X3J16/ 96- 0088R1 W&21/ W906

A Proposed New Tenpl ate Conpil ati on Model (rev 12a)

John W1 ki nson, JimDehnert, and Matt Austern
Silicon Gaphics, Inc.

Bj arne Stroustrup and Andrew Koenig
AT&T Laboratories

Wth substantial contributions from

John Spi cer
Edi son Design G oup

1.

.1

I nt roducti on

We present a proposal for a new nodel of tenplate conpilation

We believe this nodel is an inprovenent on both of the existing
nmodel s, i.e. the "separation" nodel of the WP, and the "incl usion"
nmodel of many of today’s inplenmentations. The key to this inprovenent
is sinpler, better-defined, and | ess context-dependent nane | ookup

rul es.

The proposal sinplifies producing an efficient inplenmentation

of separate conpilation, because the new nane | ookup rules restrict the
anount of tenplate definition context which nmust be retained and mnerged
for later instantiation, and allow context-insensitive | ookup of nanes
fromthe instantiation context. At the sane tinme, we expect the new
nane | ookup rules to alleviate the nane | eakage fromthe definition
context into instantiations that is a problemw th current inclusion

i mpl ement ati ons, without preventing a conpile-tinme inplenentation
nearly as efficient as current full-inclusion inplenentations.

Finally, we believe that true separate conpilation, in which object
nodul es can be conbi ned wi thout access to source, is also practica

with the new nodel

The significant changes fromthe previous revision (7, in the Stockhol m
mai ling) are sunmmarized at the end of this nmessage.

Concepts and Term nol ogy

This subsection is intended as a conceptual framework for the
proposal, not as part of the proposal

Atenplate 'tnp’ is defined in sone translation unit. W refer to
the full set of declarations visible at the point where tnp is
defined as the "definition context" of tnp.

We refer to the full set of declarations visible at the point of
instantiation of a tenplate as its "instantiation context." See
Section 3.1 for a definition of the point of instantiation

Wien a tenplate tnpl, instantiated in a function f, instantiates
anot her tenplate tnp2, there are sonetines definitions in the
definition context of tnmpl that a programer may want to make
available to tnp2. W regard this as a rare case, and provide
special syntax for it. W call this situation (instantiation of
tnmp2 by a tenplate tnpl) an "indirect instantiation," and we cal
the special set of declarations which tnpl furnishes to tnp2 an
"internedi ate context."

The primary focus of this proposal is on specifying

whi ch declarations, fromthe various contexts involved, may be
used to resolve functions and operators invoked in the body of
the tenplate definition. W classify the nanes to be resol ved
into two categories: dependent nanmes, which depend for their
interpretation on the tenplate argunents, and non-dependent nanes,
whi ch do not. "Phase 1" resol ves non-dependent nanes. "Phase 2"
resol ves dependent nanes.

(These distinctions are already present in the Wrking Paper, but
our definition of "dependent name" is new.)

1.2 Summary of the Proposa
The key features of our proposal are:

A. Definition context precedence: Non-dependent names are resol ved
using only the tenplate definition context. These nanmes are
identified using a nore precise definition of the concept of
dependent nanmes. (See Section 2.)

Rationale: |If tenplate witers reference types that are
entirely known in the tenplate definition context, we presune
that they know the operations they intend to apply, and that

any contributions fromthe tenplate users’ contexts would be
accidental. Froman inplenentation perspective, it is useful to
be able to process such references when the definition is first
encount ered, without know edge of any possible instantiation
cont ext s.

B. Dependent nane resolution: Dependent nanes are resol ved using
a generalization of Koenig s operator resolution rule, using
the definition context and the nanespaces of the argunent types.
There may al so be a contribution frominternedi ate contexts, but
any such contribution nust be explicit. (See Section 3).

Rationale: Use of nanmes fromthe instantiation context nekes
instanti ation highly dependent on that context, and accordingly
makes CDR inplications extremely difficult. Restricting
dependent nane resolution to functions or operators closely
linked to the argunent types is much cl eaner and nakes true
separate conpilation nmuch easier to inplenment efficiently.

>From an i npl enentati on perspective, given the nassive contexts
commonly #included in C++ prograns, it is inportant to linmit how
much of the definition context nust be renenbered for |ater use
inindirect instantiations of other tenplates that it induces.
Restricting this intermediate context both limts the sizes of
files containing tenplate definitions for separate conpilation
and limts nane | eakage between definition contexts.

