Title: Cause 26 (Nunerics Library) |ssues List
Aut hor: Judy Ward
Docunent Nunber: X3J16/96-0116

WGE21/ N0934

Wirk G oup: Li brary
| ssue Nunber: 26/ 009
Title: val array useful ness

Secti on: 26 Add
St at us: active
Descri ption:

To: C++ libraries mailing list

Message c++std-1ib-3881

In ANSI public comment T29, Daveed Vandevoorde <vandevod@s.rpi.edu> says:
Conments on the proposed <val array> header

Probably the sinplest way to address the above concerns is to sinply
abandon the standardi zati on of a numerical array.

V V VYV

I would Iike to take this alternative seriously.

Wth the advent of Todd Vel dhui zen’s work on Expression Tenpl at es,
it is far fromclear that valarray<> is the appropriate vehicle to
aid in optimzing nuneric array processing in C++. (For those who
have not read Vel dhuizen’s work in C++ Report, a copy may be found
at <http://ww.roguewave.com >) H's work inplies that using even
a vendor-optin zed/ conpil er-supported val array<> may cost a factor
of two or nore in speed conpared to using another library based on
portabl e I anguage facilities. This brings into question the val ue
of the valarray<> tenplate; the original argunent in its favor was
that it provided the hooks to permit optinmal inplenentation "under
the hood" (that’'s "under the bonnet" for you Brits).

This is not a formal proposal to elinminate valarray<>, yet; it is
instead a request for comments. | would like particularly to hear
from| SO representatives whose vote mght be forced to change if
it is renmoved

Nat han Myers
nyer sn@ oguewave. com

Proposed Resol uti on:

Daveed Vandevoorde had a separate proposal (X3J16/96-0039, W31/ N0857)
in the pre-Santa Cruz mailing. In Santa Cruz the library working group
asked himto wite up a proposal describing the exact changes that woul d
need to be nmade to the draft to inplenment this proposal for Stockhol m

Requestor: Nathan Myers
Owner : Judy Ward
Emails: (email reflector nmessages that discuss this issue)
c++std-1ib-3880
c++std-1ib-3883
c++std-1ib-3886
c++std-1ib-3887
c++std-1ib-3889
c++std-1ib-3897
c++std-1ib-3900
c++std-1ib-3906

c++std-11i b-3908
c++std-1i b-3909
c++std-1ib-3910
c++std-1ib-3914
c++std-1ib-3918
c++std-11ib-3920
c++std-11i b-3925
c++std-1i b-4682

Papers: (committee docunents that discuss this issue)
X3J16/ 96- 0039, W21/ NO857

ER R R R R R R R R R R R R R R R R R I R R R R

Wor k G oup: Li brary

| ssue Nunber: 26/ 013

Title: sqgrt() function in conplex Iib -- which root does it return?
Secti on: 26.2 Ad

St at us: active

Descri ption:

To: C++ libraries mailing list
Message c++std-1ib-4427

| see we have a sqrt(conplex) that returns a conplex (of the
right type). However, doesn’'t a conplex have MANY square roots?

Are anyone conducting a review of the math library?
- Bjarne

To: C++ libraries mailing list
Message c++std-1ib-4430

Bj arne Stroustrup wites:

> | see we have a sqrt(conplex) that returns a conplex (of the
> right type). However, doesn't a conplex have MANY square roots?

Vll, it has two. If x is aroot, then -x is also a root. By
wi despread convention, the root with phase angle [-pi/2, pi/2)
(as | recall) is preferred as the return value for sqgrt.

> Are anyone conducting a review of the match library?

W’ ve had sonme useful feedback fromthe heavy hitters in the C
math |ibrary conmmunity.

P.J. Pl auger

Proposed Resol uti on:
See | ssue 26/016, specification of branch cuts and ranges.

Requestor: Bjarne Stroustrup

Ownner : Judy Ward

Emails: (email reflector messages that discuss this issue)
Papers: (committee docunents that discuss this issue)

ER R R R R R R R R R R R I R R R I R R R I R R O R

Wor k G oup: Li brary
| ssue Nunber: 26/ 015
Title: should norm() be renpved/renaned in conplex library?

