including beconme ill-forned) if the underlying type
wer e inconpl ete, has undefined behavi or, except:

* Adding a zero or negative val ue.

* Subtracting a zero or positive val ue.

* Computing the difference between that pointer and another
poi nter.

This handles a | arge range of problem cases, such as:
- x[n].menber /1 undefined

- (Based ass*) &x[n] /'l undefined

VVVVVVVVVVVVVVVVVVVVVVGE

> - &[n] - 1+1 Il K
>
> - &[n] +1-1 /1 undefined
>
> - typeid(x[n]) [l OKonly if refers to a
> /'l non-pol ynor phic type
>
> - struct A{ }
> struct B { B* operator&(); };
> A a[5];
> &a[5] ; I K
> B b[5];
>
> Asimlar restriction mght clarify the use of null pointers,
> e.g.
>
> int *pi = 0;
> typeid(*pi); [l OK, since not used where a conplete type is
> /'l needed
> int *pj = π [/ also K
ke MIler core-6617
If we do take this approach, however, | think it’'s mandatory to
define aJupper] as an |value; otherwi se, sone tinkering will be

required in many places to define how those permtted operations
work on a non-Ival ue operand.

"An Ivalue refers to a function, to the storage associ ated
with an object (in or outside its lifetime), or to the address
just past the last elenment of an array (5.7)"

VVVVVVYVVZ

cons agai nst 4):

Such a change affects a very basic concept of the |anguage, i.e.
| val ues. Changing the neaning of |values has rippling effects
through the WP and has the potential of introducing some

i nconsistencies in the Wp.

Pr oposed Resol uti on:
| prefer option 3).
It is nmore prudent.

513 - darifications for the rules on pointer conversions

1- What is the status quo?

In particular, 5.9[expr.rel]p2 last '--' says:
"Gt her pointer conparisons are unspecified."

Andr ew Koeni g notes the foll ow ng:

> Saying it is unspecified is a trenendous difference fromC
The point is that in Con, say, the Intel 386 in 16-bit node,
when doing an ordering conparison it is sufficient for the
compiler to generate code to conpare only the loworder 16 bits
of the pointers because the conparison is defined only for two
el ements of the sanme array. |If C++ is required to conpare the
whol e address, that puts it at a significant performance
di sadvantage with respect to C

VVVYVYVVYV

Proposed Resol uti on:

No acti on.
The WP already reflects the follow ng status quo
(Summary based on Mke MIler’'s nessage core-6626):

a) pointers to the same object or function, or both pointers point
one past the end of the same array, or both pointers are null
poi nters conpare equa

b) pointers to different objects or functions, or only one pointer
is null: pointers conpare unequal; the exact result is
unspeci fi ed

c) pointers to class nenbers of the sane class object if menbers
are not separated by an access-specifier: pointer to the later
decl ared nenber conpares hi gher

d) pointers to class nmenbers of the sane class object if nmenbers
are separated by an access-specifier: the result of the pointer
compari son is unspecified

e) pointers to nmenbers of the sane uni on object conpare equa

f) pointers to elenments of the sane array or one beyond the end of
the array: pointer to the higher subscript conpares higher

g) all other pointer conparisons are unspecified

[Not e] :
Unspeci fied nmeans that the pointer conparison is well-forned.
The result of the conparison can otherw se be whatever the
i mpl ement ati on wi shes.

In particular, Andy’'s comrent is already taken care of. An

i npl ementation is allowed to only conpare the |oworder 16 bits if
it wishes since the result of pointer comparison [i.e. g)] is
unspeci fi ed.

2- Should the standard indicate that:
- the result of a pointer conparison nmust be either true or false?
- the result of a pointer conparison nust be consistent throughout
an entire program ?

2.1- Should the standard indicate that the result of a pointer
compari son nmust be either true or false?

I think this is already the case, though it wouldn’t hurt to make
this clearer.

Unspeci fied neans that the pointer conparisons are well-forned.

