
X3J16/96-0079 WG21/N0897 1

Revision History

Post-Santa-Cruz X3J16/96-0079 WG21/N0897
Pre-Santa Cruz X3J16/96-0009 WG21/N0827
Post-Tokyo X3J16/95-0221 WG21/N0821
Pre-Tokyo X3J16/95-0194 WG21/N0794
Pre-Monterey X3J16/95-0089 WG21/N0689
Pre-Austin X3J16/95-0034 WG21/N0634

Summary of Issues

27.4.2 ios_traits P. 5

Active 27-001 Making newline locale aware
Active 27-002 is_whitespace is inconsistent
Active 27-004 example of changing the behavior of is_whitespace is incorrect.
Active 27-005 not_eof specification
Active 27-007 ios_traits typedefs are ‘char’ oriented
Active 27-008 ios_traits::length is missing Returns: clause
Active 27-009 ios_traits::get_state should be specified
Active 27-010 ios_traits::get_pos should be specified
Active 27-011 Return type for ios_traits::copy is incorrect

Closed 27-003 Mention of base struct string_char_traits (Tokyo)
Closed 27-006 streamsize should be SZ_T not INT_T (Tokyo)

 27.4.3 ios_base
P. 10

Active 27-106 Init class should be an implementation detail
Active 27-107 ios::failure doesn’t have the same functionality

Closed 27-101 ios_base manipulators (Santa-Cruz)
Closed 27-102 ios_base::width semantics are incorrect (Santa-Cruz)
Closed 27-103 proposal for adding ios_base::maxwidth (Santa-Cruz)
Closed 27-104 ios_base unitbuf and nounitbuf manipulators (Santa-Cruz)
Closed 27-105 ios_base storage functions are not exception safe (Santa-Cruz)

 By: Philippe Le Mouël Doc. No.: X3J16/96-0079
 Rogue Wave Software Inc. WG21/N0897
 philippe@roguewave.com Date: March 27 1996

IOStreams Issues List
Library Clause 27

X3J16/96-0079 WG21/N0897 2

27.4.4 basic_ios P. 11

Active 27-203 operator bool() needs to be fixed
Active 27-205 imbue should not call rdbuf()->pubimbue

Closed 27-201 remove throw specifications for clear and setstate (Tokyo)
Closed 27-202 tie not required to be associated with an input sequence (Tokyo)
Closed 27-204 replace int_type by char_type in int_type fill() and int_type fill(int_type) (Tokyo)

27.5.2 basic_streambuf P. 13

Active 27-301 imbuing on streambufs. When, how often, etc...

Closed 27-302 sungetc has an incorrect return type (Tokyo)
Closed 27-303 not_eof needs to be used where appropriate (Santa-Cruz)
Closed 27-304 uflow needs editing (Santa-Cruz)
Closed 27-305 basic_streambuf::showmanyc Incorrect return clause (Santa-Cruz)
Closed 27-306 basic_streambuf::uflow has incorrect default behavior (Santa-Cruz)
Closed 27-307 basic_streambuf::uflow has nonsense returns clause (Santa-Cruz)
Closed 27-308 streambuf inlines (Santa-Cruz)
Closed 27-309 two return clauses for streambuf::underflow (Santa-Cruz)
Closed 27-310 streambuf::pbackfail has incorrect Notes: clause (Santa-Cruz)
Closed 27-311 caching results of calls to locale functions (Santa-Cruz)

27.6.1 basic_istream P. 14

Active 27-404 istream functions need to check for NULL streambuf
Active 27-405 confusing English in formatted requirements
Active 27-406 operator>>(char_type *) failure
Active 27-407 operator>>(char_type) failure
Active 27-408 ws manipulator
Active 27-409 unsigned short extractors cannot use unsigned long get function
Active 27-410 putback function has wrong description
Active 27-411 getline should not set failbit when reading no characters
Active 27-412 operator >>(basic_streambuf *sb), should not set badbit if sb is null

Closed 27-401 isfx what does it do? (Santa-Cruz)
Closed 27-402 ipfx example is incorrect (Santa-Cruz)
Closed 47-403 Clarification of exceptions thrown (Santa-Cruz)

27.6.2 basic_ostream P. 19

Active 27-501 op<<(char) needs to be consistant with the other formatted inserters
Active 27-502 op<<(void *) should it be const volatile void *
Active 27-503 ostream functions need to check for NULL streambuf
Active 27-505 incorrect conversion specifier for operator<<(unsigned long)
Active 27-506 wrong default behavior for padding

Closed 27-504 exceptions in ostream (Santa-Cruz)

X3J16/96-0079 WG21/N0897 3

27.6.1-27.6.2 basic_istream, basic_ostream P. 23

Active 27-601 op[<<|>>](ios_base&) needed for manipulators
Active 27-602 positional typedefs in istream/ostream derived classes are not needed
Active 27-603 read/write should take a void * instead of a char_type *
Active 27-604 Should we require ios::in to be set for istream’s and ios::out to be set for ostream’s?
Active 27-605 Should get/put use iterators?
Active 27-606 seekg and seekp should have their first parameter passed by value.

27.6.3 Standard manipulators P. 28

Active 27-651 setfill description is wrong
Active 27-652 smanip is not a single type

27.7 string streams P. 29

Active 27-701 str() needs to clarify return value on else clause
Active 27-702 string stream classes need to have string_char_traits and allocator parameters
Active 27-703 stringbuf postconditions
Active 27-704 stringbuf::stringbuf constructor
Active 27-705 Incorrect calls to setg and setp in Table 14
Active 27-706 Incorrect calls to setg and setp in table 16
Active 27-707 setbuf function is missing

27.8 fstreams P. 33

Active 27-801 filebuf::underflow example is incorrect
Active 27-802 filebuf::is_open is a bit confusing
Active 27-803 ofstream constructor missing trunc as openmode
Active 27-804 ofstream::open missing trunc in openmode
Active 27-805 filebuf::imbue semantics
Active 27-806 filebuf::seekoff Effects: clause needs work
Active 27-807 filebuf::underflow performance questions
Active 27-808 Editorial fixes in wording for fstreams
Active 27-809 description of function setbuf is missing
Active 27-810 openmode notation is not consistent in basic_ifstream and basic_ofstream
Active 27-811 description of function sync is missing
Active 27-812 filebuf::overflow example is incorrect
Active 27-813 basic_filebuf::overflow does not specifies its return value on success
Active 27-814 basic_filebuf::imbue has no description
Active 27-815 description of function seekpos is missing

Miscellaneous P. 40

Active 27-901 input/output of unsigned char, and signed char
Active 27-904 iosfwd declarations incomplete
Active 27-906 add a typedef to access the traits parameter in each stream class
Active 27-907 Use of “instance of” vs. “version of” in descriptions of class ios
Active 27-908 unnecessary ‘;’ (semicolons) in tables
Active 27-909 Editorial issues (typo’s)
Active 27-910 remove streampos in favor of pos_type

X3J16/96-0079 WG21/N0897 4

Active 27-911 stdio synchronization
Active 27-912 removing Notes: from the text
Active 27-913 Incorporating Notes: into the text
Active 27-914 rethrowing exceptions
Active 27-915 The use of specialization
Active 27-916 missing descriptions of specializations
Active 27-917 Editorial changes
Active 27-918 Validity of OFF_T to POS_T conversion
Active 27-919 Question on Table 2 assertions
Active 27-920 destination of clog and wclog
Active 27-921 default locale argument to constructor

Closed 27-902 default locale (Santa-Cruz)
Closed 27-903 ipfx/opfx/isfx/osfx not compatible with exceptions (Santa-Cruz)
Closed 27-905 iostream type classes are missing (Santa-Cruz)

Annex D P. 53

Active 27-1001 description of function setbuf is not sufficient
Active 27-1002 strstreambuf Editorial issues
Active 27-1003 istrstream Editorial issues
Active 27-1004 ostrstream Editorial issues

Total remaining active issues: 80

Categorization of the issues

Already solved by previous resolutions, they should just be closed:

27-002, 27-004, 27-005, 27-007, 27-008, 27-009, 27-011, 27-408, 27-409, 27-702.