Section: 26.2.6 Ad
St at us: active
Descri ption:

26.2.1 1 believe the term"norm' comonly refers to the

square root of the squared magnitude (i.e. abs), and not

the squared nmagnitude. |Is a function for the squared nmagnitude
needed? Note that the squared nmagnitude can be conputed from abs
with only deserved over/underflow, but not vise versa.

Proposed Resol uti on:

Di scussed at Santa Cruz, the library worki ng group suggested
the nane abs _sqr() but the full comittee wanted to see what
ot her | anguages used. |’'ve |ooked in the FORTRAN and ADA
standard and have not found an equival ent function

Requestor: ?? (public coment)

Owner : Judy Ward

Enails: (email reflector nmessages that discuss this issue)
Papers: (committee docunents that discuss this issue)

Rk b ok R Rk R R Rk O R SRk R Sk Rk R R O R SR Ik b S R A R

Work G oup: Li brary

| ssue Nunber: 26/ 016

Title: Should branch cuts and ranges be specified in conplex Iib?
Secti on: 26.2.7 Ad

St at us: active

Descri ption:

111 26.2.7. Branch cuts and ranges need to be specified for
functions. See section 3 of "Conplex C Extensions", Chapter 6
of X3J11's TR on Numerical C Extensions.
Proposed Resol uti on:
This resolution was fromthe TR nmenti oned above and al so follows the
conventions for branch cuts and ranges in the ADA95 standard and the
FORTRAN 90 st andar d.
Expand Section 26.2.7 to:
Section 26.2.7 conplex transcendental s
tenpl ate <class T> conpl ex<T> acos (const conpl ex<T>& Xx);
Not es: The branch cuts are outside the interval [-1,1] along the real axis.
Returns: the conplex arc cosine of x, in the range of a strip
mat hemati cal |y unbounded al ong the imaginary axis and in the
interval [0,pi] along the real axis.
tenpl ate <class T> conpl ex<T> asin (const conpl ex<T>& Xx);
Not es: The branch cuts are outside the interval [-1,1] along the real axis.
Returns: the conplex arc sine of x, in the range of a strip
mat hemat i cal | y unbounded al ong the inaginary axis and in the
interval [-pi/2, pi/2] along the real axis.

tenpl ate <class T> conpl ex<T> atan (const conpl ex<T>& X);

Notes: The branch cuts are outside the interval [-i,i] along
the imaginary axis where i is img(x).

Returns: the conplex arc tangent of x, in the range of a strip

mat hemati cal | y unbounded al ong the inaginary axis and in the

interval [-pi/2, pi/2] along the real axis

tenpl ate <cl ass T> conpl ex<T> atan2 (const conpl ex<T>& x, const conpl ex<T>& y);
tenpl ate <class T> conpl ex<T> atan2 (const conpl ex<T>& x, T vy);

tenpl ate <class T> conpl ex<T> atan2 (T x, const conpl ex<T>& y);

Not es: The branch cuts are outside the interval [-1,1] along
the inmagi nary axis.

Returns: the conplex arc tangent of y/x, in the range of a strip
mat hemati cal | y unbounded al ong the inmaginary axis and in the
interval [-pi, pi] along the real axis

tenpl ate <class T> conpl ex<T> cos (const conpl ex<T>& X);

Returns: the conpl ex cosine of x.

tenpl ate <class T> conpl ex<T> cosh (const conpl ex<T>& Xx);
Returns: the conpl ex hyperbolic cosine of x.

tenpl ate <cl ass T> conpl ex<T> exp (const conpl ex<T>& Xx);

Returns: the conpl ex base e exponential of x.

tenpl ate <class T> conpl ex<T> | og (const conpl ex<T>& X);

Not es: The branch cuts are along the negative real axis.

Returns: the conplex natural (base e) logarithmof x, in the range of a strip
mat hemati cal | y unbounded al ong the real axis and in the

interval [-i*pi, i*pi] along the inmaginary axis where i is

i mag(x).

tenpl ate <class T> conpl ex<T> | 0g10 (const conpl ex<T>& x);

Not es: The branch cuts are along the negative real axis.

