Doc. no.: X3J16/ 96- 0089R1

W&E21/ N0O907R1
Dat e: 6 July 1996
Proj ect: Pr ogramm ng Language C++
Reply to: Beman Dawes

beman@awes. wi n. net

Clause 17 (Library Introduction) |Issues List - Version 7

Hi story:
Initial: Distributed at the start of the Tokyo neeting
Version 2: Distributed during the Tokyo neeting.
Version 3: Distributed in the post-Tokyo nailing. Reflects votes
taken in Tokyo and issues added by the LWG sub-group
Version 4: Distributed in the pre-Santa Cruz nmiling.
Version 5: Distributed at the Santa Cruz neeting. Reflects resolution
changes by the working group.
Version 6: Distributed in the pre-Stockholmmailing. Reflects votes
taken in Santa Cruz and new i ssues added.
Version 7: Distributed at the Stockhol mmeeting. Reflects new issues
and resol ution changes by the working group
ot m e o e mm e mmeem e >
Work G oup: Li brary d ause 17
| ssue Number: 17-001
Title: Header | nclusion Policy
Sect i on: 17.3.4.1 [lib.res.on. headers]
St at us: Open
Descri pti on:

The (original) header inclusion policy of allow ng any C++ header to include
any other C++ header creates portability problens for users. For exanple, the
following nmight conpile correctly with sonme inplenmentations and fail with

ot hers:

#include <string> // progranmer neant to wite <iostreanr
usi ng nanespace std;
int main() {

cout << "Hello, C++ Wrld" << endl;

return O;

}

The (current) header inclusion policy of specifying exactly which C++ headers
i ncl ude whi ch other C++ headers causes difficulty for inplenentors. The worst
case i s when one header requires reference to another but the other is not
specified as included. Another troubl esome case occurs when the

i mpl ementati on of one header (like <conplex>) could benefit fromaccess to
sonet hing in another header (like tenplate nunmeric_limts in <linmts>)

The LWG has di scussed these problens at |ength, and expl ored several
alternatives including inplenmentor’s nanespaces (rejected because they don’t
all ow tenpl ate specializations by users). The approach discussed in Santa
Cruz is to:

-- Put nore effort into correcting the synopsis lists of required
header #includes. Sensible inclusion mnimzes both inplenentor’s and
user’'s probl ens.

-- Continue to require inclusion of headers listed in synopsis, but

al so all ow inclusion of names from other headers. This allows a user
to wite portable prograns (by only relying on names fromthe required
headers), allows automatic diagnosis of non-portable prograns, and yet
al so gives inplenentor’s access to nanes they want and need.

Resol uti on

96-0089R1 1 NO907R1

Change t he Working Paper as foll ows:

e Add a new first paragraph to 17.3.4.1 [lib.res.on. headers]:

A C++ header may include other C++ headers.

e Delete the bullet itemin 17.3.4.2 [lib.res.on.nmacro.definitions]
whi ch begi ns:

The C++ headers listed in Table 21, C++ Library Headers, shall include
the header(s) listed in their respective Synopsis subclause...

» Delete the #include’s from the respective Synopsis subclauses.

» Delete the editorial box from 17.3.4.1 [lib.res.on.headers].

Requestor: Beman Dawes
Owner:
Emails:
Papers:

< >

Work Group: Library Clause 17

Issue Number: 17-016

Title: Remove C names from namespace std
Section: 17.3.1.2 [lib.headers]

Status: Open

Description:

Placing the C library in namespace std causes difficulty for some
library implementors.

Resolution:
Change the Working Paper as follows:

In 17.3.1.2 [lib.headers], table 22, C++ Headers for C Library
Functions, delete leading “c” from header names and append “.h” to
header names.

In 17.3.1.2 [lib.headers], replace paragraph 4 with:

Except as noted in Clauses _ lib.language.support_
through _lib.input.output_, the contents of each C++ header for the
C library facility shall be the same as that of the corresponding
header name.h, as specified in ISO C (Clause 7), or Amendment 1,
(Clause 7), as appropriate.

