X3J16/ 96- 0088 W21/ NO906

A Proposed New Tenpl ate Conpil ati on Model (rev 7)

John W1 ki nson, JimDehnert, and Matt Austern
Silicon Gaphics, Inc.

1. Introduction

We present here a proposal for a new nodel of tenplate conpilation

We believe this nodel is an inprovenent on both of the existing

nmodel s ("separation" and "inclusion"). It is clearly easier to

i mpl ement than the separation nodel, and we believe it is al nost

as easy to inplement as the inclusion nodel. It avoids both the
"name- | eakage" problens of the inclusion nodel and the "nerged-context"”
probl ens of the separation nodel. W believe also that true separate
conpilation, in which object nodul es can be conbi ned wi thout access to
source, is feasible with the new nodel

The key features of our proposal are the follow ng.

1.1 Definition context precedence: Non-dependent nanes
are resolved strictly in the context of the tenplate
definition. W suggest also a sinpler definition of
the concept of dependent nanes (see Section 2).

Rationale: |If a tenplate witer references types that are
entirely known in the context of the tenplate definition, we
presune that he knows the operations he intends to apply, and that
any contributions fromthe tenplate user’s contexts would be

acci dent al

1. 2 Dependent nane resol ution: Dependent nanes are resol ved using
a generalization of Koenig s operator resolution rule, i.e. using
the definition context plus the nanespaces of the operand types.
(See Section 3.)

Rationale: Use of nanes fromthe instantiation context makes
instanti ation highly dependent on that context, and accordingly
makes CODR inplications extrenely difficult. The tenplate witer
can allow arbitrary contributions fromthe instantiation via

tenpl ate paraneters, and the tenplate user can inject operations by
wrapping the tenplate argunent types in a class with the required
menbers. Absent these approaches, however, it is much cleaner to
restrict free name resolution to those functions/operators closely
linked to the original argunent type definitions.

1.3 Separate vs. inclusive instantiation: An instantiation may
occur at any point after any point of instantiation as defined
in the DW, or it may take place in a gl obal context, as described
below. If the choice makes a difference, the programis ill-forned.

1.4 A tenplate body may use only nanmes fromthe definition context and
ext ernal nanes.

Rational e: For efficient separate conpilation (by which we nean
the truly separate case where source is not readily available), it
is inportant to limt the anmount of context that nust be saved

with an instantiation request. This suggests depending only on the
information in the external synbol table of object files, wthout
regard to the precise subset(s) of a namespace that was defined at
the point(s) of instantiation. At the same time, we want to be

able to inmediately instantiate a tenplate in the case where the
conpi l er sees both the tenplate definition and the instantiation at
the same tine.

2. Dependent Nanes

We say that a type depends on a tenplate paraneter T if any of
the follow ng conditions holds:

It is Titself, where T is a type

It is atype defined in terms of a constant expression that
uses either T (where T may be a type or a non-type tenpl ate
argunent) or a type that depends on T.

It is a (cv-qualified) pointer or reference to a type that
depends on T.

It is a nested type whose containing class depends on T.

It is a tenplate one of whose argunents or paraneters depends
on T.

It is a function pointer whose return type or one of whose
argunents is a type that depends on T.

It is an array the types of whose el enents depend on T.

It is a pointer to data nmenber where the type either of the
contai ning class or of the nenber depends on T.

It is a pointer to menber function where the type either of
the containing class or of one of the nenber function’s
argunents or of its return type depends on T.

We say that a function argunent or operator operand is dependent
if either of the follow ng holds:

It has a dependent type.

It is the result of a dependent operator or function cal
(defined recursively below), except for explicit casts to
non- dependent types. (Intuitively, we don't know its type
until we resolve the operator or function nane.)

If an operator has one or nore dependent operands, the operator
nane is said to be dependent.

If a function call has one or nore dependent argunents, the
function nane is said to be dependent.

3. Dependent Name Resol ution

In resol ving dependent nanes, we consider only declarations in
the scope of the tenplate definition and names from nanmespaces
associated with the types of function argunents (including
operands of overl oadabl e operators). This is closely anal ogous
to what is already done under the Koenig rules for overl oad
resol ution for operators.

We resol ve dependent nanes using ordinary overl oad resol ution
with special rules for finding candidate functions and user-defined
conver si ons.

3.1 Associ at ed Nanespaces

Wth each type T we associate a set of nanespaces

If Tis a fundanental type, its associated set of nanespaces
is enpty.

If Tis a class type, its associ ated nanespaces are the nanmespaces
in which the class and its direct and indirect base classes are
defi ned.

