Doc. No.: WE21/ N0937R1=X3J16/ 96- 0119R1

Dat e: 10 July 1996

Pr oj ect: C++ Standard Library

Reply to: Nat han Myers
<ncm@antrip. org>

Clause 20 (Utilities Library) Issues (Revision 5)

** Revision H story:

Revision 0 - 22 May 1995 [was Version 1]

Revision 1 - 09 Jul 1995 [was Version 2] (edits before Monterey)
Revision 2 - 26 Sep 1995 (pre-Tokyo)

Revi sion 3 - 30 Jan 1996 (pre-Santa Cruz)

Revi sion 4 - 28 May 1996 (pre-Stockholm

Revision 5 - 10 Jul 1996 (Stockholm

** | ntroduction

This docunent is a summary of issues identified for the C ause 20,
identifying resolutions as they are voted on, and offering recommendati ons
for unsolved problens in the Draft where possible.

** | ssue Nunber: 20- 007

** Title: C functions asctine() and strftinme() use global l|ocale
** Sections: 20.5 [lib.date.tine]
** St atus: cl osed by default (Tokyo)

** Description:

From Box 8 in the pre-Stockhol mdraft:
Note: in Monterey we accepted the resolution for issue 20-007
in 95-0099R1, the body of which was "to be specified"! So this
sub-cl ause still needs work :-)

** D scussion

20- 007 concerned the rel ationship between C functions asctine()

etc. and the C++ locale. Now that we know there is none, | am
| eaving this closed, and recommendi ng that the Editor renove the box.

** Requestor: St eve Runsby

** Work G oup: Library: Uilities Cause 20

** | ssue Nunber: 20- 024

** Title: poi nter _to_unary/binary_function pass-by-val ue

** Sections: 20. 3.7 Adapters for pointers to functions
[1ib.function. pointer. adaptors]

** St atus: active

** Description:

operator() of pointer_to unary function and pointer_to _binary function
currently pass their argunments by const reference. This prevents
ptr_fun() fromworking with functions which pass by const reference
because the pointer_to.. operator() argunments end up being references
to references. For exanple:

int ny fun(const Foo& bar) { ... }

for_each(..., ..., ptr_fun(ny_fun)); [/ oops! error

This probl em has been fixed in the HP STL distribution by changing the
pointer to.. operator() argunents to pass by value, so this represents
status quo in the outside world.

** Proposed Resol ution

In 20.3.7 [lib.function.pointer.adaptors] class pointer_to _unary_function

change:

Result operator()(const Arg& Xx) const;

to:
Result operator()(Arg x) const;

In 20.3.7 [lib.function.pointer.adaptors] class pointer_to_binary function
change:

Result operator()(const Argl& x, const Arg2& y) const;
to:

Result operator()(Argl x, Arg2 y) const;

** Requestor: Beman Dawes

** Owner:

** Wrk G oup: Library: Wilities C ause 20

** | ssue Nunber: 20- 025

** Title: St ack, queue, and priority _queue adaptor tenplates should

not have all ocator paraneter.
** Sections:
** St atus: active

** Description:
(This really should be a O ause 23 issue, but it also concerns allocator)

The stack<>, queue<>, and priority_queue<> adaptor tenpl ates as
currently defined take a tenplate paraneter Allocator, which is
not used by the adaptor except as an argunent to the constructor
This allocator can and shoul d be obtained fromthe Container
argument cl ass.

** Proposed Resol ution

Elimnate the Allocator tenplate paranmeter in each of stack<>
queue<>, and priority queue<> Change constructor argunments of these
tenpl ates to declare an argunent using the menber typedef fromthe
Cont ai ner argunent, |ike:

stack(typenane Container::allocator_type = Container::allocator_type());

** Requestor: Bj arne Stroustrup

** Owner:

** Work G oup: Library: Wilities Cause 20

** | ssue Nunber: 20- 026

** Title: raw storage iterators and others described in

terns of nonexistent conponents.
** Sections:
** Gt at us: active
** Description:

M chael writes:

Was the exclusion of an Allocator tenplate paraneter in the

raw storage iterators, destroy() and the uninitialized *() algorithns,
and possibly the tenporary buffer algos sinply an oversight? The
draft defines their behavior based on functions that have since been
renoved