In 17.3.1.2 [lib.headers], delete paragraph 5.
In Annex D, delete section D.4 [depr.c.headers]

Requestor: Cathy Kimmel Joly

Owner:

Emails: Library reflector messages 4598, 4599, 4600, 4601, 4602, 4603,
4604, 4605, 4606, 4607, 4608, 4609, 4610, 4611, 4614, 4615, 4618,
4619, 4620, 4621, 4622, 4623, 4624, 4625, 4626, 4628, 4630, 4632,
4633, 4634, 4635, 4636, 4638, 4639, 4640, 4641, 4643, 4645, 4646,
4647, 4650, 4651, 4652, 4653, 4654, 4655, 4656, 4662, 4663, 4664,
4666, 4676, 4689, 4690

Papers:

96-0089R1 2 NO907R1

Work G oup: Li brary C ause 17
| ssue Number: 17-017

Title: Clarification of library derivation
Secti on: 17.3.4.7 [lib.derivation]

St at us: Open

Descri ption:

The current WP only allows a C++ Standard Library class to be derived
fromanother class only if it is a base class. This overly constrains
i mpl enent ors.

The “as if” rule does not allow such derivation because it can be
detected (see lib-4536).

Resolution:

Change the Working Paper section 17.3.4.7 [lib.derivation] as follows:

Add a new first paragraph:

Delete

It is unspecified whether a class in the C++ Standard Library is itself
derived from other classes (with names reserved to the implementation).

the first bullet item which reads:
It is unspecified whether a class in the C++ Standard Library as a base

class is itself derived from other base classes (with names reserved to
the implementation).

Requestor: John Max Skaller

Owner:
Emails:
Papers:

Library reflector messages 4529, 4530, 4532, 4534, 4536, 4538

<

Work Group: Library Clause 17
Issue Number: 17-018

Title: Clarification of C function-like macros
Section: 17.3.1.2 [lib.headers]

Status: Open

Description:

The current WP's description of C headers is unclear as to the treatment of

macros.

The current wording of 17.3.1.2 paragraph 4 is:

Except as noted in Clauses 18 through 27, the contents of each header
cname shall be the same as that of the corresponding header name.h, as
specified in ISO C (Clause 7), or Amendment 1, (Clause 7), as
appropriate. In this C++ Standard library, however, the declarations

and definitions are within namespace scope _ basic.scope.namespace_ of
the namespace std.

Resolution:

Replace 17.3.1.2 paragraph 4 of the Working Paper with:

Except as noted in Clauses 18 through 27, the contents of each header
cname shall be the same as that of the corresponding header name.h, as
specified in ISO/IEC 9899:1990 Programming Languages C (Clause 7) , or
ISO/IEC:1990 Programming Languages — C AMENDMENT 1: C Integrity ,
(Clause 4), as appropriate, as if by inclusion. In the C++ Standard

library, however, the declarations and definitions (except for names

96-0089R1 3 NO907R1

which are defined as macros in C) are within nanespace scope
(_basi c. scope. nanespace_) of the namespace std.

Narmes which are defined as macros in C shall be defined as macros in
the C++ Standard library, even if license is granted in C for

i mpl enentation as functions. [Note: the nanmes defined as macros in C
include the follow ng: assert, offsetof, va_start, va_arg and errno,
setjnp and va_end.]

Nanmes whi ch are defined as functions in C shall be defined as functions
in the C++ Standard library. [Note: This disallows the practice,
allowed in C, of providing a "masking macro" in addition to the
function prototype. The only way to achi eve equival ent "inline"
behavior in C++ is to provide a definition as an extern inline
function.]

In 17.3.4.2 [lib.res.on. macro.definitions] renmove the footnote regarding C
"maski ng macros."

Request or : Thomas Pl um

Omner : Thonmas Pl um

Emai | s: i b-4688

Paper s:

o e m e o em e mm e >
Work G oup: Li brary d ause 17

| ssue Number: 17-019

Title: C++ headers with .h forns
Sect i on: (Annex D) D.4 [depr.c. headers]
St at us: Open

Descri pti on:

[from|ib-4548]

| have been | ooking at issue 17-007 of the C ause 17 Issues |ist which was
accepted into the WP at the Santa Cruz neeting. This issue added fstream h,

i omani p.h, iostreamh and new.h to the list of C++ .h headers provided by the
library so that existing prograns will continue to work and do approxi mately
the sane things. The intent is for each of the above mentioned headers to

i ncl ude the correspondi ng C++ Standard version of the header followed by the
usi ng decl aration for each synbol in the header.