C. Separate vs. conpile-tinme instantiation: An instantiation may
occur in the context of a given translation unit at any point
after any point of instantiation with given argunent types,
or it my take place in a global context with access to
full nanespaces, as described in Section 3.4 below. If the choice
makes a di fference, the program behavior is undefined.

Rationale: W want a conpile-tinme inplementation to be able to
compile an instantiation either the first time it sees a request,
or at the end of the translation unit after it has collected all of
the requests and possibly | ooked up definitions fromother files,
wi t hout saving subsets of the translation unit’s declarations. W
al so want a separate conpilation inplenentation to be oblivious to
the precise point of instantiation of a tenplate.

D. A tenplate body may use only declarations with externa
I i nkage for dependent nane resol ution

Rati onal e: For efficient separate conpilation (by which we nean
the truly separate case where source is not available), it

is inportant to limt the anmount of context that nust be saved

with an instantiation request. This suggests depending only on the
information in the external synbol table of object files.

E. Atenplate definition is not visible outside a translation
unit where it is defined unless it is explicitly declared
"extern" to make it visible externally. (See Section 4.1.)
I npl enent ati ons may place conpil ation-order restrictions on
separatel y-conpiled tenplates. (See Section 4.2.)

Rati onal e: Requiring extern declarations allows a conpile-tine
i mpl ementation to avoi d unnecessarily "renenbering" tenpl ates
defined entirely within header files. The conpil ation-order
restrictions allow such an inplenentation to easily |ocate the
definitions required by an instantiation.

Dependent Nanes

The key issue in tenplate instantiation is the resolution of nanes
to specific functions and operators. Nanes whose resol ution
depends on the tenplate argunents are call ed "dependent" nanes,
and we now describe how to distinguish such nanes syntactically.

The following is a proposed replacenent for the definition of
dependent nanmes in Revision 11 of this proposal, based nore closely
on the syntactic elenents of the language. It was inspired by the
approach suggested by Erwin Unruh in c++std-ext-3611

A simple-type-specifier is dependent if
(1) It is a tenplate paraneter
(2) It is a typedef nanme whose type-id is dependent

A type-specifier [dcl.type] is dependent if it contains a dependent
simpl e-type-specifier [dcl.type.sinple].

A type-id [dcl.name] is dependent if:
(1) It contains a dependent type-specifier
(2) It contains a constant expression that is val ue-dependent
on a tenplate paraneter.

An identifier is dependent if its type-id, as obtained fromits
decl aration according to the rules in [dcl.neaning], is dependent.

Wthin the context of a class tenplate definition, the follow ng
addi tional rules apply.
(1) The name of the class tenplate itself, and of any of its
nested cl asses, is a dependent type-specifier.
(2) Wthin the context of the class tenplate and any of its
nested classes, '"this’ is a type-dependent prinmary-expression

A primary-expression [expr.prin] is type-dependent if it is a
dependent identifier, or if it is of the form(E), where Eis a
type- dependent expression.

An expression [expr] is type-dependent if:
(1) It is a dependent prinmary-expression
(2) It is a cast or a constructor call [expr.type.conv] to a
dependent type-id.
(3) It is a new expression whose type-id is dependent.

(4) It is an operator expression with an operator other than
?., sizeof, and typeid, where one or nore operands is
a type-dependent expression.

(5) It is of the formEL ? E2 : E3, where E2 or E3 is a
t ype- dependent expression.

(6) It is a dependent function call

A const ant -expression [expr.const] is val ue-dependent if

(1) It is type-dependent.

(2) It is a non-type tenplate paraneter [tenp.paran.

(3) It is of the formT::x, where T is a dependent type-id.

(4) It is an identifier initialized with a val ue-dependent
expr essi on.

(5) It is sizeof or offsetof applied to a dependent type-id.

(6) It is a cast operator applied a val ue-dependent operand.

(7) It is any operator expression where one or nore operands
i s val ue- dependent .

[Note: by these rules, expressions like "sizeof (T) ? 2 : 2" and
"sizeof (T) - sizeof(T)" are val ue-dependent. There’s no reasonabl e
way to exclude these pathol ogi cal cases.]