** Proposed Resol ution
Change the Effects: paragraphs of the follow ng as indicated:
20.4.4.1 unitialized_copy [lib.uninitialized.copy]

Effects: while (first !'= last)

new (static_cast<voi d*>(& result++))
typenane iterator _trait<Forwardlterator>::value typ

e (*first++);
20.4.4.2 uninitialized_fill [lib.uninitialized.fill]

Effects: while (first !'= last)

new (static_cast<voi d*>(&first++))
typenane iterator _trait<Forwardlterator>::value typ

e (x);
20.4.4. 3 uninitialized_fill_n [lib.uninitialized.fill.n]
Effects: while (n--)
new (static_cast<voi d*>(&first++))
typenane iterator_trait<Forwardlterator>::value_typ
e (x);
** Requestor: nkl obe@bj ect space. com
** Omner:
** Work G oup: Library: Uilities Cause 20
** | ssue Nunber: 20- 027
** Title: al | ocator new and del ete inconplete
** Sections: 20.1.4 [lib.allocator.requirenments],
20.4 [lib. nenmory],
20.4.1.2 [lib.allocator. gl obal s]
** St atus: active

** Description:

Cl ause 20 defines operator newm) for allocators, but does not
define operator newf](), nor operators delete() and delete[]().
These should be added to the table of allocator requirenents
and to the class interface for the default allocator, and

i ncorporated into the exanples.

These are needed so that the nenory will be deallocated if an
exception is thrown froma constructor.

** Proposed Resol ution
Add to the Allocator requirements table in [lib.allocator.requirenents]:

operator del ete(void* p, x) (none) x. deal | ocat e(p)
operator delete[](void* p, Xx) (none) x. deal | ocat e(p)

Add to the <nmenory> synopsis in [lib.nenory] and the default allocator
globals in [lib.allocator.globals]:

tenpl ate <class T> void operator new](size_t N, allocator<T>& x);
Returns: a.allocate(Ntsizeof(T), 0)

tenpl ate <class T> void operator del ete(void* p, allocator<T>& x);
tenpl ate <class T> void operator delete[](void* p, allocator<T>& x);

Requires: p obtained by a call to allocator<T>::allocate, not
yet deal | ocat ed.
Ef fect: x.deallocate(p).

** Requestor: k|l obe@bj ect space. com

** Owner:

** Work G oup: Library: Wilities Cause 20

** | ssue Nunber: 20- 028

** Title: auto_ptr<> need throw() specifications
** Sections:

** Status: active

** Description:
In Iib-4686, G eg Colvin:

I was recently renminded that since | first proposed auto _ptr the
restrictions on exception handling (lib.res.on.exception.handling) in the W
have changed from

1 Any of the functions defined in the C++ Standard library can report a
failure to allocate storage by throwing an exception of type bad all oc,
or a class derived frombad_all oc

2 O herw se, none of the functions defined in the C++ Standard l|ibrary
throw an exception that nust be caught outside the function, unless
explicitly stated otherw se.

to:

1 Any of the functions defined in the C++ Standard |ibrary can report a
failure by throwi ng an exception of the type(s) described in their
Thr ows: par agr aph and/ or their excepti on-specification
(_except.spec_). An inplenentation may strengthen the exception-
specification for a function by renoving |isted exceptions.

2 None of the functions from the Standard C library shall report an
error by throwi ng an exception, unless it calls a program supplied
function that throws an exception

3 Any of the functions defined in the C++ Standard library that do not
have an exception-specification may throw any exception. An
i mpl ementation nay strengthen this inplicit exception-specification
by adding an explicit one.

Theref ore auto_ptr now needs exception specifications.

An auto_ptr requires no free store, and requires nothing of its type
argunent but an accessible delete operation. The delete operation is used
in ~auto_ptr(), so ~auto_ptr() can throw anything thrown by the delete.

No other auto_ptr function need throw anyt hing.