Returns: the common (base 10) | ogarithm of x.

tenpl ate <class T> conpl ex<T> pow (const conpl ex<T>& X, const conpl ex<T>& y);
tenpl ate <cl ass T> conpl ex<T> pow (const conpl ex<T>& x, T vy);
tenpl ate <class T> conpl ex<T> pow (T X, const conpl ex<T>& y);

Not es: The branch cut for x is along the negative real axis.
Returns: the conplex power of base x raised to the y-th power.
tenpl ate <class T> conpl ex<T> sin (const conpl ex<T>& X);

Returns: the conpl ex sine of x.

tenpl ate <class T> conpl ex<T> sinh (const conpl ex<T>& Xx);
Returns: the conplex hyperbolic sine of x.

tenpl ate <class T> conpl ex<T> sqrt (const conpl ex<T>& x);

Not es: The branch cuts are along the negative real axis.

Returns: the conplex square root of x, in the range of
the right half-plane.

tenpl ate <class T> conpl ex<T> tan (const conpl ex<T>& Xx);
Returns: the conplex tangent of x.

tenpl ate <class T> conpl ex<T> tanh (const conpl ex<T>& Xx);
Returns: the conpl ex hyperbolic tangent of x.

Requestor: ?? (public coment)

Onner : Judy Ward

Emails: (email reflector messages that discuss this issue)
Papers: (committee docunents that discuss this issue)

EE R R I R R I R R I R R I R I R R R R R I R R I R I R R R R I R S R R R R

Work G oup: Li brary
| ssue Nunber: 26/ 019
Title: Should typedefs be provided in conplex |ib?

Secti on: 26.2.7 Ad
St at us: active
Descri pti on:

Shoul d the conplex library provide typedefs for the

the specialization conpl ex<float>, conpl ex<doubl e>

and conpl ex<l ong double> (like the string library

provi des for basic_string<char> and basic_string<wchar _t>)?

Proposed Resol uti on:

Possi bl e names for these typedefs are fconplex, dconplex, |conplex
(or ldconplex) or float_conplex, double conplex, |double conplex
(or | ddoubl e_conpl ex).

Decl arations (such as typedef conplex<float> fconplex) would have to be
added to the bottom of the Conpl ex synopsis in Section 26.2 and after
each specialization in Section 26.2. 2.

Requestor: Tom Plum and ot hers

Ownner : Judy Ward

Emails: (email reflector messages that discuss this issue)
Papers: (committee docunents that discuss this issue)

ER R R R R R R R R R R R R R I R R R I R R O I R

Wor k G oup: Li brary
| ssue Nunber: 26/ 020
Title: order of argunment to val array constructors

Section: 26. 3 New
St at us: active
Descri ption:

- valarray constructors have (value, size_t num

normally in the library it is the other way round
(string, vector, etc.).

This should get fixed to be consistent.

Comment from Judy Ward:

val array has:

val array(const T& val,size t n) initializes n elenents of the array with va

val array(const T* ap,size_t n) initializes first n elements with corresponding e
|l enents in array pointed to by ap

basi c_string has:
basic_string(size_type n, charT c¢) // inconsistent with valarray
basi c_string(const charT,size_type) // consistent with val array

vect or has:
vector(size_type n,const T& value) // inconsistent with valarray

So | think only the first constructor needs changing for consistency.
This would nean in Section 26.3.1 and Section 26.3.1.1. change
val array(const T& size_t) to valarray(size_t,const T&)

Conmment for Daveed Vandevoorde <vandevod@s.r pi . edu>

| agree that it is sufficient (and don't care to nuch either way), but

I would find it unintuitive to have the size paraneter sonetinmes in the
second and sonetines in the first position; at least within valarray |
think it would be good to stay consistent (ny personal preference also
goes to size as the first argunent to keep the vector<T> convention).

Comment from Nicolai on Daveed' s mail:
NO, i disagree.
First, consistence is a big goal

Second, i would agree if the size paraneter woul d have the sane neani ng.
But is hasn’t. First it is "numtinmes of ..." second it it
"take ..., but only numelenents of it".

So it is OKto have different positions.
Proposed Resol uti on:

Change Section 26.3.1 and Section 26.3.1.1 change

val array(const T& size t) to valarray(size t,const T&)
In the description in Section 26.3.1.1 change "second"
to "first" and "first" to "second".