Editorial issues:

27-405, 27-406, 27-505, 27-801, 27-802, 27-808, 27-810, 27-812, 27-907, 27-908, 27-909,
27-912, 27-913, 27-915, 27-917, 27-1003, 27-1004.

X3J16/96-0079 WG21/N0897 5

ios_traits issues

Issue Number: 27-001
Title: changing traits::newline to be locale aware
Section: 27.4.2.1 ios_traits value functions [lib.ios.traits.values]
Status: active
Description:

The problem with traits::newline is that it does not know about the currently imbued locale.

This proposal addresses the need for a locale-aware newline.

Possible Resolution:

Change traits::newline by adding a parameter for locale information:

static char_type newline(const ctype<char_type>& ct);

The default definition is as if it returns:
ct.widen(‘\n’);

Some functions in basic_istream have a default parameter that is: traits::newline() (getline, get).
These defaults will have to be changed to use the currently imbued locale. Changing the default
value to: traits::newline(getloc()) won’t work because getloc() is not static. Therefore the
functions that have newline() as a default value must be split into two functions; one function
that has three parameters, and one function that has two parameters and calls the three parameter
function with a “default” value. For example:

istream_type& getline(char_type *, streamsize, char_type delim);

istream_type& getline(char_type *s, streamsize n)
{

 return getline(s, n, newline(
 use_facet<ctype<char_type> >(getloc())));
 }

The functions that need to change are:
istream_type& get(char_type *, streamsize, char_type);
istream_type& get(streambuf_type&, char_type);
istream_type& getline(char_type *, streamsize, char_type);

Requestor: Nathan Myers (ncm@cantrip.org),
John Hinke (hinke@roguewave.com)

Issue Number: 27-002
Title: traits::is_whitespace() is inconsistent
Section: 27.4.2.2 ios_traits test functions [lib.ios.traits.tests]
Status: active
Description:

X3J16/96-0079 WG21/N0897 6

This function is inconsistent throughout the document. For example:

27.4.2 Template struct ios_traits [lib.ios.traits]
static bool is_whitespace(int_type, const ctype<char_type>&);

27.4.2.2 ios_traits test functions [lib.ios.traits.tests]
bool is_whitespace(int_type c, const ctype<char_type>& ct);

 Returns: true if c represents a white space character. The default definition
is as if it returns ct.isspace(c).

The returns paragraph calls a method of ctype that does not exist.
 It should say:

 Returns: true if c represents a white space character. The default definition is as if it
returns ct.is(ct.space, c).

27.6.1.1.2 basic_istream::ipfx [lib.istream.prefix]
Notes: ...uses the function

bool traits::is_whitespace(charT, const ctype<charT>&)

The same paragraph goes on to use ctype<...> in the example.

27.6.1.1.2 Paragraph 4: [lib.istream.prefix]
static bool is_whitespace(char, const ctype<charT>&)

Possible Resolution:

The Santa Cruz meeting, deprecates the is_whitespace function, by accepting doc: 96-0036R1=N0854R1
(Unification of Traits Revision1). Therefore I propose closing the issue.

Requestor: John Hinke (hinke@roguewave.com)
Philippe Le Mouël (philippe@roguewave.com)

Issue Number: 27-004
Title: example of changing the behavior of is_whitespace is incorrect.
Section: 27.6.1.1.2 Paragraph 4 basic_istream prefix and suffix [lib.istream.prefix]
Status: active
Description:

Change from:

struct my_char_traits : public ios_traits<char> {
static bool is_whitespace(char c, const ctype<charT>& ct)

{ ...my own implementation... }
};

 To:
struct my_char_traits : public ios_traits<char> {

static bool is_whitespace(char c, const ctype<char>& ct)
{ ...my own implementation... }

 };

X3J16/96-0079 WG21/N0897 7

Possible Resolution:

The Santa Cruz meeting, deprecates the is_whitespace function, by accepting doc: 96-0036R1=N0854R1
(Unification of Traits Revision1). Therefore I propose closing the issue.

Requestor: John Hinke (hinke@roguewave.com)

Issue Number: 27-005
Title: not_eof specification
Section: 27.4.2.1 ios_traits value functions [lib.ios.traits.values]
Status: active
Description:

int_type not_eof(int_type c);

Editorial: “Notes:” should also mention it is used for sbumpc and sgetc.

Per Bothner writes:
“The Returns: is incompatible with the traditional masking function for zapeof. This is because
int_type(-2) == -2 while zapeof(-2) == ((-2) & 0xFF). And nowhere else does it say anything
that would allow the traditional implementation.”

“I don’t understand the presentation style well enough to suggest the proper fix. But somewhere
it should say or imply that when charT is specialized with char, then not_eof(c) is
int_type((unsigned char)(c)).”

Possible Resolution:

The Santa Cruz meeting, fixes the problem, by accepting doc: 96-0036R1=N0854R1 (Unification of Traits
Revision1) and doc: 96-0069=N0885 (Appropriate use of traits::to_int_type and traits::not_eof throughout
the Iostreams chapter). Therefore I propose closing the issue.

Requestor: Per Bothner (bothner@cygnus.com)

Issue Number: 27-007
Title: ios_traits typedefs are ‘char’ oriented.
Section: 27
Status: active
Description:

We cannot specify int_type, off_type, pos_type, and state_type corresponding to some specialized
charT type.

For example, if in order to think about ‘char’ specialization, we might define

template <class charT> struct ios_traits {
....
typedef charT char_type;
typedef int int_type;
....

};

X3J16/96-0079 WG21/N0897 8

we would have to accept it as constant definition in all of the specialized traits, not only
ios_traits<char>, but ios_traits<wchar_t>, ios_traits<ultrachar>. This would lead to the
restriction upon implementations that all of the charT must be converted in 'int' range. The
restriction is too heavy for future wide character types and user-defined character types.

Possible Resolution:

The Santa Cruz meeting, fixes the problem, by accepting doc: 96-0036R1=N0854R1 (Unification of Traits
Revision1). Therefore I propose closing the issue.