** Proposed Resol ution

Al'l operations on auto_ptr but its destructor should have a throw()
speci fications:

nanespace std {
tenpl at e<cl ass X> class auto_ptr {

publi c:

/1 20.4.5.1 construct/copy/destroy:
explicit auto_ptr(X* p=0) throw();
tenpl at e<cl ass Y> auto_ptr(const auto_ptr<Y>& throw);
tenpl at e<cl ass Y> auto_ptr& operator=(const auto_ptr<Y>& throw);
~auto_ptr();

/1 20.4.5.2 menbers:

X& operator*() const throw();

X* operator->() const throw);

X* get() const throw();

X* rel ease() const throw);

b

}
** Requestor: Greg Col vin <greg@ nrgol d. conr
** Owner:
** Wrk G oup: Library: Wilities C ause 20
** | ssue Nunber: 20- 029
** Title: General pointer conparisons needed for use in set<> nmap<>
** Sections:
** St atus: active

** Description:

St andard contai ners set<> and multi set<> depend on a total ordering
among el ements. |If pointers are to be stored in these structures,
a means is needed to provide a total ordering on pointers. The

| anguage does not provide such an operation

Lengthy reflector nail advanced three alternatives:

1. Extend, in the core | anguage, operator< applied to pointers to yield a
total order;

2. Provide a library function object |ess_pointer(void*, void*) defined
to yield a total order for pointers;

3. Require that the standard function objects | ess<> etc., specialized
on pointers, yield a total order. They would be explicitly
speci alized only on architectures for which operator< does not
al ready provide a total order

** Di scussi on

For (1), The LWG has no say in | anguage core extensions. The Core
group consensus seens to be agai nst such an extension, on the grounds
that the performance i npact on sone architectures could be prohibitive.

Al ternative (2) adds yet another conponent to the library, or nore
if greater_pointer<> |less_equal _pointer<> etc are also added.

Alternative (3) reduces flexibility for users who m ght be storing
pointers within a single array, and who do not want to incur the
expense of general pointer conparisons when built-in operator<()
suf fi ces.

(2) is less convenient to use than (3); if (3) is inplemented,
users can avoid the total ordering expense by defining their
own conpari son object.

** Proposed Resol ution
Add to [lib.conparisons]

For templ ates greater, |ess, greater_equal, and |ess_equal
the specializations for any pointer type yield a total order
even if built-in operators <, > <= >= do not.

** Requestor: Beman Dawes

** Messages: Core- 6691, 6649, 6650, 6651.

** Omner:

** Work G oup: Library: Wilities Cause 20

** | ssue Nunber: 20- 030

** Title: auto_ptr<> descriptions inproperly inmply undefined behavi or
** Sections:

** Status: active

** Description:

Qur WP specifies that violations of Requires clauses give undefined
behavi or. However, the Requires clauses in 20.4.5.1 (auto_ptr ctors)
can all be diagnosed at conpile tine. | can see no benefit to not
requi ring these diagnostics, so some small changes are in order

** Proposed Resol ution
Change:

20.4.5.1 auto_ptr constructors
[lib.auto.ptr.cons]

explicit auto_ptr(X* p = 0);

Requi res
p points to an object of type X or a class derived from X for which
NNNNNNNN

| p shall point

delete p is defined and accessible, or else pis a null pointer

tenpl at e<cl ass Y> auto_ptr(const auto_ptr<Y>& a);

Requi res:
Y is type X or a class derived from X for which delete(Y*) is defined
NNNN

| Y shall be

and accessi bl e.

tenpl at e<cl ass Y>aut o_ptr<X>& operator=(const auto_ptr<Y>& a);

Requi res
Y is type X or a class derived from X for which delete(Y*) is defined
NANNNN

| Y shall be

and accessi bl e.

** Requestor: Geg Colvin
** Onner :
** Work G oup: Library: Wilities Cause 20

**]ssue Nunber: 20- 031
** Title: Function object "times" collides with cormon C function name

** Sections: 20.3 [lib.function. objects] and
20.3.2 [lib.arithnetic.operations
** Status: active

** Description:

I would Iike to see the nane of the function object "tinmes" which
perfornms nmultiplication i.e. tenplate <class T> struct tinmes changed
to "multiplies".

The reason for this is that the name "times" conflicts with the XP&4
"times" function declared in <sys/times.h> Eventually this conflict
shoul d be resolved by putting STL times in the std nanespace. However
renaming "tinmes" to "nmultiplies" will prevent confusion for people who
are famliar with the XP&4 tinmes routine and it clearly identifies the
function of the STL routi ne.