Requestor: Nicolai Josuttis

Owner : Judy Ward

Enails: (email reflector nmessages that discuss this issue)
Papers: (committee docunents that discuss this issue)

Rk b ok R Rk R R Rk O R SRk R Sk Rk R R O R SR Ik b S R A R

Work G oup: Li brary
| ssue Nunber: 26/ 021
Title: copy ctor declared for slice_array

Secti on: 26. 3 New
St at us: active
Descri ption:

- In 26.3.3 Slices have no copy constructor but in 26.3.3.1
they have. Wat’'s correct ?

Proposed Resol uti on:

On p. 17-7 it says "For the sake of exposition, Cause 18 through
27 do not describe copy constructors, assignnment operators, or
(non-virtual) destructors with the sanme apparent senmantics as
those that can be generated by default."

| think that is the situation here, so the declaration in 26.3.3.1
shoul d be renoved

Requestor: Nicolai Josuttis

Onner : Judy Ward

Emails: (email reflector messages that discuss this issue)
Papers: (committee docunents that discuss this issue)

EE R R I R I R I O R R I R R R R R R I R R I R I R R R R I R S R O R R

Work G oup: Li brary
| ssue Nunber: 26/ 022

Title: int should be size_t for element type of indirect_array
Secti on: 26. 3 New

St at us: active

Descri pti on:

- In 26.3.1.4 Index operator for indirect arrays has el enent type
size t, but in 26.3.8 it has int. Wiat's correct ?

Conmment for Daveed Vandevoorde <vandevod@s.r pi . edu>

This has proven to sonewhat of a problemin actual valarray code:
some al gorithnms expressed in terns of indirect access create negative
intermedi ate value (e.g.: a[p+q] = 0.0; // p, q can contain negative
val ues) requiring signed types (size_ t cann be unsigned). The current
wor karound requires a tenporary val array<size t> or not using the

i ndirect access nechani sm

My proposal would be to either use ints (probably too restrictive) or
val array<T>::index which would be required to be a signed integral type
with at | east the range of int.

Wuld it be acceptable to introduce a val array<T>::index_type typedef?
(or even make ‘int’ or ‘long int’ the index/stride type?)

Conment from Dave Dodgson:

Certainly we could do that, the question is to what do we set it?

Per haps we should nake this a tenplate paraneter (with a default of
int or long int). W would no |onger need to include <cstddef> if we
did this.

Proposed Resol uti on:

Section 26.3.1

Add:

/'l types:

typedef inplenentation_defined index_type;

Change:

T operator[](size_t) const;

T& operator[](size t);

val array<T> operator[](const val array<size t>&) const;

i ndirect_array<T> operator[](const val array<size_ t>&)

to:

T operator[](index_type) const;

T& operator[] (i ndex_type) const;

val array<T> operator[](const val array<i ndex_type>&) const;
i ndirect_array<T> operator[](const val array<i ndex_type>&)

Section 26.3.1.3 and 26.3.1. 4
change size t to index_type

Section 26.3.8

change:

i ndirect_array<T> val array<T>::operator[](const val array<int>&)

to:

i ndirect _array<T> val array<T>::operator[](const val array<i ndex_type>&)

Requestor: Nicolai Josuttis

Onner : Judy Ward

Emails: (email reflector messages that discuss this issue)
ct++std-1ib-4674

c++std-1ib-4675

c++std-1ib-4679

Papers: (committee docunents that discuss this issue)

Rk b ok R Rk R R Rk O R SRk R Sk Rk R R O R SR Ik b S R A R

Work G oup: Li brary
| ssue Nunber: 26/ 023
Title: should nmin/max be gl obal or menber functions?

Secti on: 26.3 New
St at us: active
Descri ption:

- In 26.3.1 nmin()/max() are menber functions, in 26.3.2.3 they are
gl obal . What's correct ?

Conment for Daveed Vandevoorde <vandevod@s.r pi . edu>

Note that there are two min's (and two nax’s): one returning the
smal l est elenent in an array and one taking two arrays and returning
an new array such that (mn(a, b))[i] == mn(a[i], b[i]). | suspect
Kent Budge intended the nmenber function to be the former and the
regular function to be the latter. Personally, | rather keep this
sort of function outside the class interface.