Requestor: Norihiro Kumagai (kuma@slab.tnr.sharp.co.jp)

Issue Number: 27-008
Title: ios_traits::length is missing Returns: clause
Section: 27.4.2.1 ios_traits value functions [lib.ios.traits.values]
Status: active
Description:

ios_traits::length has an Effects: clause but no Returns: clause. The Effects: clause
should be reworded as a Returns: clause.

Possible Resolution:

The Santa Cruz meeting, fixes the problem, by accepting doc: 96-0036R1=N0854R1 (Unification
of Traits Revision1). Therefore I propose closing the issue.

Requestor: Public Comment

Issue Number: 27-009
Title: definition for get_state
Section: 27.4.2.3 ios_traits conversion functions [lib.ios.traits.convert]
Status: active
Description:

The definition of ios_traits::get_state is incomplete. Here is the complete description:

state_type get_state(pos_type pos);

Returns: A state_type value which represents the conversion state in the object pos .

Possible Resolution:

The Santa Cruz meeting, fixes the problem, by accepting doc: 96-0036R1=N0854R1 (Unification
of Traits Revision1). Therefore I propose closing the issue.

Requestor: Norihiro Kumagai (kuma @ slab.tnr.sharp.co.jp)

Issue Number: 27-010
Title: definition for get_pos
Section: 27.4.2.3 ios_traits conversion functions [lib.ios.traits.convert]
Status: active
Description:

X3J16/96-0079 WG21/N0897 9

The definition of ios_traits::get_pos is incomplete. Here is the complete description:

pos_type get_pos(streampos pos , state_type s);

Effects: Constructs a pos_type value which represents the stream position corresponding to
the pair of pos and s .

Returns: A pos_type value which consists of the values of pos and s .

Possible Resolution:

The Santa Cruz meeting, accepts doc: 96-0036R1=N0854R1 (Unification of Traits Revision1),
but the problem still remains open since the type streampos has been moved to Annex D.

I believe the signature of the function should be:

pos_type get_pos(off_type off , state_type s);

and the description should says:

Effects: Constructs a pos_type value which represents the stream position corresponding to
the pair of off and s .

See issue 27-910.

Requestor: Norihiro Kumagai (kuma @ slab.tnr.sharp.co.jp)

Issue Number: 27-011
Title: Return type for ios_traits::copy is incorrect
Section: 27.4.2.3 ios_traits conversion functions [lib.ios.traits.convert]
Status: active
Description:

The return type for ios_traits::copy says to return dst . It should return dest .

Possible Resolution:

The Santa Cruz meeting, fixes the problem, by accepting doc: 96-0036R1=N0854R1 (Unification
of Traits Revision1). Therefore I propose closing the issue.

Requestor: John Hinke (hinke@roguewave.com)

X3J16/96-0079 WG21/N0897 10

ios_base issues

Issue Number: 27-106
Title: Init class should be an implementation detail
Section: 27.4.3.1.6 Class ios_base::Init [lib.ios::Init]
Status: active
Description:

I fail to see why the Init class is part of the normative Standard. It is an implementation detail
and hence, belongs in the realm of the implementor, not in the Standard.

Possible Resolution:

Requestor: Public Comment

Issue Number: 27-107
Title: ios::failure doesn’t have the same functionality
Section: 27.4.3 Class ios_base [lib.ios.base]
Status: active
Description:

Long ago when I originally proposed ios::failure I put the stream into it (as a reference). It now
doesn’t have that functionality. I don’t know if it was removed deliberately or just got dropped
inadvertantly. I think it should be there.

Possible Resolution:

Requestor: Jerry Schwarz (jss@a.crl.com)

X3J16/96-0079 WG21/N0897 11

basic_ios issues

Issue Number: 27-203
Title: operator bool() needs to be fixed
Section: 27.4.4.3 basic_ios iostate flags functions [lib.iostate.flags]
Status: active
Description:

Defining ios_base (or, as it appears in my copy of the WP, basic_ios) with a member operator
bool() seemed like a good idea at the time, but perhaps the change should be withdrawn.

The reason is: while a conversion to void* is mostly harmless because few functions accept a
void* argument, and void* doesn't silently convert to anything else, with an operator bool, the
following absurdities are well-defined:

1 + cin
sin(cin)
vector<int> v(cin);

and (worse) ambiguities like

void f(istreambuf_iterator<char>);
void f(double);

f(cin); // ambiguous

have been introduced. In other words, this change broke reasonable code. The problem is that
bool is an arithmetic type, and is ill-behaved.

Possible Resolution:

Replace the member ios_base::operator bool() with member
ios_base::operator const void*(), specified to return 0 if fail() is true, and non 0
if it is false.

This restores the code we broke, and also prevents frustrating ambiguities in new code.

[ED Note: This is assuming that these functions will be moved to ios_base as suggested in
one of the editorial boxes]

The Tokyo meeting add editorial box 25.

Requestor: Nathan Myers (ncm@cantrip.org)

Issue Number: 27-205
Title: imbue should not call rdbuf()->pubimbue
Section: 27.4.4.2 Member functions [lib.basic.ios.members]
Status: active
Description:

X3J16/96-0079 WG21/N0897 12

basic_ios::imbue(const locale&) should call rdbuf()->pubimbue(loc) only if rdbuf() is not a null
pointer. Even better, it should not call rdbuf()->pubimbue(loc) at all. Changing the locale that
controls stream conversions is best separated from changing the locale that affects numeric
formatting, etc. Anyone who knows how to imbue a proper pair of codecvt facets in a streambuf
won’t mind having to make an explicit call.

Possible Resolution:

 The first part of the issue has already been resolved, the description of function locale
imbue(const locale& loc) says:

Effects: Calls ios_base::imbue(loc) (27.4.3.3) and if rdbuf() != 0 then rdbuf()->pubimbue(loc)
(27.5.2.2.1).

Concerning the second part you have two possibilities:

If we leave the basic_ios::imbue function unchanged, when users call the imbue function from
basic_istream, basic_ostream or the classes derived from them, they are actually changing both
the locale of the stream object, and the locale of the stream buffer object attached to the stream
object. This is not a real problem, because the stream object is only affected by the ctype,
num_get , num_put, and numpunct facets, while the stream buffer object is affected by the
codecvt facet. Therefore, even if you want to have several stream pointing to the same stream
buffer objects (with a different locale object for each of them), you can easily do it by having all
the different stream locale objects having the same codecvt facet. You could also do it by imbuing
the stream buffer at last. The advantage of this scheme is that in simple cases you need to imbue
just once in the stream object without having to wonder about the stream buffer object attached to
it. The drawback is that you need to be more careful when you imbue in a stream object, and
make sure that the locale object you are imbuing contains the correct codecvt facet; otherwise,
you need to imbue the stream buffer object attached to the stream with another locale.

The other possibility is to remove the call to rdbuf()->pubimbue(loc), in which case you just
imbue the stream object itself. The problem is that in simple cases you need to imbue both the
stream object and the stream buffer attached to it. The advantage is you only imbue the object
that needs to have a change of locale.

Requestor: Public Comment

X3J16/96-0079 WG21/N0897 13

basic_streambuf issues

Issue Number: 27-301
Title: imbuing on streambufs: when, how often, etc...
Section: 27.5.2.2.1 Locales [lib.streambuf.locales]
Status: active
Description:

There needs to be something said as to when a new locale can be imbued into a streambuf or
stream. Which operations are considered “atomic” in regards to locale changes.