A function call (including an operator expression for an
overl oadabl e operator) is dependent if one of the function argunments
is a type-dependent expression

By a dependent nane we nean the nane of the function or overl oadabl e
operator in a dependent function call.

Dependent Nanme Resol ution

I n resol ving dependent nanes, we consider nanes fromthree sources
(other than the actual tenplate paraneters):

- Declarations fromthe instantiation context, identified by
| ookup in nanespaces associated w th the types
of function argunents, including operands of overl oadabl e
operators (See 3.3).
[Note: This is closely anal ogous to what is already done under
the Koenig rules for overload resolution for operators, and we
refer to it as "Koenig | ookup"” bel ow.]

- Declarations fromthe tenplate definition context.
- Declarations fromthe intermedi ate context (See 3.2).

We resol ve dependent names using ordinary overl oad resol ution
with special rules for finding candidate functions and user-defined
conver si ons.

.1 Point of Instantiation

We believe that the concept of "point of instantiation" is not
adequately defined in the current working paper. W propose the
followi ng nore precise definition

If the instantiating reference of an inplicit tenplate function
speci alization is a dependent function call, then the point of
instantiation of the specialization is the point of instantiation
of the tenplate function specialization containing the
instantiation reference.

O herwi se the point of instantiation of the specialization is
the point inmediately preceding the definition containing the
instantiating reference. (For the purposes of this definition

we consider the definition of a nmenber function defined inits
class definition to foll ow the outernost class definition
containing the menber function definition.)

Exanpl e:
tenplate <class T> void g(T t);
/1 point of instantiation of g(2.5)

tenplate <class T> void f(T t)

g(t);
} g(2.5);

/1 point of instantiation of g(t)
void h()
f(5);

Here the call f(5) results in tw instantiations of g. The
first call to g is a dependent function call, so its point
of instantiation is the point of instantiation of f, which
is just before the definition of h, since f(5) is not a
dependent call. On the other hand the second call to g is
not a dependent function call, so its point of instantiation
is just before the definition of f.

(Note that these determinations can not be nade from [tenp. point]
Paragraph 1 and [tenp.inst] Paragraph 10 of the current Wrking
Paper.)

.2 The Internedi ate Cont ext

Tenpl at e using declarations nmay be used to create internediate
contexts so that a declaration may be nade available by a calling
tenplate function to a called tenplate function

tenpl ate-decl aration ::=
tenpl ate <tenpl ate-paraneter-1|ist>
usi ng-decl aration-seq [opt] declaration

usi ng-decl aration-seq ::=
usi ng-decl aration-seq [opt] using-declaration

A using-declaration-seq in a class tenplate definition applies to
all nmenber functions defined by the class definition. Using

decl arations appearing in this context are restricted to functions
and function-style operator nanes, and nust have external |inkage.

If the instantiating reference of an inplicit tenplate function
specialization is not a dependent function call, the internediate
context of the specialization is enpty. Oherwise, it conprises
all declarations specified by using declarations in the tenplate
function specialization containing the instantiating reference,
together with the declarations in the internmedi ate context of that
speci al i zati on.

Exanpl e:

tenplate <class T> void g(T t);
void p(int);

tenpl ate <class T> using ::p;
void h(T t)

p(t);
g(t);

tenplate <class T> void f(T t);

void q(int);
tenpl ate <class T> using ::q;
void g(Tt)
p(t);
q(t);
f(t);
}

tenplate <class T> void f(T t)

{
p(t);
q(t);

int main()

h(1);

Here main calls h which calls g which calls f.

The specialization of h has no intermedi ate context, since
its instantiating reference is not a dependent call

The instantiating reference for the specialization of g is

a dependent call, so its internediate context consists of
the declaration of p fromthe tenplate using declaration for
h, and nothing else, since the the intermediate context of h

is enpty.

The instantiating reference for the specialization of f is
again a dependent call; its internedi ate context consists

of the declaration of q fromthe tenplate using declaration

for g, together with the declaration of p fromthe internediate
context of g.

.3 Associ at ed Nanmespaces
Wth each type T we associate a set of nanespaces.

If Tis a fundanental type, its associated set of nanespaces
contains only the gl obal nanespace.