Mke MIller in core-6636

> The "unspecified" result of "other pointer conparisons” is not
conpl etely unconstrained. | neglected to take into account the
sentence in 5.9pl1 that says, "The type of the result is bool." |
think it is defensible, if not, perhaps, definitive, to argue
that this sentence inplies that a _valid_ bool value is to be
returned by all the operations described in the section, even if
ot herw se unspeci fi ed.

VVVYVVYV

Pr oposed Resol uti on:

Editorial work to make the words in para 1 stronger:
Even though some pointer comnparison are unspecified, all pointer

comparison shall yield true or false

2.2- Should the standard indicate that the result of a pointer
conpari son nmust be consistent throughout an entire program
even though the result of such a conparison is unspecified?

Shoul d the standard i nmpose the foll owing additional restrictions?

-- given that p and q are pointers of the sane type and that,
t hroughout the duration of the program p always points to the
object x and g always points to the object y, the comparison
Pp<q
must yield the sane result throughout the duration of the
program

-- given that p and g are pointers to data menbers of the sane
obj ect of class type T (separated by an access-specifier), the
compari son

P <4 . - . .
nmust be consistent within the execution of a single program

-- given that p and g are pointers to data nenbers of an object of
class T (separated by an access-specifier), if p and q are
nmodi fied to point to the same data nenbers of a different
object of class T, the conparison

P <q

must yield the sane result as it would have yielded with the
original values of p and q within the execution of a single
program That is, the conparisons of pointers to data nenbers
must be consistent for all objects of the sane class type
within the execution of a single program

This seens to be the behavi or nost people expect fromtheir various
i mpl ementations. It is not clear that requiring inplenentations to
support these additional constraints actually solves inportant

probl ens faced by C++ progranmers. So we may decide that inposing

such constraints is not really necessary.

Requiring inplenentations to support the "consistency" constraints
above i nposes sonme restrictions on inplenentati ons on how pointers
are nmani pul at ed:

Mke MIller in core-6636
> (This is not conpletely theoretical -- Tomis comrents in

> core-6635 about unnornalized pointers rem nded ne of sone
> machi ne architectures |I’ve worked on where the format of
> pointers in menory and data registers was different fromthe
> format in address registers. Depending on which values were in
> which registers for a given conparison, if an inplenmentation is
> free to pick the | east expensive instruction sequence that gives
> the right answer for related objects, it might indeed be
> possible to get different results for separate conpari sons of
> the same two pointers to unrelated objects in different parts of
> the same program execution. If we want to disallow this, the
> restriction needs to be explicit.)
Erwin Unruh in core-6653:
> | think nandating the sanme result when conparing two pointers
> di sall ows sonme optim sati ons nade possible through data fl ow
> analysis. See the follow ng program
>
> int a;
> int ar[5];
> int &=ar[0];
>
> void f(int* pa, int* pb)

VVVVVVVVVVVVVVVVVVVVVVYVVYVYVYVYV

pa < pb; /1 #1
pa < &b; Il #2
}
f(&a, &b);

When anal ysing #1 we don’t know whet her these pointers point to
el ement of the sane array and what relation they have. The

i mpl ementation has to generate a conparison. The result is
unspecified and, at runtine yields true in this case. For #2 the
i mpl ement ati on knows that b points to the first elenent of an
array. So the result is either false or unspecified. To
optinize, the inplenentation may assune that the result is fal se
and optim se the conparison away. So conparing the sane pointers
with correct type yields two different results.

O her optimsations may occur nore often where the inplenentation

replaces a "<" by a "==", as in

for(..., p<(ar+b), ...)
Here the only valid situation for "false" would be "p==(ar+5)",
so an optim zing conpiler may replace the conpari son (especially

when equality is cheaper than |ess).

So mandating consistency will disallow a certain set of
optini sations.

Proposed Resol uti on:

don’t have a strong opinion regarding the outcone of this issue.

We will have to decide whet her we care enough about the

consi stency of pointer conparisons and about ensuring that the
users expectations be supported by all inplenentations to

di sall ow i mpl enentation tricks and optim zati ons such as the ones
presented by M ke and Erw n.

3- Shoul d every inplenentation be required to provide a tota
ordering on pointers?