Resol uti on:

Add to Section 26.3.1.7:

T min() const;

Returns the snallest elenent in the array.
T max() const;

Returns the largest elenent in the array.

Section 26.3:

Change

tenplate <class T> T mi n(const val array<T>&)

tenpl ate <class T> T max(const val array<T>&)

to:

tenpl ate <class T> val array<T> mi n(const val array<T>&, const val array<T>&)
tenpl ate <class T> val array<T> max(const val array<T>&, const val array<T>&)

Change Section 26.3.2.3

Change:

tenpl ate <class T> T mi n(const val array<T>& a);

tenpl ate <class T> T max(const val array<T>& a);

to:

tenpl ate <class T> val array<T> mi n(const val array<T>& a, const val array<T>& b);
tenpl ate <class T> val array<T> max(const val array<T>& a, const val array<T>& b);

Copy the first paragraph into Section 26.3.1.7, since the same
rule applies to the nenber functions mn() and max().

change second paragraph to read:

The min() function returns an array such that
(min(a, b))[i] == mn(a[i], b[i]).
The max() function returns an array such that
(max(a, b))[i] == max(a[i], b[i]).

Renove the third paragraph or nove it to Section 26.3.1.7.

Requestor: Nicolai Josuttis

Owner : Judy Ward

Emails: (email reflector nmessages that discuss this issue)
Papers: (committee docunents that discuss this issue)

Rk S Sk b Sk S R O S O SRR R S kR Ik O O O R R o O

Wirk G oup: Li brary

| ssue Nunber: 26/ 024

Title: nmake valarray arithnetic operators nore general ?
Secti on: 26. 3 New

St at us: active

Descri ption:

- | see a problemif | do:
val array<doubl e> va
va *= 2;
As 2 is no double, no function is found because
all tenplates only have one type and tenpl ates have resticted
type conversions.
Wuldn't it nmake sense to use two tenplate types, one for
the elenents in the valarray and one for the el enents
i operate with, to let this work ?
Exanpl e:
tenpl ate <class T>
class valarray {

tenpl ate <class T2>

val array<T>& operator*= (const val array<T2>&)
tenpl ate <class T2>

val array<T>& operator*= (const T28&);

Jo

- One thing | mssed really:
va[slice(3,4,2)] *= 2;
shoul d be possi bl e.
O in general, for all subset types assignnment operators should be
overl oaded for one sinple value on the right side (as it is
for valarrays):
tenpl ate <class T>
class slice_array {

tenpl ate <class T2>
voi d operator*= (const val array<T2>&); [/ see above

tenpl ate <class T2>
voi d operator*= (const T28&); /1 NEW!!

.

Pr oposed Resol uti on:

Comment for Judy Ward:
I"mnot sure if it’s a good idea to |let users use arbitrary

types for arithnmetic operators .. for exanple would you
want the conpiler to let themadd a char* to an val array<i nt >?
Also | think it mght |lead to anmbiguities or wong behaviour, i.e.

val array<doubl e> vd;

slice_array<doubl e> si

vd += si
Currently the only choice is to:
use val array(slice_array) ctor to create a val array
apply void operator*=(const val array<T2>&) operator

Wth your proposal one coul d:
instantiate a void operator*=(const slicearray<doubl e>&)
operator*=

I"mnot positive if you would get an anbiguity error fromthe
conpiler or if it would choose the wong thing (the second one).

Conment for Daveed Vandevoorde <vandevod@s.r pi . edu>
I ndeed, the exanple that | showed (in pre-Tokyo discussions, | believe)
is:

val array<int> a;

val array<val array<i nt> > b;
11

b += a;

Is the latter a scalar assignment f a mixed-type vector-assignnent?

M xed-type operations really bring a lot of trouble (I tried to inplenent
them--- 1 think valarray<Troy> 1.x may still have that feature --- but
I found that it leads to extrene ness, e.g., when debuggi ng nunerical code).

Pr oposed Resol uti on:
Close this issue!

Requestor: Nicolai Josuttis

Owner : Judy Ward

Emails: (email reflector nmessages that discuss this issue)
Papers: (committee docunents that discuss this issue)

IR R RS R R R R R E R E R R E R E R EREEEEREEEREEREREEEREEREEEREEEREEEEREEREEEEREEEEEEEREEES

Work G oup: Li brary
| ssue Nunber: 26/ 025
Title: should STL-1ike semantics be added to val array?

