Doc. No.: X3J16/ 96- 0098

W&E21/ N0916
Dat e: May 28, 1996
Proj ect: Progranmi ng Language C++
Reply To: J. Lawrence Podnolik
STR

podmol i K@t r. com

Cl ause 23 (Containers Library) Issues List
Revi sion 8

Revi sion History

Revision 1 - January 31, 1995. Distributed in pre-Austin mailing.

Revision 2 - March 2, 1995. Distributed at the Austin neeting.

Revision 3 - May 28, 1995. Distributed in pre-Mnterey nailing.
Not es: sonme di scussion was condensed or elided for closed
issues to keep the list to a reasonable size. Also, sone

compound issues were split into several separate issues
and sone problens with i ssue nunbering were corrected.

Revision 4 - July 11, 1995. Updated and distributed at the Mnterey

nmeeti ng.

I ncl udes several issues generated fromthe first round of
X3J16 public review coments, as well as issues resulting
fromeditorial boxes in the April 28, 1995 version of the WP

Revision 5 - July 31, 1995. Distributed in post-Mnterey nailing.
Updated to reflect issues closed at the Mnterey neeting,
Al so includes several new issues resulting fromthe X3J16
public review comments and from di scussi ons at Monterey.

Revision 6 - Cctober 29, 1995. Distributed at the Tokyo neeti ng.

I ncludes issues that remai ned open follow ng the Monterey
meeting, plus a significant nunber of new issues. For
brevity, this revision lists the full text only of ongoing
and new i ssues; issues closed up to and including the

Mont erey neeting are summari zed bel ow.

Not e: Wor ki ng Paper references in this revision are to the
pre-Tokyo draft dated 26 Septenber 1995.

Revision 7 - Novenmber 30, 1995. Distributed in the post-Tokyo nailing.
Updated to reflect issues closed at the Tokyo neeting. Also
i ncl udes new i ssues raised (but not addressed) at the Tokyo
nmeeting and any issues identified since that neeting.

Revision 8 - May 28, 1996. Distributed in the pre-Stockhol m mailing.

I ntroduction

This docunent is a summary of the issues identified in Oause 23. For
each issue the status, a short description, and pointers to relevant

refl ector nessages and papers are given. This evolving docunment will
serve as a basis of discussion and historical for Containers issues and
as a foundation of proposals for resolving specific issues.

Sunmary of Open |ssues

23-028 Clean up enpty sections in Cause 23
23-041 Possi bl e solutions for map::insert()

23-043 Fi x container anbiguities when T == size_type

23-044 I nconsistent insert() return types for assoc. containers
23-045 Renove <stdexcept> from <bitset> synopsis

23-046 Clean up bitset elenent access nethods

23-047 Clarify conplexity for deque::erase()

23-048 | mprove description of list::sort()

23-049 Clarify conplexity for vector::insert(p,i,j)

23-050 Add additional constructors to Container requirenents
23-051 Fi x description of list::unique()

23- 052 Fi x description of list::nmerge()

23-053 vect or <bool >:: const _reference shoul d be boo

23-054 Defi ne vector<bool >::reference:: operator==()

23-055 Fix return type of map::operator[]()

23-056 Renove const version of map::operator[]()

23- 057 Need semantics for associative containers

23-058 Fix reverse iterator typedef argunments

23-059 Wong reverse iterator type for associative containers
23-060 Fi x postcondition for (&)->~X() in requirements table
23-061 Reor gani ze Cl ause 23 sections

23-062 Renove() al gorithmdoesn’'t work on nmap/ nultimap

Sunmary of C osed |ssues

23-001 Add convenience functions to STL containers
23-002 Shoul d sonme STL menbers return an iterator?
23-003 Nonencl ature problens in STL cl asses

23-004 Shoul d STL cl asses have fixed conparator semantics?
23-005 Shoul d sone STL menbers return a size_type?
23-006 Nam ng inconsi stencies in bits<T>

23-007 Addi ng vector<bool >::flip that toggles all bits
23-008 Add a nested reference class to bits<T>