Exanpl e:

nanespace NB {
class B {...};
int f(char *);
b
nanespace ND {

class D. public B {...};
int f(float);

b

The associ ated nanmespaces of a D are NB and ND. A nane

| ookup for f(x) in a tenplate instantiation, if x is a D
will find both the f in NB and the f in ND. A match is
possible if appropriate conversions can be found, e.g. if
B has an operator char *. (See below for nore on
conversi ons).

If Tis a union or enuneration type, its associ ated nanespace is the
nanespace in which it is defined

If Tis a pointer to U, a reference to U, or an array of U
its associ ated nanespaces are the associ ated nanmespaces of U

If Tis a function type, its associated nanmespaces are the nanespaces
of its argunent types and of its return type

If Tis a pointer to a nenber of a class X, its associ ated nanespaces
are the nanmespaces associated with X and with the nenber type.

If Tis a tenplate class, its associ ated nanespaces are the
nanespace of the tenplate and the nanespaces of the tenplate class
ar gunent s.

3.2 Candi date Functi ons

One set of candidate functions cones fromthe scope of the tenplate
definition. Only names with external |inkage are consi dered.

The others cone fromthe associ ated nanespaces of the types of
the argunents of the function call or of the operands of the
operator. Again, only nanes with external |inkage are considered,
and default argunments are ignored

In this context, "namespace" may nmean either "conpl ete nanespace, "
conprising all declarations in all translation units; or "nanespace
at point of instantiation," conprising only declarations that

are in scope at any point of instantiation with the given argunent
types. A programis ill-formed if this choice makes a difference.
The translator is not required to issue a diagnostic for this
error. Note that in any case it is the contents of the nanespace
(i ncludi ng encl osi ng nanespaces) that are significant, not any
declarations in the instantiation context that mnight be inported

by nmeans of "using" declarations.

3.2 Conver si ons

Al'l standard conversions are pernitted in matching candi date
functions. A user-defined conversion nmust be defined either in
the tenplate definition context or in the associ ated namespace set
of its argunent type. Note that the set of candidate functions is
fornmed first, before conversions are considered, so the possible
conversions do not affect the choice of candidate functions.

Exanpl e:

nanespace NB {
struct B {...};

struct X {X(B);...};

int f(X);

nanespace NA {
struct A NB::B{...};

Here we can resol ve the dependent nane f taking an a of type NA :A
because we can pronote a to NB::B using a standard conversion, and
then use that as argunent to the constructor for X, since NBis

in the associ ated nanespace set of A

I mpli cations

Some existing code will break, for exanple code that resolves
functions whose paraneters are of built-in types using declarations
in the instantiation context, either because no decl aration was
present in the tenplate definition context, or because there was

a better match in the instantiation context. W believe, however,
that such code is already inherently fragile.

Qur nodel encourages a style of progranmi ng that makes extensive
use of nanespaces to organi ze types and related functions. W
woul d expect the use of nanespace-rel ated header files, which
woul d be included by tenplate users and whi ch woul d guarant ee
consi stent contexts.

Wor ki ng Paper Changes

Renove all boxes referring to Tenplate Conpil ati on Mbdel

14.5 paragraph 6, third item delete "from scopes that are
visible at the point of a tenplate instantiation."

14.5.2: replace entire section by Section 2 above.

14.5.4: change title to "Dependent Nane Resol ution" and

repl ace contents by Section 3 above.

| mpl enent ati on

To facilitate understanding the proposal and its inplications for

i mpl enent ati ons, we di scuss two approaches to inplenenting it.
The first is a technique based on an inclusion nodel. The second

is an approach to true separate conpilation, with pre-link and DSO
ver si ons.

6.1 A Sinple Inclusion Techni que

Consi der the probl em of doing an inclusion-based conpil ation, by
whi ch we nmean to include nodel s where the inplenentation "knows"
where to find the source of a tenplate definition but it isn't
necessarily explicitly included by an #i ncl ude.

We naintain a master synbol table, and a pair of lists. The first
list is of pre-processed tenplate bodies; the second of tenplate
instantiation requests. The conpilation proceeds in tw phases:

First process the translation unit we were given to translate.
This is straightforward except for two sorts of events. If we
encounter a tenplate body definition, preprocess it, doing phase 1
| ookup based on the current synmbol table. Depending on the

i npl ementation, also either note the current state of the symnbol
table (e.g. if it's linear, keep track of where we are so |ater

| ookups wi Il know what was visible here), or save part of it for
use as definition context when it is instantiated. The part of

it needed for that purpose is very limted. It consists only of
what is needed for phase 2 |ookup of instantiations of this tenplate
body, which is (a) functions/operators with nanes referenced in
the body, (b) conversion operators which yield the types of
argunents to such functions (externals only in both cases), and
(c) the declarations of the types involved. Put this on the

tenpl ate body list with the preprocessed body and its | ocal symnbol
table, and call it a pre-processed tenplate.