Secti on: 26. 3 New
St at us: active
Descri ption:

- Perhaps it would be senseful to have as nuch contai ner support
as possible. At |east begin(), end() and push_back() and insert()
were VERY senseful for copying values into and out of a valarray
(push_back() for back_inserter).

Conmment for Daveed Vandevoorde <vandevod@s.r pi . edu>

begin() and end() are easy to specify (and | think they should indeed be
added and defined as &a[0] and &a[0] +a. si ze() respectively), but

valarray is specifically not_ a dynamic array. So | don't think operations
that inplicitly resize a valarray shoul d be incl uded.

Comment from N col ai

As Daveed wote, push_back() and insert() are a problem as

valarray is specifically _not_ a dynam c array.

The reason for the latter is to have an easy interface to create the arrays
i want to do nunerical stuff wth

At the nonment | see only the chance to use a T* array or to set

the val ues el enent by el enent.

But i think in practice reading sone values and do sonme nunerical operations
woul d be a normal usage.

O towite it in another form What’'s the best/normal way to prepare val arrays
for

nunerical operations ?

Pr oposed Resol uti on:
Section 26.3.1

Add:

Al'l ocator argunent to val array

Al'l ocator default arg to constructors

Il types

(look in section 21.1.13 -- add all the typedefs

fromsize_type to const_reverse_iterator)

Il iterators

iterator begin();

const _iterator begin() const;

iterator end();

const _iterator end() const;
reverse_iterator rbegin();

const _reverse_iterator rbegin() const;
reverse_iterator rend();

const _reverse_iterator rend() const;

Add new Section 26.3.1.7
copy section 21.1.1.5 (substituting valarray instead of basic_string)

Requestor: Nicolai Josuttis

Onner : Judy Ward

Emails: (email reflector messages that discuss this issue)
Papers: (committee docunents that discuss this issue)

EE R R I R R I R R I R R I R I R R R R R I R R I R I R R R R I R S R R R R

Work G oup: Li brary
| ssue Nunber: 26/ 026
Title: should sun() be a tenpl ate?

Secti on: 26. 3 New
St at us: active
Descri pti on:

- sun() should be a tenplate for function objects |ike accunul ate.
O it may be even unnecessary. If begin() and end() would exist,
you coul d use accunul ate() then
Comment for Daveed Vandevoorde <vandevod@s.rpi.edu>
The need for sum(...) is conmon enough to warrant its own function
However | agree (|l submitted this during the CDl public comrent period)
that a general ‘‘reduce(...)’’ function taking a functor would be nice.
I also think ‘“apply’’ should be nodified in this way.
Pr oposed Resol uti on:
Add these as val array non-nenber functions.
Add:
Section 26.3.2.5 valarray application functions
tenpl ate<class T, class F> T reduce(const val array<T> & a, const F& f);
F nust be a function object for which the binary function-call operator()(x,
is applicable when x and y are of type T. Let f(x, y) by denoted by
X @y, and a.size() == N Then:
reduce(a, f) == a[0] @a[l] @a[2] @... @a[N-1]
where the grouping is unspecified (i.e., this could be eval uated
left-to-right, right-to-left or by adding any valid set of
par ent heses) .

tenpl ate<cl ass T> T sun(const val array<T> & a);

The result of sum(a) is equal to reduce(a, std::plus). std::plus is
described in Section 20.3.2 [lib.arithnetic.operations].

tenpl ate<class T, class F> val array<T> appl y(const val array<T>& a, const F& f

y)

)E

F nust be a function object for which a unary function-call operator()(x)
exists and the function returns an array r such that r[i] == f(a[i]).

tenpl ate<class T, class F>
val array<T> appl y(const val array<T>& a, const val array<T>& b, const F& f);

F nust be a function object for which a binary function-call operator()(x,Y)
is applicable when x and y are of type T. The function returns an array r
such that r[i] == f(a[i], b[i]).

Requestor: Nicolai Josuttis

Owner : Judy Ward

Emails: (email reflector nmessages that discuss this issue)
Papers: (conmittee docunents that discuss this issue)

EIE IR R R I O I R O R R I R R R R R S R R R R I R I I R R R R R R O R

Wirk G oup: Li brary
| ssue Nunber: 26/ 027
Title: should gslices be changed/renoved?