23-009 Add "default value" arg to nmap/multinmap constructors
23-010 Requirements for type T in tenplate containers
23-011 Bitset inserters/extractors need updating

23-012 Tenpl ati ze bits nenbers for basic_string

23-013 Return values fromlibrary class nenber functions
23-014 Add hash tables to standard library

23-015 Ref erence counted strings and begin()/end()
23-016 Addi ng constructors to nested reference types
23-017 Add clear() to all containers

23-018 Add additional pop() functions to containers
23-019 Make Al l ocator argunment in containers const refs
23-020 Change contai ner adapter interfaces

23-021 Modi fy conplexity of swap() due to allocators
23-022 Add typedef, menmber to retrieve allocator type
23-023 Specify container iterators as opaque types
23-024 Fi x copy constructors w.r.t. allocators

23-025 Renove bitset exposition inplenentation

23-026 Updat e vector<bool > with partial specialization
23-027 Make vector<bool > bit ref swap a static nenber
23-029 Fi x vector constructor signatures in description
23-030 Updat e descriptions of deque operations

23-031 Speci al i ze swap() algorithmfor containers
23-032 Non-const top() missing in priority queue?
23-033 Clean up resize() effects for deque, list and vector
23-034 Reverse iterator types for |ist

23-035 Correct argunent list to vector<bool >::insert
23-036 Need semantics for at() menber deque/vector
23-037 Semantics for a.back() in sequence requirements
23-038 Specify iterator properties for Causes 21 & 23
23-039 Reconsi der return type of erase(iterator)
23-040 Need typedefs for map/multimap T type

23-042 Fi x default container for priority_queue

| ssues

Work G oup: Li brary

| ssue Nunber: 23-028

Title: Clean up enpty sections in Cause 23
Secti ons: 23 (Containers library)

St at us: Active

Descri ption:

Cl ause 23 contains a |l arge nunber of enpty sections with

no text, especially in the descriptions of the associative
contai ners. These sections nust be reviewed in detail

Ei ther the appropriate text nust be added to these sections
or the sections should be del eted.

[Note: this problemapplies to other library clauses as well,
e.g. Cause 24 (lterators library).]

Proposed Resol uti on:

Di scussed in Mnterey but no action was taken. Discussed
again by the LWs in Tokyo.

Since nost of the enpty sections are sinply placehol ders,
they can be renoved easily after it is determned that they
serve no purpose.

Therefore, |eave the enpty sections intact for now.

Request or: Li brary Worki ng G oup

Omner :

Emai | s: (none)

Papers: (none)

Work G oup: Li brary

| ssue Nunber: 23-041

Title: Possi bl e solutions for map::insert()
Secti ons: 23 [li b. containers]

St at us: Active

Descri ption:

--> Nathan Myers writes in c++std-1ib-4239:

The problemwi th map<>::insert has been kicking around
on conp.std.c++ for sone tinme, and has conme up here as
well. The issue is that (given a map<> instance m and

a map insert iterator i) there is no concise way to
construct a value to pass:

minsert(pair<const int,string>(3,"hi"));
*i = pa|r<COnSt |nt,str|ng>(3, nhi n);

make _pair<>(), whatever its nerits, is little help.

The problemis twofold: first, because the required "const"
cannot be deduced, the full type nust be specified in the
call -- this repetition of type names is a general nuisance;
second, type deduction may deduce the wong type anyway.

Any solution offered shoul d sol ve bot h.

One approach to the problem woul d be to provide
a tenplate converting constructor for pair<>:

tenpl ate <class T1, class T2>
struct pair {

tenplate <class U, class V>

pair(const pair<yU, V>& p) : first(p.first), second(p.second) {}
i

One could then rewite the above exanpl e as

m i nsert (make_pair(3,"hi"));
*i = make_pair(3,"hi");

relying on the inplicit conversion (e.g.)
pai r<int, char*> --> pair<const int,string>

A nore conservative solution would be to provide a static
menmber function of map<>:

static value_type
val ue(const K& k, const T& t) { return pair<const K T>(k,t); }

One could then rewite the above exanple as

minsert(mvalue(3,"hi"));
*i = mvalue(3,"hi");

I woul d consider either of these a satisfactory solution
--> Sean Corfield replied in c++std-1ib-4241:

O the two solutions, | suspect the converting constructor
will be nore useful: it will help people using pair<>in
non-map code (and | have been bitten by this).