Possible Resolution:

The effect of calling imbue during activation of any member of a class derived from
basic_ios<> , or of any operator << or >> in which the class is the left argument, is
unspecified. In particular (e.g.) any codeset conversion occurring in the streambuf may
become incompatible with the formats specified by the old locale and still used.

The effect of calling streambuf::imbue or pub_imbue during activation of any streambuf
virtual member is also undefined.

Requestor: Nathan Myers (ncm@cantrip.org)

X3J16/96-0079 WG21/N0897 14

basic_istream issues

Issue Number: 27-404
Title: istream functions need to check for NULL streambuf
Section: 27.6.1.1 Template class basic_istream [lib.istream]
Status: active
Description:

Functions in basic_istream that call members of rdbuf() need to check for a NULL streambuf
before calling the function. There are some functions that make sure rdbuf() is not a NULL
pointer before calling any functions on the buffer, but some functions don’t check for the NULL
pointer. This needs to be consistent.

Discussion:

P.J. Plauger wrote: “Any attempt to store a null stream buffer pointer causes badbit to be set in
the stored status. Hence, no input or output is ever attempted, using such a pointer, by formatted
functions.”

Possible Resolution:

As pointed out by P.J. Plauger, we should add a footnote to explain why there is no need to check
for a NULL streambuf.

We should also add, in section 27.4.4.2 Member functions [lib.basic.ios.members], the
following to the description of basic_streambuf<charT,traits>*
rdbuf(basic_streambuf<charT,traits>* sb); :

Postcondition: sb == rdbuf() and if sb is a NULL pointer rdstate() == badbit.

Note: This issue has to be discussed with issue 27-503.

Requestor: John Hinke (hinke@roguewave.com)

Issue Number: 27-405
Title: confusing English in formatted requirements
Section: 27.6.1.2.1 Common requirements [lib.istream.formatted.reqmts]
Status: active
Description:

27.6.1.2.1 [lib.istream.formatted.reqmts]: Paragraph 5: "In case the converting result is a value of
either an integral type ... or a float type ... performing to parse and convert the result depend on
the imbued locale object." This is really French converted to English by translation software,
right? :->}

Possible Resolution:

The imbued locale object is responsible for parsing and converting the result when extracting an
integral type (short, unsigned short, int, unsigned int, long, unsigned long) or a float type (float,
double, long double). So the behavior of the above type extractors are locale-dependent. The
imbued locale object uses an istreambuf_iterator to access the input character sequence.

X3J16/96-0079 WG21/N0897 15

Requestor: Public Comment

Issue Number: 27-406
Title: operator>>(char_type *) failure
Section: 27.6.1.2.2 basic_istream::operator>> [lib.istream::extractors]
Status: active
Description:

27.6.1.2.2 [lib.istream::extractors]: Paragraph 2: "If the function stores no characters, it calls
setstate(failbit), which may throw ios_base::failure (27.4.4.3). In any case, it then stores a null
character" How can it store anything if an exception is thrown? C++ does not use the
resumption model for exception handling. Different language than "In any case" is needed here.

Possible Resolution:

Change paragraph 2 to:

“If the function stores no characters, it calls setstate(failbit), which may throw ios_base::failure
(27.4.4.3).”

Add paragraph 3:

“Before returning or throwing an exception the function stores a null character into the next
successive location of the array and calls width(0).”

Requestor: Public Comment

Issue Number: 27-407
Title: operator>>(char_type) failure
Section: 27.6.1.2.2 basic_istream::operator>> [lib.istream::extractors]
Status: active
Description:

27.6.1.2.2 [lib.istream::extractors]: Paragraph 2:

basic_istream<charT,traits>& operator>>(char_type& c);

Effects: Extracts a character, if one is available, and stores it in c. Otherwise, the function calls
setstate(failbit).

Not eofbit?

Possible Resolution:

In 27.6.1.2.1 Common requirements [lib.istream.formatted.reqmts] paragraph 8 says:

“If the scan fails for any reason, the formatted input function calls setstate(failbit), which may
throw ios_base::failure (27.4.4.3).”

This is one of the requirements for all the formatted input functions. Because of this the user can
call the ios_base member function fail() or the operator bool () to check if the extraction failed.
The user can therefore write code like this:

X3J16/96-0079 WG21/N0897 16

if (in >> s)
 { perform some action }

Requestor: Public Comment

Issue Number: 27-408
Title: ws manipulator
Section: 27.6.1.4 Standard basic_istream manipulators [lib.istream.manip]
Status: active
Description:

27.6.1.4 [lib.istream.manip]: "... saves a copy of is.fmtflags"
Should this not read "... saves a copy of is.flags"?

Possible Resolution:

The Effects: clause should be changed to:

“Effects: Skips any white space in the input sequence. Saves a copy of the fmtflags by storing the
result of the call to is.flags(), calls is.setf(ios_base::skipws), then constructs a sentry object and
restores the fmtflags to their saved values.”

Requestor: Public Comment

Issue Number: 27-409
Title: unsigned short extractors cannot use unsigned long get function
Section: 27.6.1.2.2 basic_istream ::operator>> [lib.istream::extractors]
Status: active
Description:

Unsigned short (and unsigned int) extractors cannot use unsigned long get function in num_get.
It cannot distinguish certain valid inputs from errors.

Possible Resolution:

P.J. Plauger wrote: “num_get should add a get function (and underlying do get) for unsigned
short and unsigned int extractions. Otherwise, input values in the range -1 through -
USHRT_MAX (or -UINT_MAX) look erroneous, and cannot be distinguished from truly
erroneous values.”

These functions have been added to the WP, see 22.2.2.1 Template class num_get.
Therefore, I propose to close the issue.

Requestor: P.J. Plauger (plauger!pjp@uunet.uu.net)

Issue Number: 27-410
Title: putback function has wrong description
Section: 27.6.1.3 Unformatted input functions [lib.istream.unformatted]
Status: active
Description:

The description of the putback function is incorrect.

X3J16/96-0079 WG21/N0897 17

Possible Resolution:

The complete description of the function should be:

basic_istream<charT,traits>& putback(char_type c);

Effects: If rdbuf() is not null, calls rdbuf()->sputbackc(c). If rdbuf() is null, or if sputbackc(c)
returns traits::eof(), calls setstate(badbit) (which may throw ios_base::failure (27.4.4.3)).
Returns: *this.

Requestor: Philippe Le Mouël (philippe@roguewave.com)

Issue Number: 27-411
Title: getline should not set failbit when reading no characters
Section: 27.6.1.3 Unformatted input functions [lib.istream.unformatted]
Status: active
Description:

When the function getline is called and the stream has a line that contains no text,
ios_base::failbit is set on the input stream (which may throw ios_base::failure). While consistent
with the behavior of the similar function named get, the behavior is quite inconvenient.
Furthermore, I tested this behavior on the AT&T Release 3.0 implementation of Iostreams and I
did not encounter the problem described above. The same comment also apply to the string’s
getline function described in section 21.1.1.10.8 Inserters and extractors [lib.string.io] .