** Proposed Resol ution
In [lib.function.objects] and in [lib.arithnetic. operations],

Change the tenplate type nane "tines" to "multiplies"

** Requestor: Sandra Wi tman <whi t man@/| e. enet . dec. conp

** Owner:

** Work G oup: Library: Wilities C ause 20

** | ssue Nunber: 20- 032

** Title: Al'l ocator pointer and reference required conversions
need clarification

** Sections: 20.1.4 [lib.allocator.requirenents]

** Status: active

** Description:

(This is Box 20-1 in the pre-Stockhol mdraft.)
The table of Allocator requirenments specifies conversions:

X :pointer --> T* wvoid*, X :const_pointer, XT<voi d>::const_pointer
X::const_pointer --> T const*, void const*, XT<voi d>::const_pointer
X :reference --> T&

X::const_pointer --> T consté&

and describes the conversions to built-in pointers and references as
yielding a value suitable to use as "this" in a nenber function

The conversion to XT<voi d>::const_pointer (which is shorthand for
X::rebi nd<voi d>::other::const_pointer) is for use as the "hint"
argunent to allocate.

The question is, is this a conplete set of necessary conversions,
or does the list require refinement? |In particular, should sone
reference conversions (e.g. X :reference --> X :const_reference)
be required as well?

** Proposed Resol ution

(none yet)

** Requestor: Nat han Myers <ncm@antri p. or g>
** Omner:

** Work G oup: Library: Uilities Cause 20

** | ssue Nunber: 20-033

** Title: al | ocator::address nenbers need clarification

** Sections: 20.4.1, 20.4.1.1 [lib.default.allocator],
[l1ib.allocator. nenbers]

** St at us: active

** Description:

Menbers address() are defined to apply operator& to the reference
argument. This | eaves unclear whether built-in or nmenber operatoré&
is used. W should nake it clear that the built-in operator is used,
and that no exception is thrown.

** Proposed Resol ution

For the default allocator nmenbers allocator::address():

poi nter address(reference x) const;
const _poi nter address(const_reference x) const;

add "throw()" to each, and docunent that they return
"::operatoré&x)", not "&".

** Requestor: Nat han Myers

** Owner:

** Work G oup: Library: Wilities C ause 20

** | ssue Nunber: 20- 034

** Title: Use of "hint" argunent to allocate need clarification
** Sections: 20.4.1.1 [lib.allocator. nenbers]

** Status: active

** Description:
Box 6 in the pre-Stockhol mdraft:

TBS: using "hint" should be docunented as unspecified, but intended
as an aid to locality if an inplenentation can use it so.

** Di scussion
In the Allocator Requirenents ([lib.allocator.requirenments], 20.1.4):
6 The second paraneter to the call a.allocate in the table above is
an i npl ementi on-defined hint fromthe container inplenmentor to
the allocator, typically as an aid for locality of reference

with the footnote:

In a container nenber function, the address of an adjacent el enent
is often a good choice to pass for this argunent.

This describes Allocator semantics well enough for inplenentors of
contai ners, but may not say enough about the default allocator

| don’t know what "inplenentation-defined", in paragraph 6, neans
in that context.

** Proposed Resol ution

In [lib.allocator.requirenents], paragraph 6 quoted above, strike
"i mpl enent ati on-defi ned".

In [lib.allocator.nenmbers], add to allocator::allocate():

Requires: *hint* either O or previously obtained from nenber
al | ocate and not yet passed to nenber deallocate. The val ue
hint may be used by an inplenmentation to help inprove
per f or mance.