For the nmap-specific solution, what about a two-argunent
version of ’'insert’ that sinply constructs the correct

pai r<> type and i nvokes the one-argunent version?

Sonet hing |ike:

insert(const Tt, Uu
{ return insert(pair<const T, U>(t, u)); }

[1"d be quite happy with the static nenber value() -- this is
just another possible alternative]

Pr oposed Resol uti on:

Di scussed by the LW5 in Tokyo. No clear consensus was

reached. The LWG preferred addi ng a two-argunment overl oad
for insert(), but unfortunately this creates anbiguities
with the existing tenplate version of insert() that takes
two Iterator arguments.

Request or: Nat han Myers (myersn@ oguewave. com

Omner :

Emai | s: c++std-1ib-4239, c++std-1ib-4241

Papers: (none)

Work G oup: Li brary

| ssue Nunber: 23-043

Title: Fi x container anmbiguities when T == size_type
Secti ons: 23 [lib. containers]

St at us: Active

Descri ption:

Various types of calls to constructors & nenber functions
are anbi guous for the case that the el enent of the container
is a size_type: as long as C++ does not have constraints,
the tenplates on Inputlterator may conflict with the

si ze/ val ue net hods.

A note should be added to explain how to disanbi guate the
constructors (do not default the allocator argument). A
solution (possibly involving a defaultable dumy argunent ?)
shoul d be found for assign() and insert().

Pr oposed Resol ution:

Request or: German del egati on comrent s

Owner :

Emai | s: c++std-edit-579

Papers: (none)

Work G oup: Li brary

| ssue Nunber: 23-044

Title: Inconsistent insert() return types for assoc. containers
Secti ons: 23.1.2 [lib.associative. reqgnts]

St at us: Active

Descri pti on:

The table in 23.1.2 [lib.associative.reqnts] gives the
foll owi ng signatures:

pair<iterator, bool> a_unig.insert(t);
iterator a_eq.insert(t);
iterator a.insert(p,t);

Wiy is the case with the extra "hint" paraneter p treated
differently? In other words, in the latter case when
inserting into a container with uni que keys, there is no
way to determine if an insertion actually takes place.

Pr oposed Resol ution:
Request or: German del egati on comrent s

Oomner:
Emai | s: c++std-edit-579

Wor k G oup: Li brary

| ssue Nunber: 23-045

Title: Renove <stdexcept> from <bitset> synopsis
Secti ons: 23.2 [lib.sequences]

St at us: Active

Descri pti on:

Renove the header <stdexcept> fromthe <bitset> header
synopsis. It is not needed.

Pr oposed Resol uti on:

Request or: Ger man del egati on conments

Omner :

Emai | s: c++std-edit-579

Papers: (none)

Work G oup: Li brary

| ssue Nunber: 23- 046

Title: Clean up bitset elenent access nethods

Secti ons: 23.2.1 [lib.tenplate.bitset],
23.2.1.2 [lib. bitset. menbers]
23.2.1.3 [lib.bitset. operators]

St at us: Active

Descri ption:

Make the follow ng changes to class bitset:

0 Add a const version of operator[](size_t) that
returns bool

0 Add bot h const and non-const versions of at()
to provide checked access (as is done for the
other containers in clause 23).