Possible Resolution:

The complete description of the function getline ([lib.istream.unformatted]) should be:

basic_istream<charT,traits>& getline(char_type* s, streamsize n, char_type delim = traits::newline());

Effects: Extracts characters and stores them into successive locations of an array whose first
element is designed by s. Characters are extracted and stored until one of the following occurs:

1) end-of-file occurs on the input sequence (in which case the functions call setstate(eofbit)).
2) c == delim for the next available input character c (in which case the input character is

extracted but not stored).
3) n - 1 characters are stored (in which case the function calls setstate(failbit), which may throw

ios_base::failure (27.4.4.3)).

 These conditions are tested in the order shown.

In any case, it then stores a null character (using traits::eos()) into the next successive location of
the array.
Returns: *this.

In section 21.1.1.10.8 Inserters and extractors [lib.string.io] paragraph 3 “If the function extracts
no characters, it calls is.setstate(ios_base::failbit) which may throw ios_base::failure(27.4.4.3).”
should be removed.

Requestor: Public Comment

X3J16/96-0079 WG21/N0897 18

Issue Number: 27-412
Title: operator >>(basic_streambuf *sb), should not set badbit if sb is null
Section: 27.6.1.2.2 basic_istream::operator >> [lib.istream::extractors]
Status: active
Description:

basic_istream::operator>>(basic_streambuf *sb) now says, ``If sb is null, calls setstate(badbit).''
This requirement was added without committee approval. It is also inconsistent with the
widespread convention that badbit should report loss of integrity of the stream proper (not some
other stream). A null sb should set failbit.

Possible Resolution:

Change the first sentence of the Effects: clause to:

If sb is null, calls setstate(failbit), which may throw ios_base::failure.

Requestor: Public Comment

X3J16/96-0079 WG21/N0897 19

basic_ostream issues

Issue Number: 27-501
Title: ostream<<(char) : formatting, padding, width
Section: 27.6.2.4.2 basic_ostream::operator<< [lib.ostream.inserters]
Status: active
Description:

For historical reasons, this function has usually ignored padding and formatting. In the WP, it
does not mention anything about ignoring padding or formatting. This needs to be clarified.

Reasons for ignoring padding on op<<(char):

1. Historical reasons/compatibility

Reasons for full formatting on op<<(char):

1. put(char) currently does no formatting. But there is no way to insert a char with
formatting.

2. Some implementations do formatting.

Since put can insert a character without formatting, there needs to be a way to insert a character
with formatting. Currently this does not exist. It would be nice not to introduce an inconsistency
with the other formatted inserters, but it would also be nice to provide compatibility. I think that
consistency would be much better in this case than compatibility.

Possible Resolution:

At the Tokyo meeting the straw vote gave the following result:

5 for past practice (no padding), 1 for consistency.

We should organize another straw vote at the next meeting and if the result matches the one
above, close the issue.

Requestor: John Hinke (hinke@roguewave.com),
Bernd Eggink (admin@rrz.uni-hamburg.de)

Issue Number: 27-502
Title: ostream::operator<<(void *)
Section: 27.6.2.4.2 basic_ostream::operator<< [lib.ostream.inserters]
Status: Active
Description:

basic_ostream<charT,traits>& operator<<(void *)

should take ‘const volatile void *’ rather than void *.

Resolution:

The function now takes a const void *.

X3J16/96-0079 WG21/N0897 20

Reopened:

Does anyone know why the resolution was for it to take a const void * rather than a const volatile
void *?

I can't think of any good reason why we should make the code:

#include <iostream>
volatile int x;
int main() {

cout << & x;
return 0;

}

ill-formed.

Possible Resolution:

We need to change basic_ostream<charT,traits>& operator<<(void *) to
basic_ostream<charT,traits>& operator<<(const volatile void *) to avoid breaking the code
above, but also because of issue 27-203. If we adopt issue 27-203 and we do not make the change
described above we will end up with the following:

volatile int x;
cout << &x;

This will call operator const void*() which will return !fail() and then cout the result.

Requestor: Fergus Henderson (fjh@munta.cs.mu.oz.au)
Philippe Le Mouël (philippe@roguewave.com)

Issue Number: 27-503
Title: ostream functions need to check for NULL streambuf
Section: 27.6.2.1 Template class basic_ostream [lib.ostream]
Status: active
Description:

Functions in basic_ostream that call members of rdbuf() need to check for a NULL streambuf
before calling the function. There are some functions that make sure rdbuf() is not a NULL
pointer before calling any functions on the buffer, but some functions don’t check for the NULL
pointer. This needs to be consistent.

Discussion:

P.J. Plauger wrote: “Any attempt to store a null stream buffer pointer causes badbit to be set in
the stored status. Hence, no input or output is ever attempted, using such a pointer, by formatted
functions.”

Possible Resolution:

As pointed out by P.J. Plauger we should add a footnote to explain why there is no need to check
for a NULL streambuf.

X3J16/96-0079 WG21/N0897 21

We should also add in section 27.4.4.2 Member functions [lib.basic.ios.members] the
following to the description of basic_streambuf<charT,traits>*
rdbuf(basic_streambuf<charT,traits>* sb); :

Postcondition: sb == rdbuf() and if sb is a NULL pointer rdstate() == badbit.

Note: This issue has to be discussed with issue 27-404.

Requestor: John Hinke (hinke@roguewave.com)

Issue Number: 27-505
Title: incorrect conversion specifier for operator<<(unsigned long)
Section: 27.6.2.4.2 basic_ostream::operator<< [lib.ostream.inserters]
Status: active
Description:

basic_ostream<charT,traits>& operator<<(unsigned long n);

Effects: Converts the unsigned long integer n with the integral conversion specified preceded by
l.

Should this be "... preceded by ul."?

Possible Resolution:

The Effects: clause says:

“Effects: Converts the unsigned long integer n with the integral conversion specifier preceded by
l.”

To me this is correct, but it may be not precise enough. The integral conversion specifier can be
“d” for a signed integral type and “u” for a unsigned integral type. If we decide to be precise
about this fact in the Effects clause, we will have to do the same for all the other unsigned
inserters.

Requestor: Public Comment

Issue Number: 27-506
Title: wrong default behavior for padding
Section: 27.6.2.4.1 Common requirements Table 13 Fill padding

[lib.ostream.formatted.reqmts]
Status: active
Description:

27.6.2.4.1 Table13 Fill padding changes the long-standing default behavior for padding output
field. It has always been true that setting none of left, right, and internal called for left padding
(pad after text). Now it calls for right padding (pad before text). Since this is the initial state of
all ios objects, many simple C++ programs will change behavior.

Possible Resolution:

X3J16/96-0079 WG21/N0897 22

P.J. Plauger wrote: “Table 13 should describe the effect of right/internal/otherwise, as it has long
been, rather than left/internal/otherwise. Change was originally unauthorized, then endorsed (I
hope by accident) at the July ’95 meeting.”

I tested the default padding by compiling the following code:

“cout << setw(10) << setfill(‘@’) << “test” << endl; ”

With the following old iostream library:

- AT&T Release 3.0
- Borland C/C++ Run Time Library - Version 6.5

The result was right padding (pad before text) for all of them.