Solution 1): No. C doesn’'t so why should we?

Solution 2): Yes.

o Why?

Andr ew Koeni g in core-6639:

> The principal argunent is that having a canonical total ordering
> on pointers nmakes it nuch easier to use pointers as indices of
> associative containers. In other words, it makes set<T*> and
> |ist<T*, V> possible to inplenent.
0 How?
a) keep the semantics of < > <= >= unchanged.

In which case, this beconmes a library issue.

Matt Austern in core-6642:
> The decl aration of set is

b)

c)

tenpl at e<cl ass Key, class Conpare = | ess<Key>,
class Allocator = allocator>
class set { /* ... *| };.

It doesn’'t matter, then, whether or not you use operator< to
compare two pointers; all that matters is that you have a

| ess<T*>. The trouble is sinply that there is no portable
way to wite | ess<T*>.

Perhaps this is best regarded as a library issue rather than
a core | anguage issue: perhaps tenpl ate<class T> cl ass

| ess<T*> should sinply be added to the library, and standard
l'ibrary inplementors could use whatever platformspecific
magi ¢ i s necessary.

VVVVVVVVYVVYVYVVYV

Jerry Schwarz in core-6655
|"ve seen several proposals in this thread that the way to
answer this question would be a tenplate in the library

bool |ess<T*>(T*, T*);
I think this goes overboard on tenpl ates because of the
potential for all kinds of problens with determ ning the type
to instantiate the tenplate. | think

bool 1ess(void*, void*);
woul d be the sinplest way to proceed.

VVVVYVYVVYV

Tom Plumin core-6670:

I MO, both [Matt] and Jerry are right, but at different |evels
of the problem [...] for the portable library

i mpl ementation to inplenent the tenplate for | ess<T*> it nust
ultimately call sone function (in general). At least if the
i brary standardi zes upon a function interface, the
non-portability is confined to the inplenentation of that
(possibly builtin) function

VVVYVYVVYV

operator< (and conpany) reflects the total ordering on void*
pointers (only). The result of operator< (and conpany) on
other pointer types remains unspecified.

Tom Plumin core-6635:

There was an off-line discussion of this earlier this year
and IMO, | think it’s a great idea. Once a pointer has been
cast to void* it’s been made clear that the pointer is no

| onger relative to any specific underlying object. And you
can’t fetch or store with it unless you have sone ot her
informati on that's kept outside the pointer

But remenber, an unnornalized pointer conpare can be
significantly faster than a nornalized conmpare, so don't force
char* conparisons to be normalized. They're inside many of
the hottest inner |oops. But void* conpares are nuch |ess
frequent.

VVVVVVVVYVYVYVYV

operator< (and conpany) reflects the total ordering on
all pointer types.

Erwin Unruh in core-6695:

There have been argunents that requiring a total order on a
poi nter does require suboptinal code on sone architectures.
Now Francis entered a new view of architecture, which is
currently not inplenented but which will be available within
the lifetime of C++.

> Francis Wd assborow in core-6692
>

> \When we nove to nore conplicated distributed systens (e.g.

VVVVVYVYVYVYV

> URL’s on the Internet) it is possible that there is no

> normalisation algorithmand that two "lexically’ distinct

> pointers actually point to the sane ’'object’

So | believe that adding a new requirenent on the operator<
for pointers is not the right way. A programer assunes that
basic functionality on basic types is somewhat 'fast’. But
mai ntai ning a conplete order on a distributed network (with
nodes entering and | eaving) nay require the presence of a
conpl et e dat abase

[...]

| could live with a library function which provides a
complete ordering on all pointers. |If an inplenmentation of
such a function beconmes too expensive | can just renove that
function and rewite the library. Than only users working
with that library function will have problens (at link tine).
[...]

So strongly argue agai nst extending the semantics of
operator<. | could live with a library function for a

compl ete ordering of pointers. Such a library function should
have a note that a constant tine conparison is not guaranteed.

VVVVVVVVVVVVVVVYVVYVYVYV

Pr oposed Resol uti on:

G ven the schedul e constraints, | favor 1).
I could live with 2a).