0 Provi de semantics for operator[] and at() in
23.2.1.2 [lib.bitset. menbers] and
23.2.1.3 [lib.bitset.operators].

Proposed Resol uti on:

Request or: German del egati on comments

Owner :

Emai | s: ct++std-edit-579

Papers: (none)

Work G oup: Li brary

| ssue Nunber: 23-047

Title: Clarify conplexity for deque::erase()
Secti ons: 23.2.2.6 [lib.deque. nodifiers]

St at us: Active

Descri ption:

The conmpl exity given for erase should be labelled as a worst
case conplexity.

Pr oposed Resol uti on:

Request or:
Oaner :
Email s:
Paper s:

Wor k G oup:

| ssue Nunber:
Title:

Secti ons:

St at us:

Descri pti on:

German del egati on conmments

c++std-edit-579
(none)

Li brary

23- 048

| mprove description of list::sort()
23.2.3.7 [lib.list.ops]

Active

Need a nore precise specification of the semantics for the
list sort() functions.

Not e:

refer to 25.3 [lib.alg.sorting.] for possible wording
to use.

Proposed Resol uti on:

Request or:
Omner :
Emai | s:
Paper s:

Wor k G oup:

| ssue Nunber:
Title:
Sections:

St at us:

Descri pti on:

German del egation comments

c++std-edit-579
(none)

Li brary

23- 049

Clarify conplexity for vector::insert(p,i,j)
23.2.5.6 [lib.vector.nodifiers]

Active

The proni se about the conplexity if insert(p,i,j) is not
compatible with the | ast sentence of the associated footnote.
Change that |ast sentence to allow for copying the el enents
of the range before insertion

In X3J16/95-0195 = W&E21/ NO795, P.J.

Pl auger adds:

The vector::insert tenplate cannot neet the stated
complexity requirenents (originally intended for a
random access_iterator) when the tenplate class paraneter

Inputlterator is truly an input_iterator
carefull y rethought.

They need to be
(See 23.2.5.2 for the handling of

vector::vector tenplate.)

Pr oposed Resol ution:

Request or:
Oaner :
Email s:
Paper s:

Work G oup:

| ssue Nunber:

German del egati on comments

c++std-edit-579
X3J16/95-0195 = W&E21/ NO795

Li brary
23- 050

Title: Add additional constructors to Container requirenents

Secti ons: 23.1 [lib.container.requirenents]
St at us: Active
Descri pti on:

In section 23.1 [lib.container.requirenents], the Container
requirenents table should also Iist the required constructors
X(al) and X(a, al), for al an object of type Allocator

Pr oposed Resol uti on:

Request or: P. J. Pl auger

Oaner :

Enai | s: (none)

Papers: X3J16/95-0195 = W&E21/ NO795

Work G oup: Li brary

| ssue Nunber: 23- 051

Title: Fi x description of list::unique()
Secti ons: 23.2.3.7 [lib.list.ops]

St at us: Active

Descri ption:

The Effects section for list::unique() doesn’t say what
happens with binary_pred in the tenplate form Should say
that the predicate for renmoval is either operator= or

bi nary_pred

Al so, list::unique() does not apply the binary predicate
‘‘Exactly size() - 1'" tinmes if size() is zero. Should
qualify the statement for non-enpty lists only.

Proposed Resol uti on:

Request or: P. J. Plauger

Owner :

Emai | s: (none)

Paper s: X3J16/95- 0195 = W1/ NO795

Wor k G oup: Li brary

| ssue Nunber: 23- 052

Title: Fi x description of list::merge()
Secti ons: 23.2.3.7 [lib.list.ops]

St at us: Active

Descri pti on:

list::merge doesn’t state the ordering criteria for either
version of the two functions, at |east not with sufficient
conpl et eness.

Pr oposed Resol uti on:

Request or: P. J. Pl auger
Owner :
Enai | s: (none)

Papers: X3J16/95- 0195 = W&E21/ NO795

Wirk G oup: Li brary
| ssue Nunber: 23- 053

Title: vect or <bool >: : const _reference should be bool
Secti ons: 23.2.6 [lib.vector. bool]

St at us: Active

Descri ption:

The definition for vector<bool, allocator>::const_reference
shoul d be bool, not const reference.