Therefore I think the current behavior is correct.

Requestor: P.J. Plauger (plauger!pjp@uunet.uu.net)

X3J16/96-0079 WG21/N0897 23

basic_istream/basic_ostream issues

Issue Number: 27-601
Title: istream::operator>>(ios_base&), ostream::operator<<(ios_base&)
Section: 27.6.1.2.2 basic_istream::operator>> [lib.istream::extractors],

27.6.2.4.2 basic_ostream::operator<< [lib.ostream.inserters]
Status: active
Description:

The ios_base manipulators 27.4.5.1[lib.std.ios.manip] will not work as written. They won’t
work because there is no conversion from ios_base to basic_ios.

They are currently declared as:
ios_base& boolalpha(ios_base&);

I propose adding a new insertor/extractor for istream and ostream that does insertion/extraction
for ios_base.

Possible Resolution:

John wrote:

“Add to basic_istream:

basic_istream<charT, traits>& operator>>(ios_base& (*pf)(ios_base&));

Effects: Calls (*pf)(*this)
Returns: *this.

Add to basic_ostream:

basic_ostream<charT, traits>& operator<<(ios_base& (*pf)(ios_base&));

Effects: Calls (*pf)(*this)
Returns: *this.

Also, several footnotes will need to be changed.”

We need to change footnote 9 in 27.4.5.3 basefield manipulators [lib.basefield.manip] to:

“The function signature dec(ios_base& str) can be called by the function signature
basic_ostream<charT,traits>& basic_ostream<charT,traits>::operator << (ios_base& (*)
(ios_base&)) to permit expressions of the form cout << dec to change the format flags stored in
cout.”

Requestor: John Hinke (hinke@roguewave.com)

Issue Number: 27-602
Title: positional typedefs in istream/ostream derived classes
Section: 27
Status: active

X3J16/96-0079 WG21/N0897 24

Description:

Remove the positional typedefs from the following classes. The positional typedefs are:

typedef traits::pos_type pos_type;
typedef traits::off_type off_type;

They are not used in the following classes:

basic_istringstream
basic_ostringstream
basic_ifstream
basic_ofstream

Possible Resolution:

John wrote:

“Remove them. They are still inherited from the base classes.”

I do not think that they are inherited from the base classes (see typename discussions).

Requestor: John Hinke (hinke@roguewave.com)

Issue Number: 27-603
Title: istream::read, ostream::write
Section: 27.6.1.3 Unformatted input functions [lib.istream.unformatted],

27.6.2.5 Unformatted output functions [lib.ostream.unformatted]
Status: active
Description:

basic_istream<charT,traits>& basic_istream<charT,traits>::read(char_type *,streamsize);
basic_ostream<charT,traits>& basic_ostream<charT,traits>::write(const char_type *,streamsize);

These functions are typically used for binary data.

Possible Resolution:

John wrote:

“These functions should take a void * instead of char_type *. If these functions are changed,
then perhaps we should add another function that replaces this behavior. basic_istream currently
has a get function, which behaves like the read and write functions. It would make sense to add a
corresponding put function in basic_ostream that parallels the behavior of get.”

I think we should let these functions remain the way they are, because no other function performs
the exact same task.The get function in basic_istream does not behave like the read function, it
takes an extra parameter, and if this parameter is equal to the current read character, the function
does not read any more characters. The question becomes, do we need to add functions taking a
void* parameter ? They could be useful if you want to insert or extract binary data from a wide
characters stream. In this case, the classic read and write functions are not sufficient, because the
size of the data to be extracted or inserted has to be a multiple of the character size. The problem
is that the underlying streambuf is using charT type and if you want to move inside the streambuf

X3J16/96-0079 WG21/N0897 25

or perform read or write operations, they will have to be done by multiples of the charT size. The
question therefore becomes, is the price to add these two functions too high ?

Requestor: John Hinke (hinke@roguewave.com)

Issue Number: 27-604
Title: Opening an istream without ios::in set? or an ostream without ios::out set?
Section: 27.6.1.1 Template class basic_istream [lib.input.streams],

27.6.2.1 Template class basic_ostream [lib.output.streams]
Status: active
Description:

Benedikt asks,
“Why can I open an istream without ios::in being set or an ostream without ios::out? I mean, I
just did that by mistake with an ofstream and searched for quite a while to find out, why there
were no actual writes to the newly created file.

“Or, even worse, why can I open an istream with ios::out (and no ios::in) being set and vice
versa?

“Shouldn't the iostreams check whether the given mode flags make any sense, and maybe even
add ios::in if you missed to set this in an istream, or ios::out if you used an ostream?”

Possible Resolution:

The only way to create an istream or ostream object is by calling the constructor “explicit
basic_istream(basic_streambuf<charT,traits>* sb);” for istream and “explicit basic_ostream(
basic_streambuf<charT,traits>* sb);” for ostream. At this point an implementation should do
something like:

In basic_istream constructor:

if (sb->which_open_mode() & ios_base::in)
 init(sb);
 else
 init(0);
In basic_ostream constructor:

if (sb->which_open_mode() & ios_base::out)
 init(sb);
 else
 init(0);

But the actual open mode is really set up in the buffer, which can be basic_stringbuf,
basic_filebuf or strstreambuf according to the kind of object you are using.
In the draft, it is clear that whenever you create an object of type basic_ifstream,
basic_istringstream or istrstream the buffer’s open mode is set to “in” and when you create an
object of type basic_ofstream, basic_ostringstream, or ostrstream, the buffer’s open mode is set to
“out” (see constructor description for all these objects). Therefore a correct implementation will
not allow the behavior described above by Benedikt.

Requestor: Benedikt Erik Heinen (beh@tequila.oche.de)

X3J16/96-0079 WG21/N0897 26

Issue Number: 27-605
Title: get/put type functions should be able to use iterators.
Section: 27.6.1.3 Unformatted input functions [lib.istream.unformatted]

27.6.2.5 Unformatted output functions [lib.ostream.unformatted]
Status: active
Description:

Several functions in istream and ostream take a pointer and a length and optionally a delimiter.
It would be nice to add overloaded functions that take either InputIterators, or OutputIterators.
These new functions would look like:

For basic_istream:

template<class OutputIterator>
istream& get(OutputIterator begin, OutputIterator end, char_type delim);

The begin and end iterators define where the characters will be written. Characters will be
read from the sequence until the end iterator is reached, or the next character is delim.

For basic_ostream:

template<class InputIterator>
ostream& write(InputIterator begin, InputIterator end);

The begin and end iterators define the sequence of characters to be written.

These functions would be added to the current implementation. The current set of functions
should not be removed. They are very commonly used. There are several functions which are
candidates for these begin and end iterators. These functions are:

For basic_istream:

istream& get(char_type *, streamsize, char_type);
istream& getline(char_type *, streamsize, char_type);
istream& read(char_type *, streamsize);

For basic_ostream:

ostream& put(char_type *, streamsize);
ostream& write(void *, streamsize);

Possible Resolution:

I do not think it is really necessary. We should have a vote to decide if we want to adopt this
change or not.