If Tis a class type, its associ ated nanespaces are the nanmespaces
in which the class and its direct and indirect base classes are
def i ned.

Exanpl e:

nanespace NB {
class B {...};
int f(char *);
b
nanmespace ND {

class D. public NB::B {...};
int f(float);

b

The associ ated namespaces of a D are NB and ND. A nane

| ookup for f(x) in a tenplate instantiation, if x is a D
will find both the f in NB and the f in ND. A match is
possible if appropriate conversions can be found, e.g. if
D has an operator float. (See below for nore on
conversi ons) .

If Tis a union or enuneration type, its associ ated nanespace is the
nanespace in which it is defined

If Tis a pointer to U, a reference to U, or an array of U
its associ ated nanespaces are the associ ated nanmespaces of U

If Tis a pointer to function type, its associ ated nanespaces are
t he nanespaces of its paraneter types and of its return type

If Tis a pointer to a menber function of a class X, its associated
nanespaces are the namespaces of its paraneter types and of its
return type, together with the nanespace associated with X

If Tis a pointer to a data nmenber of a class X, its associated
nanespaces are the namespace associated with X and the namespaces
associ ated with the nmenber type

If Tis atenplate-id, its associ ated namespaces are the

nanespace of the tenplate and the nanespaces of the type tenplate
argument s.

.4 Candi date Functions

One set of candidate functions cones fromthe definition context.
A second set comes fromthe internedi ate context.

The others cone fromthe associ ated namespaces of the types of

the argunents of the function call or of the operands of the
operator (3.3 above). Again, only nanmes with external |inkage are

consi der ed.

Exanpl e:

using std::sqrt;
tenpl ate <class T> hypot(T x, Tvy)
{

return sqrt(x*x + y*y);

namespace NReal {
class Real {...};

Real operator+(Real, Real);
Real operator*(Real, Real);

}
Real sqrt(Real);

void f(Real x, Real vy)
Real z = hypot (X, Y);

}
voi d g(doubl e x, double Y)

doubl e z = hypot (x, Y);

Here in function f, hypot is instantiated with Real for both
argunent types. The dependent operators resolve to the operator+
and operator* in the namespace NReal. The dependent

sqrt function resolves to the sqrt(Real) declared in the gl oba
nanespace, which contains the nanmespace NReal

In function g, on the other hand, hypot is instantiated with double
for both argunent types, so the operators are builtin. The dependent
sqrt function resolves to std::sqrt in the definition context. Note
that the instantiation context has no way of supplying a sqrt(double)
except to use a forwarding function, since only the gl obal nanespace
i s avail abl e.

int value(int * p) {return *p;}
int diff(int x, int y) {return x - y;}
tenpl ate <class T> bool isequal (T x, T vy);

tenplate <class T> using ::diff;
bool values are _equal (T x, Ty)

{

return isequal (val ue(x), value(y));

tenpl ate <class T>
bool isequal (T x, Ty)

return diff(x, y) == 0;

void f(int * x, int * vy)
if (values_are equal (x, y))..

}

Here values_are equal is instantiated with int *. The

dependent calls to value are resolved by the function

int value(int*) declared in the definition context. Since

it returns an int, the tenplate function isequal is instantiated
with int. The dependent call to diff is resolved in the

i ntermedi ate context, as specified by the tenplate using

declaration for values_are_equal. |If this declaration were
renoved, diff would not be found, since it is not in either
the declaration context nor in the instantiation context.

Explicitly qualified names (e.g. X :f) may be used to nodify the
sel ection of candidate functions. For a call of X :f, the

candi dates conme from (a) static nenber functions X :f of class

X fromthe nanespaces naned in the tenplate’'s tenplate using
clause, (b) static nenber functions X :f of class X fromthe
nanespaces associated with t, and (c) nanmes "f" from nanmespace
"::X" (i.e. ignoring the associated nanespaces of t).

(Note we know this is not quite right, but we haven’t had time
to fix it).

In all cases, only functions actually declared in a given nanespace
are considered, not functions inported into the nanespace by

using declarations or directives. This is consistent with the
current rules for operator |ookup, and is essential in limting

t he dependence on instantiation context and the anount of
information that needs to be saved fromthat context for

separate conpil ation.