Proposed Resol uti on:

Request or: P. J. Plauger

Owner :

Emai | s: (none)

Paper s: X3J16/95- 0195 = W1/ NO795

Work G oup: Li brary

| ssue Nunber: 23- 054

Title: Defi ne vect or<bool >: :ref erence: : operat or==()
Secti ons: 23.2.6 [lib.vector. bool]

St at us: Active

Descri ption:

vect or<bool >: : ref erence shoul d defi ne operat or=(const
reference& x) as returning ‘‘*this = bool(x)’’. The default
assi gnnent operator is not adequate for this class.

Pr oposed Resol uti on:

Request or: P. J. Plauger

Omner :

Emai | s: (none)

Papers: X3J16/95- 0195 = W&E21/ NO795

Work G oup: Li brary

| ssue Nunber: 23-055

Title: Fix return type of map::operator[]()
Secti ons: 23.3.1 [lib. map]

St at us: Active

Descri ption:

The return type of nmap::operator[] should be
Al l ocator::types<T>.reference, not T&

Proposed Resol uti on:

Request or: P. J. Pl auger

Oaner :

Enai | s: (none)

Papers: X3J16/95-0195 = W&E21/ NO795

Work G oup: Li brary

| ssue Nunber: 23- 056

Title: Renove const version of map::operator[]()
Secti ons: 23.3.1 [lib. map]

St at us: Active

Descri ption:

map: : operator[] (const key type& const is an unapproved (and
nonsensical) addition. It should be struck

Proposed Resol uti on:

Request or: P. J. Plauger

Omner :

Emai | s: (none)

Paper s: X3J16/95- 0195 = W&E21/ NO795

Wor k G oup: Li brary

| ssue Nunber: 23- 057

Title: Need semantics for associative containers
Secti ons: 23.3.1.1 [lib.map.types] and ot hers

St at us: Active

Descri pti on:

Miuch of the description of tenplate classes map, nultimap,
set, and nultiset have no semantics. These nust be
suppl i ed.

Pr oposed Resol uti on:

Request or: P. J. Pl auger

Omner :

Enai | s: (none)

Papers: X3J16/95- 0195 = W&E21/ NO795

Wirk G oup: Li brary

| ssue Nunber: 23- 058

Title: Fix reverse iterator typedef argunents
Secti ons: 23.2.2 [lib.deque], 23.2.3 [lib.list]

23.2.5 [lib.vector], 23.2.6 [lib.vector.bool],
23.3.1 [lib.map], 23.3.2 [lib.multimp],
23.3.3 [lib.set], 23.3.4 [lib.multiset]

St at us: Active

Descri pti on:

The following reverse iterator typedefs are incorrect:

deque: :reverse_iterator 23.2.2 [lib. deque]
list::reverse_bidirectional _iterator 23.2.3 [lib.list]
vector::reverse_ iterator 23.2.5 [lib.vector]

vect or <bool >: :reverse_iterator 23.2.6 [lib.vector. bool]
map: :reverse_iterator 23.3.1 [lib. map]

mul timap: :reverse_iterator 23.3.2 [lib.nmultimap]
set::reverse_iterator 23.3.3 [lib.set]

mul tiset::reverse_ iterator 23.3.4 [lib.nmultiset]

In each case, the typedefs only specify four tenplate
argunents, e.g.

typedef reverse iterator<iterator, value_type
const _reference, difference type> reverse_iterator

However, the definitions of reverse_iterator and
reverse_bidirectional _iterator require *five* tenplate

argunents. Each of the above typedefs is missing a
"pointer" tenplate argunent in the fourth position
after the reference argunment but before the difference

t ype.