Requestor: Nathan Myers (ncm@cantrip.org)

Issue Number: 27-606
Title: seekg and seekp should have their first parameter passed by value.
Section: 27.6.1.3 Unformatted input functions [lib.istream.unformatted]

27.6.2.3 basic_ostream prefix and suffix functions [lib.ostream.prefix]
Status: active

X3J16/96-0079 WG21/N0897 27

Description:

The following functions should have their first parameter passed by value as described in
27.6.1.1 Template class basic_istream [lib.istream] and 27.6.2.1 Template class
basic_ostream [lib.ostream].

basic_istream<charT,traits>& seekg(off_type& off, ios_base::seekdir dir);
basic_ostream<charT,traits>& seekp(pos_type& pos);
basic_ostream<charT,traits>& seekp(off_type& off, ios_base::seekdir dir);

The seekp functions should also be moved in section 27.6.2.5 Unformatted output functions
[lib.ostream.unformatted].

Possible Resolution:

Change them to:

basic_istream<charT,traits>& seekg(off_type off, ios_base::seekdir dir);
basic_ostream<charT,traits>& seekp(pos_type pos);
basic_ostream<charT,traits>& seekp(off_type off, ios_base::seekdir dir);

Requestor: Philippe Le Mouël (philippe@roguewave.com)

X3J16/96-0079 WG21/N0897 28

Standard manipulators issues

Issue Number: 27-651
Title: setfill description is wrong
Section: 27.6.3 Standard manipulators [lib.std.manip]
Status: active
Description:

P.J. Plauger wrote: “Setfill description is nonsense, since a fill character is now a charT, which
cannot necessarily be represented as type int. Nor can it be applied to ios_base, since the fill
character now inhabits basic_ios.”

Possible Resolution:

setfill should be changed to:

template <class charT>
smanip<charT> setfill (charT c);

Returns: smanip<charT>(f,c) where f can be defined as:

template <class charT>
basic_ios<charT,ios_traits<charT>>& f (basic_ios<charT,ios_traits<charT>>& str, charT c)
{ // set fill character
 str.fill (c);
 return str;
}

Requestor: P.J. Plauger (plauger!pjp@uunet.uu.net)
Philippe Le Mouël (philippe@roguewave.com)

Issue Number: 27-652
Title: smanip is not a single type
Section: 27.6.3 Standard manipulators [lib.std.manip]
Status: active
Description:

P.J. Plauger wrote: “Description of manipulators strongly suggests that smanip is a single type. It
was supposed to make clear that each manipulator can return a different type, as needed. (And
more than one type is certainly needed here.)”

Possible Resolution:

27.6.3 standard manipulators paragraph 2 says: “The type smanip is an implementation-defined
type (_dcl.fct_) returned by the standard manipulators.”. We need to rewrite this sentence to
make it clear that smanip is not restrained to one physical type.

Requestor: P.J. Plauger (plauger!pjp@uunet.uu.net)
Philippe Le Mouël (philippe@roguewave.com)

X3J16/96-0079 WG21/N0897 29

string stream issues

Issue Number: 27-701
Title: basic_stringbuf::str() needs to clarify return value on else clause
Section: 27.7.1.2 Member functions [lib.stringbuf.members]
Status: active
Description:

“Table 15 in [lib.stringbuf.members] describes the return values of basic_stringbuf::str(). What
does the "otherwise" mean?. Does it mean neither ios_base::in nor ios_base::out is set? What is
the return value supposed to be if _both_ bits are set?”

Possible Resolution:

My understanding is that if both ios_base::in and ios_base::out are set, you should return
basic_string<char_type>(eback(),egptr()-eback()). I propose to change the Returns: clause to
clarify this fact.

Returns: The return values of this function are indicated in Table 15 and the test that determine
these values are carried out in the order shown in Table 15.

Requestor: Angelika Langer (langer@roguewave.com)
Bernd Eggink (admin@rrz.uni-hamburg.de)

Issue Number: 27-702
Title: string streams need allocator and string_char_traits parameters
Section: 27.7.1 Template class basic_stringbuf [lib_stringbuf]
Status: active
Description:

The string streams are currently templatized on the character type (charT) and the traits type
(ios_traits). String template parameters need to be added.

Possible Resolution:

The Santa Cruz meeting, fixes the problem, by accepting doc: 96-0036R1=N0854R1 (Unification of Traits
Revision1). Therefore I propose closing the issue.

Requestor: John Hinke (hinke@roguewave.com)

Issue Number: 27-703
Title: stringbuf postconditions
Section: 27.7.1.2 Member functions [lib.stringbuf.members]
Status: active
Description:

basic_stringbuf::str(basic_string s) Postconditions requires that str() == s. This is true only if
which had in set at construction time. Condition should be restated.

Possible Resolution:

 I think the real problem is in “Table 16 - str get/set areas”. Its second line says:

X3J16/96-0079 WG21/N0897 30

(which & ios_base::out) != 0 setp(str(),str(),str()+str.size())

First, the function setp takes only two parameters. Furthermore it should say:

(which & ios_base::out)!= 0 setp(str(),str()+s.size())
then if: (which & (ios_base::app | ios_base::ate))!=0 pbump(s.size())

Then the postcondition requiring that str() == s in the function void str(const
basic_string<char_type>& s) will be valid if “in” or “out” and “app” or “ate” are set at
construction time.

Table 16 should be changed to:

Table 16—str get/set areas

Condition Setting
(which & ios_base::in)!=0 setg(str(), str(), str()+s.size())
(which & ios_base::out)!=0 setp(str(),str()+s.size())
(which & (ios_base::app | ios_base::ate))!=0 pbump(s.size())

The postcondition should be changed to:

Postcondition: if ios_base::in, or ios_base::out and ios_base::app or ios_base::ate are set at
construction time, then str()==s. Otherwise str() == basic_string<char_type>(). If s.size() >0, set
the get and/or put pointers as indicated in Table 16.

Requestor: Public Comment

Issue Number: 27-704
Title: stringbuf::stringbuf constructor
Section: 27.7.1.1 basic_stringbuf constructors [lib.stringbuf.cons]
Status: active
Description:

basic_stringbuf::basic_stringbuf(basic_string str, openmode which) Postconditions requires that
str() == str. This is true only if which has in set. Condition should be restated.

Possible Resolution:

This is the same problem described in issue 27-703.

The real problem is in “Table 14 - str get/set areas”. The second line says:

(which & ios_base::out) != 0 setp(str(),str(),str()+str.size())

First, the function setp takes only two parameters. Furthermore it should say:

(which & ios_base::out)!= 0 setp(str(),str()+str.size())
then if: (which & (ios_base::app | ios_base::ate))!=0 pbump(str.size())

X3J16/96-0079 WG21/N0897 31

Then the postcondition requiring that str() == str in the function basic_stringbuf::
basic_stringbuf(basic_string str, openmode which) will be valid if “in” or “out” and “app” or
“ate” are set.

Table 14 should be changed to:

Table 14—str get/set areas

Condition Setting
(which & ios_base::in)!=0 setg(str(), str(), str()+str.size())
(which & ios_base::out)!=0 setp(str(),str()+str.size())
(which & (ios_base::app | ios_base::ate))!=0 pbump(str.size())

The postcondition should be changed to:

Postcondition: if ios_base::in, or ios_base::out and ios_base::app or ios_base::ate are set at
construction time, then str()==str. Otherwise str() == basic_string<char_type>(). If str.size() >0,
set the get and/or put pointers as indicated in Table 14.