This will not really provide a conpatible solution. Unlike the .h versions of
the C headers provided for conpatibility the above nentioned headers have
not been previously defined in a standard way. This nmeans that the content of
each of these headers will vary at |east subtly in each existing

i mpl ementation. Since the contents of the .h headers are non-Standard it is
also difficult to determ ne how different their contents are fromthe existing
C++ versions of the headers. For exanple <fstreanr, <iomani p> and <iostreanp
are now tenplatized. |In <new> the default declaration of new() throws an
exception whereas the declaration in nost existing versions of new h would
not .

It seens likely that providing C++ Standard versions of fstreamh, iomanip.h,
iostreamh and new.h opens the door to lots of conpatibility problens. The
i ncl uder of the .h headers may reasonably expect their "ol d" inplenentation
defi ned behavior not the C++ Standard one. It will also make it nore
difficult for library vendors to provide a conpletely backward conpatibl e
header file solution.

Resol uti on:

D. 4 paragraph 4 currently reads:

The C++ headers

96-0089R1 4 NO907R1

<fstream h>
<i omani p. h>
<i ostream h>
<new. h>

* & o o

are simlarly avail abl e.
Option 1:

Change “are similarly available” to “are also supplied. The contents
are implementation defined.”

Option 2:

Delete D.4 paragraph 4 entirely.
Requestor: Sandra Whitman
Owner:
Emails: lib-4548, 4556, 4557, 4561
Papers:

< >

Work Group: Library Clause 17

Issue Number: 17-020

Title: Clarification of exceptions thrown by library
Section: 17.3.4.8 [lib.res.on.exception.handling]
Status: Open

Description:
In private email, Jonathan Schilling wrote:

>| looked at the complex class, which is completely silent
>on error handling (other than for the 1/O operators). Does this mean

>that

>

> there are no error conditions, or

>

> error conditions result in undefined behavior, or

>

> errors are reported using the C math library method, or

>

> errors will result in (predefined?) exceptions being thrown

Beman Dawes comments:

I think we want to give considerable flexibility to implementors. We
would, however, like to encourage the reporting of errors by throwing
exceptions, and encourage that those exceptions are from (or derived
from) the standard exception classes.

Resolution:
Change the Working Paper 17.3.4.8 [lib.res.on.exception.handling] from:
Any of the functions defined in the C++ Standard library that do not
have an exception-specification may throw any exception. An

implementation may strengthen this implicit exception-specification by
adding an explicit one.

To:
Any of the functions defined in the C++ Standard library that do not
have an exception-specification may throw implementation-defined
96-0089R1 5

NO907R1

exceptions.

An inplenentation may strengthen this inplicit exception-

speci fication by adding an explicit one.

Add a footnote:

Li brary inpl enentations are encouraged (but not required) to report
errors by throw ng exceptions from (or derived from the standard
exception classes ([lib.bad.alloc], [|ib.support.exception],
[lib.std. exceptions]).

Request or: Jonathan Schilling
Omner :
Emai | s:
Papers:
o e m e ot e mm e >
Di sposi tions:
17- 002 Extendi ng nanespace std.
Closed in Tokyo by accepting the proposed resol ution.
17-003 Viol ati on of Requires preconditions.
Closed in Tokyo by accepting the proposed resol ution.
14- 004 Shoul d nanespace std be subdi vi ded?
Closed in Santa Cruz without taking any action.
17-005 What does “extending namespace std” mean?
Closed in Santa Cruz by accepting the proposed resolution.
17-006 Action when program extends namespace std.
Closed in Santa Cruz by accepting the proposed resolution.
17-007 Which C++ headers have .h forms?
Closed in Santa Cruz by accepting the proposed resolution.
17-008 Relational operator templates.
Closed in Santa Cruz by accepting the proposed resolution.
17-009 Separate Library from Core Language in Document.
Closed in Santa Cruz without taking any action.
17-010 Too Many Classes and Features in Standard Library.
Closed in Santa Cruz without taking any action.
17-011 Library Defined in Terms of Templates.
Closed in Santa Cruz without taking any action.
17-012 Decouple Libraries.
Closed in Santa Cruz without taking any action.
17-013 How will users access non-ISO C symbols using C++ headers?
Closed in Santa Cruz by accepting the proposed resolution’s
sections 1 and 4 only.
17-014 Requirements on compare functions.
Closed in Santa Cruz by accepting the proposed resolution.
17-015 Restrictions on macro definitions clarification.
Closed in Santa Cruz by accepting the proposed resolution.
96-0089R1 6 NO0907R1