Secti on: 26. 3 New
St at us: active
Descri pti on:

To: C++ libraries mailing list
Message c++std-1ib-4673

Hel | o,

Since Santa Cruz |’ve been inplenenting nost of the valarray functionality
and now | have general slices as well (though they’ re unacceptably
inefficient... but that's not the issue | would like to raise here).

Along with each valarray-feature, | also try to wite a snmall program
demonstrating a reasonable use for it. However, | could not find such
a use for general slices. The current WP nmentions that they are useful
for the inplenentation of *‘rmultidinmensional arrays’’, but | found it
far easier to inplenent those directly on top of val arrays.

Has anyone el se used gslices in any practical way?

| attribute the problenms | mention at least in part to the foll ow ng:
gslices are no valarrays and nore limted in functionality
gslices have no correspondi ng i ndexi ng schene
the ‘*nunber of dinmensions’’ of a gslice is a run-tine
quantity, which seriously their use (nmust synthesize |oca
val arrays)

Wt. the last point | wonder if this stands in the way of direct

compi |l er support?

Here are sonme of the solutions | can think of:
1) Do nothing: this is not harnful, but | expect no-one wll
seriously want to use gslices and they will thus
be a unnecessary burden to inpl enmentors.
2) Drop gslices: this is not harnful either unless sonmeone has
al ready planned a serious project that requires
t hem
3) Replace the gslice functionality by mnultidi nensional val arrays:
Al though | think multidinensional val arrays are what nany
really want, | don’t think anyone wants to work out a conplete
design in this round of standardization. However, | think a
careful approach will allow a future extension in this sense

| have a few nore valarray issues that | hope to bring up in the next
few weeks, but this one seened |like a good start ;-)

Daveed
Pr oposed Resol uti on:

Drop gslice and gslice_array -- Renove Sections
26.3.5 and 26.3.6

Renove functions that use gslice_array in valarray section
26.3.1 (i.e. do a search for "gslice" and renove everyt hi ng)

Request or: Daveed Vandevoorde

Owner : Judy Ward

Emails: (email reflector nmessages that discuss this issue)
Papers: (conmittee docunents that discuss this issue)

EIE IR R R I O I R O R R I R R R R R S R R R R I R I I R R R R R R O R

Wirk G oup: Li brary
| ssue Nunber: 26/ 028
Title: renane valarray::length() to valarray::size()

Secti on: 26. 3 New
St at us: active
Descri pti on:

| propose to renane:
size t length() const;
to:
size_t size() const;
to keep consistency with other container-1like things.
Proposed Resol uti on:

Search for all instances of "length" in Section 26.3
and change it to "size".

Request or: Daveed Vandevoorde

Onner : Judy Ward

Emails: (email reflector messages that discuss this issue)
Papers: (committee docunents that discuss this issue)

EE R R I R R I R I R I R R S R R R R R I R R I R I R R R R I R S R R R R

Work G oup: Li brary
| ssue Nunber: 26/ 029
Title: valarray::operator|| and val array: : operator &&

Secti on: 26. 3 New
St at us: active
Descri pti on:

Shoul d operator|| and operatoré&& really be overl oaded
for arrays? If yes, shouldn’'t the return-type be an array of bool ?

My proposal : drop operator|| and operator&& since the short-circuit
principle cannot be enulated for user-defined types.

Proposed Resol uti on:

Renove operator|| and operator&& from 26.3.2.1
OR change the return type to val array<bool >

Request or: Daveed Vandevoorde
Owner : Judy Ward

Emails: (email reflector nmessages that discuss this issue)
Papers: (conmmittee docunents that discuss this issue)

EIE IR R R I O I R O R R I R R R R R S R R R R I R I I R R R R R R O R

Work G oup: Li brary

| ssue Nunber: 26/ 030

Title: fix up what headers are included by conpl ex, val array, and nuneric
Secti on: 26.3 and 26.4 New

St at us: active

Descri pti on:

These headers do not specify what other C++ headers they nust include.
Pr oposed Resol uti on:

In the synopsis for conplex (26.2), add:
#i ncl ude <i osfwd>

In the synopsis for valarray(26.3), add:
#i ncl ude <cst ddef >

In the synopsis for nuneric (26.4) add:
#include <utility>

#i ncl ude <iterator>

Request or: Judy Ward

Owner : Judy Ward

Enails: (email reflector nmessages that discuss this issue)
Papers: (committee docunents that discuss this issue)

Rk b ok R Rk R R Rk O R SRk R Sk Rk R R O R SR Ik b S R A R

Work G oup: Li brary
| ssue Nunber: 26/ 031
Title: should valarray unary ops be non-nenbers?