>From t hese nanmespaces only declarations visible in the declaration
context, the intermedi ate context, and the instantiation context
are considered. |If a function with external |inkage declared in
one of these namespaces is a better match for a gi ven dependent cal
than any of the functions declared in that nanespace in one of the
permitted contexts, then the program has undefined behavi or

Exanpl e:

(Here and in subsequent exanples, the dashed lines indicate a
possi bl e division between translation units.)

tenplate <class T> void f(T t)

g(t);

void g(int);
f(a);

void g(char) {}

Here the function g(char) in the global namespace is a better
match than the legitimate candidate g(int) declared in the

gl obal namespace in the instantiation context, so the program
has undefined behavi or.

3.5 Conversions

Al'l standard conversions are pernitted in matching candi date
functions. A user-defined conversion nmust be either a nenber
conversion fromits argunment class, or a menber constructor from
its result class. It nmust come fromthe definition context, from
an internediate context, identified by a using declaration in the
tenpl ate header, or fromthe instantiation context. [Note: the
set of candidate functions is fornmed first, before conversions are
consi dered, so the possible conversions do not affect the set of
candi dat e functions.]

Exanpl e 1:

nanespace NA {
struct A {
operator B();

};...
struct C {
A ;

};...

void f(B);
void g(0O;

tenplate <class T> void h(T t)
{

f(t);
g(t);
}

NA: : A a;

h(a);
Here the dependent nanes f and g may be resol ved from nanespace
NA, but f takes a B and g takes a C. f is a match because of
the operator Bin A and g is a match because of the constructor
C(A) inC
Exampl e 2:

nanespace NB {
struct B {...};

struct C {
C(B*);

b
void f(QO);
nanespace ND {
struct D NB::B {
operator DF();
b
void g(B*);

tenplate <class T> void h(T t)

.1

.2

ND: : D* dp = new ND:: D
h(d);

Here the dependent name f may be resolved from NA, but f takes
a C. But dp can be converted to a B* by a standard conversi on,
and the result can be converted to a C by a constructor.

g may be resolved fromND, but it takes a B*. But in this
case, D can be converted to a D* via the operator D,
and the result can be converted to a B* by a standard conversi on.

Tenpl at e Conpi |l ati on Mbdel

[Note: This rules of this section are intended specifically to
facilitate an efficient conpile-tine inplenentation of tenplate
i nstantiation.]

Extern Tenpl ate Decl arati ons

A tenplate definition is not visible outside the translation

unit where it is defined, unless it is explicitly declared

"extern" to nmake it visible externally. Notw thstanding this
visibility restriction, all tenplate definitions nmust satisfy the
ODR. [Note: this inplies that, in order to use truly different
tenplates with the sane nane in different translation units, it is
necessary to put themin different nanespaces, possibly the unnaned
nanespace.]

Tenpl ate Conpil ati on O der

An implenentation may require that all tenplate definitions

needed by an instantiation be either included in the
instantiation's translation unit (TU), or have been previously
conpiled as part of another TU. For this purpose, an instantiation
of B invoked by a definition of tenplate Ais deenmed to occur in
tenplate A's definition TUIif it is resolved by phase 1 nane

| ookup (i.e. it is non-dependent), or in the TU which instantiates
Aif it is resolved by phase 2 nane | ookup

[Note: this requirenent nmeans that circular dependenci es between
files instantiating and defining tenplates may be disall owed by an
i mpl erentation. For instance, if "nl -> n2" nmeans that TU nl
instantiates a tenplate defined in TU n2, then an inplenmentation
may forbid (for n>=2):

fi->f2->... ->fn->1f1
This requirement is at the TU level, not at the tenplate |evel
Such circularities are allowed within a TU; conversely, the
dependenci es yi el ding the above circularity need not all be part of
a single chain of instantiations.]

[Note: this requirenent would not prevent putting a tenplate
definition in a library, which would nornally be conpil ed before
its clients, but it would prevent those clients from providing
those functions/operators needed for phase 2 | ookup as tenplates.]

I mplications and | ssues

Sone existing code will break, for exanple code that resol ves
functions with non-dependent parameters to declarations visible
in the instantiation context, either because no decl aration was
present in the tenplate definition context, or because there was
a better match in the instantiation context. W believe, however,
that such code is already inherently fragile.