Each typedefs should be witten to read:

typedef reverse iterator<iterator, value_type
reference, pointer, difference type> reverse_iterator

A complicating factor is that none of the containers in
Clause 23 currently have a "pointer" typedef. Such a
typedef nust be introduced for each container, e.g.
typedef typename Allocator::types<T>::pointer poi nt er

Proposed Resol uti on:

Request or: Larry Podnolik (podmolik@tr.com

Oaner :

Enai | s: (none)

Papers: (none)

Work G oup: Li brary

| ssue Nunber: 23- 059

Title: Wong reverse iterator type for associative containers

Secti ons: 23.3.1 [lib.map], 23.3.2 [lib.multinmp],
23.3.3 [lib.set], 23.3.4 [lib.multiset]

St at us: Active

Descri ption:

Each of the associative containers (map, multimp, set
and nultiset) supports only bidirectional iterators, but
their reverse_ iterator typedefs currently use the regul ar
reverse_iterator adapter, which requires random access
iterators. These typedefs should be specified using
reverse_bidirectional _iterator instead.

Note: this issue is identical to issue 23-034, which dealt
with list only. It was an oversight not to make the sane
fixes to the associ ative contai ners.

Pr oposed Resol uti on:

Request or: Larry Podnolik (podmolik@tr.com

Omner :

Enai | s: (none)

Papers: (none)

Wirk G oup: Li brary

| ssue Nunber: 23- 060

Title: Fi x postcondition for (&)->~X() in requirenents table
Secti ons: 23.1 [lib.container.requirenents]

St at us: Active

Descri ption:

In the Container requirenents table, the postcondition for
the expression (&)->~X() refers to a.size(). This doesn't
make any sense, as the destructor call deletes the container
obj ect.

Pr oposed Resol uti on:

Request or: German del egati on comrent s
Owner :

Emai | s: c++std-edit-579

Papers: (none)

Wor k G oup: Li brary

| ssue Nunber: 23-061

Title: Reor gani ze Cl ause 23 sections
Secti ons: 23 [lib. contai ners]

St at us: Active

Descri pti on:

The current overall structure of O ause 23 needs some worKk.
In particular, bitset is not a Sequence (in the STL sense)
and shuld be noved to its own section. Al so, the container
adapters belong in a separate section for the sane reason
(they are currently stuck in between list and vector).

| suggest the follow ng organi zation for C ause 23:

I ntroduction

Fi xed-si ze contai ners
<bi t set >

Vari abl e-si ze contai ners
Requi renment s

Sequences
<deque>
<list>
<vect or >
Associ ati ve Contai ners
<nﬂp>
<set >
Cont ai ner adapters
<gqueue>
<st ack>
Proposed Resol uti on:
Request or: Larry Podnolik (podnolik@tr.com
Omner :
Emai | s: (none)
Papers: (none)
Wor k G oup: Li brary
| ssue Nunber: 23-062
Title: Renmove() al gorithm doesn’t work on map/ nul timap
Secti ons: 23 [lib. contai ners]
St at us: Active
Descri pti on:

The renove() algorithmdoesn't work on map or rmul ti map.
Al t hough renove() is specified to require only forward
iterators, and nap supports bidirectional iterators,
the HP inplenentation required that the val ue_type of
the collection be assignable. Mp::value type is a
typedef for a pair<const Key, value> therefore the
compi | er cannot generate asignnent to the first nenber.

John Skal l er responds in c++std-1|ib-4305:

>|f the algorithmrequires iterators with an nutabl e/
>assi gnabl e val ue type, then this can sinply be added to the
>requirements of the algorithm's) affected. Al nobst ALL other

>algorithms are affected -- for exanple you can’'t sort a
>constant container, the iterators need to have nutabl e val ue
>t ypes.

Skal l er further suggests that the iterator tags should be
rel ated by an inheritance structure.

Angel ica Langer sums up in c++std-1ib-4312

We think there are two separate issues here:

The one is relating the iterator tags by neans of

i nheritance in order to prevent code duplication

The other is to add new tags to express the difference
bet ween constant and nutable iterators.

Pr oposed Resol uti on:

Request or: Angel i ka Langer (| anger @ oguewave. com
Owner :
Emai | s: c++std-1ib-4305, c++std-1ib-4308,

c++std-1ib-4312, c++std-1ib-4314
Papers: (none)