** Requestor:

** Owner:

** Work G oup: Library: Wilities Cause 20

** | ssue Nunber: 20-035

** Title: Al'l ocator requirements table typo cleanup
** Sections: 20.1.4 [lib.allocator.requirenents]

** Status: active

** Description:
The description of required Allocator menber x.construct is:
X.construct(p,u) (not used) Ef fect: new((void*)p) T(u)

but uis not a value of type T, but a pointer to a value of type T.
This is a typo. Also, the line

typenane X
rebi nd<U>: : ot her for an instantiation
of XT<T>, the type XT<U>

uses an undefined nane, XT. This should be in the previous table.
** Proposed Resol ution
Change the Table 42 "construct" entry to:

x.construct(p,t) (not used) Effect: new((void*)p) T(t)
Add to Table 41:

XT<T> sanme as X

and change the definition of rebind to:

typenanme X

r ebi nd<U>: : ot her the type XT<U>

** Requestor: Nat han Myers

** Owner:

** Work G oup: Library: Wilities Cause 20

** | ssue Number: 20- 036

** Title: Conpl exity specifications neani ngl ess?

** Sections: 20.1.1 [lib.equalityconparable],
20.1.2 [lib. | essthanconparabl e],
20.1.3 [lib. copyconstructabl e]

** Status: active

** Description:

Tabl es 38 through 40 define requirenents on types passed as tenpl ate
argunents el sewhere in the Draft. Each of these requirenents
specifies a "conmplexity" as *constant*. However, this is not
referenced to any neasure, so is arguably meaningl ess.

** Dj scussi on

| believe that stating a conplexity as "constant" does not inpose

any requirenents on the operation, but that does not mean it is
nmeani ngl ess. Rather, it establishes a baseline for the description

of conplexity of conposite operations: to verify that an operation

of "linear" conplexity conplies, one counts the bottoml|evel "constant”
conpl exi ty operations.

The prior confusion on this point seens to inply that we need a statenent
expl ai ni ng how these assertions and requirenents are to be interpreted.

** Proposed Resol ution

Del ete the conplexity colums fromtables 38-40 in clauses 20.1.1
[lib.equalityconparable], 20.1.2 [lib.lessthanconparable], and 20.1.3
[l1ib.copyconstructible], and table 74 in clause 23.1 [lib.container.requirenents

1.

Add the followi ng paragraph as the second paragraph of 23.1
[1ib.container.requirenments]:

Al'l of the conplexity requirenents in this clause are stated solely in
terns of the nunber of operations on the contained objects. [For exanple

the copy constructor of type vector< vector<int> > has |inear conplexit
even though the conplexity of copying each contained vector<int>is itse
l'inear.]

** Requestor:

** Omner:

** Work G oup: Library: Uilities Cause 20

** | ssue Nunber: 20- 037

** Title: Al l ocator:: deal |l ocate needs count argunent

** Sections: lib.allocator.requirenments, |ib.default.allocator
** Status: active

** Description:

The interface to the deal |l ocate nenber described in the Al ocator
requi renents takes only a single T argument. It does not take
a count of the nunber of objects found ther. This places an
unnecessary burden on allocator inplenentations, which nust
renmenber the size of allocations, with no correspondi ng benefit
to containers, which nust also record the nunber of elements.

This can be corrected by changing the interface, adding another
argunent to indicate a count of el enents.

** Di scussion
** Proposed Resol ution

In 20.1.4 [lib.allocator.requirements], change in Table 42 (Allocator
requi renents) the expression

a. deal | ocat e(p)
to
a. deal | ocat e(p, n)

and change the description to read

all n T objects in the menory pointed by p nust be destroyed prior this
call. n nmust match the val ue passed to allocate to obtain this menory.

In 20.4.1, [lib.default.allocator], and in 20.4.1.1 [lib.allocator. nmenbers],
change the decl arati on

voi d deal | ocat e(poi nter p)
to
voi d deal | ocate(pointer p, size_type n)

Add to the Requires: section of the description: "n shall equal the val ue
passed as the first argunent to the invocation of allocate which returned p

Finally, add the second argunent to each declaration and use in the
exanple at 20.4.1.3 [lib.allocator.exanple].

** Requestor:

** Owner:

** Work G oup: Library: Uilities Cause 20

** | ssue Nunber: 20- 038

** Title: class allocator specialization for void has extra nenbers
** Sections: 20.4.1 [lib.default.allocator]

** Status: active

** Description:

The class all ocator specialization for void is only needed to provide the
typedefs pointer, const_pointer, value type, and the tenplate typedef paraneter
rebi nd. The other nmenber functions in this specialization are of no val ue. For
exanple, allocate() is defined as returning a pointer to the initial elenent

of an array of storage of size n*sizeof (T), aligned appropriately for objects
of type T. max_size() is defined as returning the |argest value N for which the
call allocate(N, 0) mght succeed. For the type void, both of these are
meani ngl ess.