Qur nodel encourages a style of progranming that makes extensive

use of nanmespaces to organi ze types and related functions. W
woul d expect the use of nanespace-rel ated header files, which

woul d be included by tenplate users and whi ch woul d guarant ee

consi stent contexts.

General i zing the Koenig | ookup rules to include all function calls,
i nstead of just for phase 2 of tenplate conmpilation (as proposed
by John Skaller in c++std-core-6780), would affect our proposed
nmodel only by extending the definition-context candi date set (in
bot h | ookup phases). W therefore consider it to be an i ndependent
suggestion and do not take a position on it here.

It has been observed that allow ng use of static nanmes fromthe
definition context during phase 1 | ookup nmeans that some schene

must be inplenmented to nake themexternally visible to the |inker
for use by all object files containing instantiations, but uniquely
named to avoid conflicts. This is a nuisance, but a manageabl e one.

Wor ki ng Paper Changes
(Note: this section is inconplete.)
Renmove all boxes referring to Tenplate Conpil ati on Model

14.5 paragraph 2: delete "definition" of "depends on" and repl ace
by reference to (revised) 14.5.2.

14.5 paragraph 3: delete second coment in Box 26

14.5 paragraph 6: add references to 14.5.4. Change the second item
to:
-- Nanes from scopes which are visible within the tenplate
definition (see 14.5.4 for dependent names, or 14.5.5 for
non- dependent names).

Change the third itemto:
-- Nanes from scopes which are visible at the point of a
tenplate instantiation, if dependent on a tenplate paraneter
(see 14.5.4).

14.5 paragraph 7: ..., the usual |ookup rules (3.4.1) are applied
for names independent of the tenplate argunents, in the context
of the tenplate definition. Nanmes dependent (14.5.2) on the
tenpl ate argunents are resolved according to the | ookup rules in
14.5.4. [Exanple...

14.5.2: replace paragraphs 2-3 by Section 2 above.

14.5.3: add "If a suitable resolution of a non-dependent nane
cannot be found using the normal nane | ookup in the context of
the tenplate definition, this is an error."

14.5.4: change title to "Dependent Nane Resol ution" and
repl ace contents by Section 3 above, retaining parts of
paragraphs 1, 2, and 4 as appropriate.

Somewhere: add the rules from Section 4 (Tenplate Conpil ation
Model) .

| mpl enent ati on

To facilitate understanding the proposal and its inplications for

i mpl ement ati ons, we di scuss several approaches to inplenmenting it.
The first is a conmpile-time approach. Then we discuss true

.1

separate conpilation, with pre-link and DSO versi ons.

In all cases, we concentrate on nanme resolution, which is the focus
of our proposal. It should be noted that there are other
substantial aspects of tenplate inplenmentation, which result from
the fact that an instantiation draws information fromtwo contexts
(or nore if it is an indirect instantiation) and nust necessarily
becone nore conpl ex than nost conpilation tasks as a result. For

i nstance, after name resolution is conplete, there are a nyriad of
semanti c checks that must occur which depend on know edge of the
actual instantiated types. |If the instantiation is done in two
phases (as we assunme bel ow, but which is not necessary), an

i npl ementation will need to determ ne when to do semantic checking,
and how to nmake the required information available to do it. G ven
a nane resol ution, the semantic checks required do not depend
dramatically on the tenplate conpilation nodel, so we do not
concern ourselves with this issue here. But the follow ng should
not be read to inply that it is not a conplex issue for tenplate
conpi |l ati on.

A Conpi |l e-Ti me Techni que

Consi der the problem of doing a conmpile-time inplementation, by

whi ch we nmean to include both full-inclusion nodels and nodel s
where the inplenentation "knows" where to find the source (possibly
pre-processed) of a tenplate definition but it isn't necessarily
explicitly included by an #i ncl ude.

We naintain a master synbol table, which is initially just the

gl obal synbol table for the translation unit being processed,

and a pair of lists. The first list is of pre-processed tenplate
bodi es; the second of tenplate instantiation requests. The
conpi l ation proceeds in two phases:

First process the translation unit we were given to translate.
This is straightforward except for two sorts of events. If we
encounter a tenplate body definition, preprocess it, doing phase 1
| ookup based on the current synbol table. Extract the |ist of
possi bl e candi date names identified by the tenplate using cl ause
(per 3.2 above), and the list of definition context nanes which

m ght be used in phase 2 | ookup of this tenmplate, put themon the
tenpl ate body list with the preprocessed body and its | ocal synbol
table, and call it a pre-processed tenplate.