The second interesting event is a required tenplate instantiation.
In this case, just add the tenplate to be instantiated and the
actual tenplate paranmeters to the instantiation request |ist.

The second phase is instantiation. Take each request off the
request list and performthe requested instantiation as follows.
First, if we don't already have the body fromthis translation unit,
go find it. Process the translation unit which contains it nuch as
we did the nmain one in phase 1, with a separate synbol table, except
that we don’t need to deal with any definitions (except as

decl arations) except the tenplate body needed, and any other
tenpl at e bodi es which mght end up being instantiated by it. Wen
we' ve put aside the body with its pruned synbol table on the |ist of
pre-processed tenplates, nerge the synbol table of this translation
unit with the nmain one.

Now we can do the instantiation. Non-dependent expressions have al
been resolved in the pre-processing step. Dependent expressions are
handl ed by | ooking themup either in the pruned synbol table
associated with the body (the definition context) or in the naster
synbol table with Koenig | ookup. The fact that we've nerged the
subsequent synbol tables with the original naster nmeans that it
contains the accunul ated instantiation contexts of all of the

el ements of a cascaded instantiation. Hence, the rule about not
dependi ng on the position of the point of instantiation in the

| ookup nanespaces neans that we can just use this nerged naster
synbol table and never deal with nore than the two synbol tables.

The instantiation may require others. They are added to the

instantiation request list, and this second phase is repeated unti
we' re done

6.2 Separate Conpilation Pre-Link |Inplenmentation

Suppose one wants separate conpilation, but can live with
restrictions present in sone inplenentations today that the
source files (in particular those containing the tenplate body
definitions) are all available at link time. Cbserve that this
condition mght involve keeping those sources as part of
l'ibraries.

Modi fy the conpilation steps so that nodules with instantiations
retain (in the object file or an auxiliary file):

- external function/operator return types

- the nanespace hierarchy (probably encoded in names al ready)
- the class hierarchy

- inline function definitions, perhaps size-linited

If you work some to avoid duplication (e.g. by storing class
declarations in a file associated with the header file where
decl ared, instead of for all files that reference it), then this
shoul dn’t be excessive. This is work you want to do anyway so

t hat debuggi ng informati on doesn’t expl ode on you

Keep track of required tenplate instantiations as they're
encountered. Prior to linking, run a pre-link step which

determ nes whether there are any required instantiations not yet
done, and reconpile their defining nodules if so. This nmay be
repeated, since the instantiations nmay invoke new instantiations.
(This process is all done today in our conpiler, with different
nane resol ution.)

When conpiling a tenplate instantiation: Non-dependent nanes

in an instantiation are resolved nornally in the tenplate
definition context. Dependent expressions are processed bottom up
as foll ows:

- We know the types of the operands, fromone of severa
sour ces:

* Some operands (at the bottom of the tree, or resulting
fromexplicit conversions) have non-dependent types, known
from Phase 1.

* Some operands have tenplate paraneter types, known at
instantiation tine.

* Some operands are results of calls resolved in earlier
steps; we know their results fromthe external synbol table
ext ensi ons.

* Some operands are nmenbers of types falling in the other
classes (or this one): we know their types fromthe cl ass
hi erarchy infornmation.

- We look up, in the linker synbol table and in the tenplate
definition context, all functions in the right nanmespaces with
the right name. This is the set of candidate functions.

I gnore those with the wong nunber of argunents.

- For each function, and each argunent, determ ne what
conversion (if any) is required to nmake it the right type.
Look that up in the sane set of nanespaces. Discard any
functions which can’'t be nmatched.

- Choose the best match according to the usual rules.

6.

3

- Use the result type fromthis call to resolve the next call
in the hierarchy until done...

For each resolution, either produce a call to an external routine,
or expand an inline definition.

Separate Conpil ation Post-Link |nplenentation

If you want to be able to put tenplates in DSCs (Dynani c Shared
oj ects, or runtime-linked libraries), the previous nodel for
the nane resolution process is the sane. In addition, an

i mpl ement or nust:

- Decide to represent the tenplate body in the DSO Source
woul d work, but something |ike an abstract syntax tree with
a distinction between resolved phase 1 calls and postponed
phase 2 calls would probably be better. W (SA) would expect
to use a variant of our conpiler IR

- One also needs the external -linkage synbols fromthe file, but
order and scope aren’'t inportant due to our rules, so this part
is just like the caller treatment (the extended external synbol
tabl e).

- One needs to decide when to do the instantiation (at every
execution of the programisn't a nice answer), where to put it
(the user running the programmay not have wite access to
either the programor the DSO, and where to get the conpiler
to finish the job.

But fundanentally, this is the same process as the pre-link case.
One just prefers not to require the original source to be avail abl e,
and needs to concentrate a ot nobre on things other than the
semantics of instantiation.