Secti on: 26. 3 New
St at us: active
Descri ption:

I noticed that valarrays treat unary operators as nenber
functions, whereas conplex treats themas regul ar functions.

Proposed Resol uti on:

I think it is better to have them be regular functions since
normal conversions could be applied.

Renmove the unary operator declarations frominside the class
valarray in Section 26.3.1

Move Section 26.1.3.5 to Section 26.3.2 (possibly 26.3.2.17?)
repl acing the decls:

val array<T> operator+() const;
val array<T> operator-() const;
val array<T> operator~() const;
val array<T> operator! () const;

with:

tenpl ate <cl ass T> val array<T> operator +(const val array<T>& | hs) const;

tenpl ate <class T> val array<T> operator-(const val array<T>& | hs) const;

tenpl ate <class T> val array<T> operator~(const val array<T>& | hs) const;

tenpl ate <class T> val array<T> operator! (const val array<T>& | hs) const;

(this one night have to be changed to return val array<bool > see | ssue 26/ 032)

Request or: Daveed Vandevoorde

Owner : Judy Ward
Emails: (email reflector nmessages that discuss this issue)
Papers: (conmmittee docunents that discuss this issue)

Rk I S Sk b S S R O O R kO b O Rk S S o kR IR I O b Sk R O

Wirk G oup: Li brary

| ssue Nunber: 26/ 032

Title: Should valarray::operator! return val array<bool > not val array<T>?
Secti on: 26. 3 New

St at us: active

Descri ption:

Pr oposed resol ution:

Change return type of valarray::operator! in Section 26.3 to val array<bool >.
Request or: Daveed Vandevoorde

Owner : Judy Ward

Emails: (email reflector nmessages that discuss this issue)
Papers: (conmittee docunents that discuss this issue)

Rk I Sk Sk b S S I O O R kO b O R S S S kR R I I b S S I

ER R R R R R R R R R R R R R R R R R I R R R R

Wor k G oup: Li brary
| ssue Nunber: 26/ 033
Title: clarify definition of bool ean mask subset operator

Secti on: 26. 3 New
St at us: active
Descri ption:

Anot her val array issue. The ‘bool ean nmask subset operator’
(operator[] taking an array of bools) currently has a somewhat
bi zarre definition (depending on whether it is applied to a
const or to a non-const array). | suspect that what was really
aimed for was ‘assignnment nasking' (because sone architectures

i ndeed have hardware to nmask operations on a per el enent basis),
i.e. the current semantics when the operator is applied to a
non-const array.

Pr oposed resol ution:

To resolve and clarify this issue, | propose two neasures:

1) drop the const nenber-operator[](const val array<bool >&)

2) renane the non-const version to ‘nask(const val array<bool >&)
to enphasi ze the different character of this function
conpared to the subset-selectors

In Section 26.3.1 and Section 26.3.1.4 renove:

val array<T> operator[] (const val array<bool >& const;

mask_array<T> operator[](const val array<bool >& const;

Add to Section 26.3.1:
mask_array<T> mask(const val array<bool >&)

Add to Section 26.3.1.7:
mask_array<T> mask(const val array<bool >& v);

1 This function returns an object of type nmask_array<T> with reference
semantics to the *this array. The elenments of *this at positions

for which v[i] == false will be nmasked off when perform ng assignments
and conputed assignnents to the returned object.

2 The behavior is undefined if this->size() != v.size().

Request or: Daveed Vandevoorde

Owner : Judy Ward

Emails: (email reflector nmessages that discuss this issue)
Papers: (conmmittee docunents that discuss this issue)

Rk I Sk kb S S I O O R kO b O Rk S S o R R I S b S S