The second interesting event is a required tenplate instantiation.
In this case, just add the tenplate to be instantiated and the
actual tenplate paraneters to the instantiation request |ist.

The second phase is instantiation. Take each request off the
request list and performthe requested instantiation as follows.
First, if we don't already have the body fromthis translation unit,
go find it. Process the translation unit which contains it nuch as
we did the main one in phase 1, with a separate synbol table, except
that we don’t need to deal with any definitions (except as

decl arations) except the tenplate body needed, and any ot her

tenpl ate bodi es which nmight end up being instantiated by it. Again,
put aside the body with the list of possible candidates identified
by its tenplate using clause and the list of possible definition
context names on the list of pre-processed tenplates,

and nerge the list of possible candidates with the nmaster symnbol
table (for use in instantiations invoked by this one). Gbserve that
this processing of the separate tenplate body night have been done
earlier (in a distinct conpilation), and saved, so that it need not
be redone each tinme an instantiation is encountered.

7

2

Now we can do the instantiation. Non-dependent expressions have

all been resolved in the pre-processing step. Dependent expressions
are handl ed by | ooking themup either in the candidate |ist
associated with the body (the definition context) or in the naster
synbol table with Koenig | ookup. The fact that we’ve nerged the
candidate lists derived fromtenplate using clauses into the naster
synbol table nmeans that it contains the accumul ated instantiation
contexts of all of the elenents of a cascaded instantiation. Hence,
the rul e about not depending on the position of the point of
instantiation in the | ookup nanespaces neans that we can just use
this merged master synbol table and never deal with nore than the
two synbol tables.

The instantiation may require others. They are added to the
instantiation request list, and this second phase is repeated unti
we' re done.

Separate Conpilation Pre-Link |Inplenmentation

Suppose one wants separate conpilation, but can live with
restrictions present in sone inplenmentations today that the
source files (in particular those containing the tenplate body
definitions) are all available at link time. Observe that this
condition mght involve keeping those sources as part of
l'ibraries.

Following is a sketch of an approach to separate conpil ation of
tenpl ate definitions under these conditions. The information that
must be preserved for tenplate definitions is the sane as for the
compile-time inplementation described above, so this section
concentrates on the instantiation contexts.

Points of instantiation now need to provide information about their
contexts to the instantiation process. This proposal nakes the
required information i ndependent of the order (and presence) of
declarations in scope at the point of instantiation (by stating
that program behavior is undefined if it matters), with the intent
that the information in the aggregated synbol tables of the
component object files can be used directly. So one way to think
about separate inplenmentation is to consider how the externa

synmbol tables nust be augnented to describe instantiation contexts.
The additions might be placed in the object file, or in sone
auxiliary file(s), e.g. a "programlibrary." They incl ude:

- external function/operator return types
- the nanmespace hierarchy (probably encoded in names al ready)

- the class hierarchy, including information about any nenbers,
data and function, which night be referenced in a tenplate
body

- inline function definitions, perhaps size-linited
- tenplate declarations in scope for instantiation

This list is probably inconplete, but we believe it includes nost
of what is needed.

If one works to avoid duplication (e.g. by storing class
declarations in a file associated with the header file where
declared, or in the object file containing the definition of the
first non-inline nenber function, instead of for all files that
reference it), then this should be acceptable. W believe, based
on our current C++ inplenmentation, that this is work one needs to

7

3

do anyway so that debugging information doesn’t expl ode.

Keep track of required tenplate instantiations as they're
encountered. Prior to linking, run a pre-link step which

determi nes whether there are any required instantiations not yet
done, and instantiate their definitions (possibly by recomnpiling
their defining nodules) if so. This may be repeated, since the
instantiations nay invoke new instantiations. (This is anal ogous
to the process used today in our conpiler, with different nane
resolution, and potentially other substantial changes to use
saved definitions instead of just reconpiling the source.)

When conpiling a tenplate instantiation: Non-dependent nanes

in an instantiation are resolved nornally in the tenplate
definition context. Dependent expressions are processed bottom up
as follows:

- We know the types of the operands, from one of severa
sour ces:

* Some operands (at the bottom of the tree, or resulting
fromexplicit conversions) have non-dependent types, known
from Phase 1.