** Di scussion
** Proposed Resol ution

Repl ace the definition of class allocator<void> in 20.4.1 [lib.default.allocator

with:
tenpl at e<> cl ass al | ocat or<voi d> {
typedef void * pointer;
typedef const void * const _poi nter
typedef void val ue_type;
tenpl ate <class U> struct rebind { typedef allocator<U> other; }
b
** Requestor:
** Owner:
** Work G oup: Library: Wilities Cause 20
** | ssue Nunber: 20- 0xx
** Title:
** Sections:
** Status: active

** Description:
** Dj scussi on

** Proposed Resol ution

* %

* %

Request or:
Omner :

Cl osed i ssues:

* %

* %

* %

* %

* %

* %

* %
* %

* %

* %

* %

* %

* %

* %

* %

* %
* %

* %

* %

* %

* %

* %

* %

* %

* %
* %

* %

* %

* %

* %

* %

* %

* %

* %
* %

* %

* %

* %

* %

* %

* %

* %

| ssue Nunber:

Title:
Resol uti on:

| ssue Nunber:

Title:
Resol uti on:

| ssue Nunber:

Title:
Resol uti on:

| ssue Nunber:

Title:
Resol uti on:

| ssue Nunber:

Title:
Resol uti on:

| ssue Nunber:

Title:
Resol uti on:

| ssue Nunber:

Title:
Resol uti on:

| ssue Nunber:

Title:
Resol uti on:

| ssue Nunber:

Title:
St at us:

| ssue Nunber:

Title:
Resol uti on:

| ssue Nunber:

Title:
Resol uti on:

| ssue Nunber:

Title:
Resol uti on:

| ssue Nunber:

Title:
St at us:

| ssue Nunber:

Title:
Resol uti on:

| ssue Nunber:

20- 001
Al | ocat or
passed

needs operator ==

20- 002
al | ocator::types<> has no public nenbers
passed

20- 003
Al | ocat or
passed

requi renents inconplete

20- 004
al | ocat or
passed

paranmeter "hint" needs hints on usage

20- 005
Default allocator nenber all ocate<T>() doesn’'t
passed

20- 006
al | ocator:: max_size() not docunented
passed

20- 008

construct() and destroy() functions should be nmenbers

passed

20- 009

Al l ocator nmenber init_page size() no | onger appropriate.

cl osed

20- 010
auto_ptr specification wong.
passed

20-011
speci ali zation of allocator::types<void> inconplete
passed

20- 012
get _tenporary_ buffer has extra argunent decl ared
passed

20- 013
get _tenporary_buffer semantics inconplete
passed

20- 014
al l ocator could be a tenplate again
passed

20- 015
class unary_negate ill-specified.
passed

20- 016

"new T".

* %

* %

* %

* %

* %

* %

* %

* %

* %
* %

* %

* %

* %

* %

* %

* %

* %

* %
* %

* %

* %

* %

* %

Title:
Resol uti on:

| ssue Nunber:

Title:
St at us:

| ssue Nunber:

Title:
St at us:

| ssue Nunber:

Title:
St at us:

| ssue Nunber:

Title:
St at us:

| ssue Nunber:

Title:
St at us:

| ssue Nunber:

Title:
St at us:

| ssue Nunber:

Title:
St at us:

bi nder{1st| 2nd}: : val ue types w ong.
passed

20- 017
inmplicit_cast tenplate wanted
cl osed, no action (Tokyo)

20- 018
auto _ptr::reset to self
cl osed, inplenented choice 2 (Tokyo)

20- 019
no default ctors on many lib classes
cl osed, no action (Tokyo)

20- 020
Tenpl ate constructor for pair<>
passed

20- 021
shoul d pair<> have a default constructor?
cl osed, inplenented (Tokyo)

20- 022
unary_conpose and bi nary_conpose m ssing.
cl osed, no action (Tokyo)

20- 023
pai r<> shoul d have typedefs
cl osed, inplenmented