* Some operands have tenpl ate paraneter types, known at
instantiation tine.

* Some operands are results of calls resolved in earlier
steps; we know their results fromthe external synbol table
ext ensi ons.

* Some operands are nenbers of types falling in the other
classes (or this one): we know their types fromthe cl ass
hi erarchy information.

- We look up, in the linker synbol table, all functions in the
ri ght namespaces (i.e. the Koenig associ ated nanmespaces), plus
the definition context list, with the right name. This is the
set of candidate functions. |Ignore those with the wong nunber
of arguments.

- For each function, and each argunent, determ ne what
conversion (if any) is required to nake it the right type.
Look that up in the sane set of nanespaces and definition
context operators. Discard any functions which can't be
mat ched.

- Choose the best match according to the usual rules.

- Use the result type fromthis call to resolve the next cal
in the hierarchy until done..

For each resolution, either produce a call to an external routine,
or expand an inline definition.

Separate Conpil ation Post-Link |nplenentation

If one wants to be able to put tenplates in DSOs (Dynam ¢ Shared
oj ects, or runtime-linked libraries), the previous nodel for
the nane resolution process is the sane. In addition, an

i mpl ement or nust:

- Decide how to represent the tenplate body in the DSO. Source
woul d work, but something |ike an abstract syntax tree with
a distinction between resolved phase 1 calls and postponed
phase 2 calls would probably be better. W (SA) would expect

But

to use a variant of our conpiler IR

One al so needs the external -1inkage synbols fromthe file, but
order and scope aren’'t inportant due to our rules, so this part
is just like the caller treatment (the extended external synbol
tabl e).

One needs to decide when to do the instantiation (at every
execution of the programisn't a nice answer), where to put it
(the user running the programmay not have wite access to
either the programor the DSO, and where to get the conpiler
to finish the job

fundanmentally, this is the sane process as the pre-link case.

One just prefers not to require the original source to be avail abl e,

and

needs to concentrate a ot nore on things other than the

semantics of instantiation.

Appendi x A. Changes

The

The

The

significant changes fromversion 7 of this proposal are:

The nanespace associated with a builtin type is the globa
nanespace (instead of enpty) (Section 3.2, now 3.3).

The contribution to dependent nane resolution fromthe

tenpl ate definition context has been restricted significantly
(Section 3.1, now 3.2).

The WP changes are nore conplete (Section 6).

significant changes fromversion 8 are:

Added di scussion of explicit nanme qualification (3.3, now 3.4).
Added exanpl e as new Section 6 (now 7).

significant changes fromversion 9/10 are:

Add concepts and termi nol ogy sutmmary (1.1), and use the
term nol ogy defined nore consistently.

The tenplate definition bl ock has becone a tenplate using clause
associated with the tenplate definition (3.1, now 3.2).

Added requirenment for explicit "extern" declaration for
tenpl ates visible outside the translation unit where defined
(Section 4.1).

Al'low i npl enentations to restrict conpilation order (Section
4.2).

significant changes fromversion 11 are

The definition of dependent names in Section 2 has been
repl aced by the contents of the old Appendix A wth sone
additional clarifications.

A new definition of the point of instantiation has been added
(Section 3.1). W do not believe this changes the intent of
the WP, but it should make the treatnent of indirect
instantiations clearer

A precise definition of internediate context has been added.
The restriction that names froma tenplate definition context

used in Phase 2 | ookup nust appear in its tenplate using

decl arati ons has been renoved. The reason is that

we have determined that the set of nanes which m ght
potentially be used for this purpose can be inferred relatively
easily fromthe set of dependent names appearing explicitly in
the tenpl ate body, and hence saving the set with the
pre-processed tenplate definition does not present serious

i mpl enent ati on probl ens.

Section 3.4 on candidate functions has been rewitten to
clarify sone fuzzy points, and exanpl es have been added.

Section 3.5 on conversions has been rewitten, based on
some incisive observations by Andy Koenig, and exanples
have been added.

The ol d Exanpl es section has been renoved and exanpl es have
been added in the appropriate sections.

There have been m nor changes in wording throughout, and
renunbering as required.