Requestor: Public Comment

Issue Number: 27-705
Title: Incorrect calls to setg and setp in Table 14
Section: 27.7.1.1 basic_stringbuf constructors [lib.stringbuf.cons]
Status: active
Description:

Table 14 describes calls to setg and setp with string arguments, for which no signature exists.
Needs to be recast.

Possible Resolution:

Possible Resolution of issue 27-704 solves this problem.

Requestor: Public Comment

Issue Number: 27-706
Title: Incorrect calls to setg and setp in table 16
Section: 27.7.1.2 Member functions [lib.stringbuf.members]
Status: active
Description:

Table 16 describes calls to setg and setp with string arguments, for which no signature exists.
Needs to be recast.

Possible Resolution:

Possible Resolution of issue 27-703 solves this problem

Requestor: Public Comment

Issue Number: 27-707
Title: setbuf function is missing

X3J16/96-0079 WG21/N0897 32

Section: 27.7.1 Template class basic_stringbuf [lib.stringbuf]
Status: active
Description:

Steve Clamage wrote: “Section 27.7.1.3 should have a basic_stringbuf override of the base class
setbuf() function, but it is missing.”

Possible Resolution:

Add the following description in 27.7.1 Template class basic_stringbuf [lib.stringbuf] and
27.7.1.3 Overridden virtual functions [lib.stringbuf.virtuals] :

basic_streambuf<charT,traits>* setbuf(char_type* s, int n);

Effects: If (mode & ios_base::out) is true, proceed as follows:
If s is not a null pointer, and n > pptr() - pbase(), replace the current buffer (copy its contents and
deallocate it) by the buffer of size n pointed at by s.
In the case where s is a null pointer, and n > pptr() - pbase() resize the current buffer to size n.
If the function fails, it returns a null pointer.
Returns: (basic_streambuf<charT,traits>*)(this)

I am not qualified enough to decide if the return type should be changed to
basic_stringbuf<charT,traits>* as proposed by Steve Clamage in issue 27-809. I tried it with
several compilers, and the results were just error messages. Basically, the compilers were
complaining about the fact that the base class virtual function and the overridden virtual function
should have the same return type.

Requestor: Steve Clamage (stephen.clamage@eng.sun.com)

X3J16/96-0079 WG21/N0897 33

file stream issues

Issue Number: 27-801
Title: filebuf::underflow example
Section: 27.8.1.4 Overridden virtual functions [lib.filebuf.virtuals]
Status: active
Description:

The “as if” example for basic_filebuf::underflow has several “typos”. It should say:

char from_buf[FSIZE};
char* from_end;
char to_buf[TSIZE};
char* to_end;
typename traits::state_type st;

codecvt_base::result r =
getloc().template use<codecvt<char, charT,
typename traits::state_type> >().convert
(st, from_buf, from_buf+FSIZE, from_end,
to_buf, to_buf+TSIZE, to_end);

Possible Resolution:

We should correct the example as follows, and not as described above:

char from_buf[FSIZE};
char* from_end;
charT to_buf[TSIZE};
charT* to_end;
typename traits::state_type st;

 codecvt_base::result r=
 use_facet<codecvt<char,charT,typename traits::state_type> >(getloc()).
 convert(st,from_buf,from_buf+FSIZE,from_end,to_buf,to_buf+TSIZE,to_end);

Should be treated with issue 27-812.

Requestor: John Hinke (hinke@roguewave.com)

Issue Number: 27-802
Title: filebuf::is_open is a bit confusing
Section: 27.8.1.3 Member functions [lib.filebuf.members]
Status: active
Description:

It says, “Returns: true if the associated file is available and open.” What is the meaning of
available? This seems a bit confusing.

Possible Resolution:

X3J16/96-0079 WG21/N0897 34

Change the Returns: statement to:

Returns: true after a successful call to the member function open, and before a successful call to
member function close, otherwise false.

Requestor: John Hinke (hinke@roguewave.com),
Bob Kline (bkline@cortex.nlm.nih.gov)

Issue Number: 27-803
Title: ofstream constructor missing trunc as openmode
Section: 27.8.1.9 basic_ofstream constructors [lib.ofstream.cons]
Status: active
Description:

basic_ofstream::basic_ofstream(const char *s, openmode mode = out) has wrong default second
argument. It should be `out | trunc', the same as for basic_ofstream::open (in the definition at
least).

Possible Resolution:

In 27.8.1.9 basic_ofstream constructors [lib.ofstream.cons] change:

explicit basic_ofstream(const char* s, openmode mode = out);

to:

explicit basic_ofstream(const char* s, ios_base::openmode mode = ios_base::out | ios_base::trunc);

In 27.8.1.10 Member functions [lib.ofstream.members] change:

void open(const char* s, openmode mode = out);

to:

void open(const char* s, ios_base::openmode mode = ios_base::out | ios_base::trunc);

Requestor: Public Comment

Issue Number: 27-804
Title: ofstream::open missing trunc in openmode
Section: 27.8.1.10 Member functions [lib.ofstream.members]
Status: active
Description:

basic_ofstream::open(const char *s, openmode mode = out) has wrong default second argument.
It should be `out | trunc', the same as for basic_ofstream::open in the definition.

Possible Resolution:

See issue 27-803.

Requestor: Public Comment

X3J16/96-0079 WG21/N0897 35

Issue Number: 27-805
Title: filebuf::imbue semantics
Section: 27.8.1.4 Overridden virtual functions [lib.filebuf.virtuals]
Status: active
Description:

basic_filebuf::imbue has silly semantics. Whether or not sync() succeeds has little bearing on
whether you can safely change the working codecvt facet. The most sensible thing is to establish
this facet at construction. (Then pubimbue and imbue can be scrubbed completely.) Next best is
while is_open() is false. (Then imbue can be scrubbed, since it has nothing to do.) Next best is to
permit any imbue that doesn't change the facet or is at beginning of file. Next best is to permit
change of facet any time provided either the current or new facet does not mandate state-
dependent conversions. (See comments under seekoff.)

Possible Resolution:

In my current version of the WP, I do not have any description for the virtual filebuf imbue
function. See issue 27-814.

Requestor: Public Comment

Issue Number: 27-806
Title: filebuf::seekoff Effects: clause needs work
Section: 27.8.1.4 Overridden virtual functions [lib.filebuf.virtuals]
Status: active
Description:

basic_filebuf::seekoff Effects is an interesting exercise in creative writing. It should simply state
that if the stream is opened as a text file or has state-dependent conversions, the only permissible
seeks are with zero offset relative to the beginning or current position of the file. (How to
determine that predicate is another matter -- should state for codecvt that even a request to
convert zero characters will return noconv.) Otherwise, behavior is largely the same as for
basic_stringstream, from whence the words should be cribbed. The problem of saving the stream
state in a traits::pos_type object remains unsolved. The primitives described for ios_traits are
inadequate.

Possible Resolution:

Requestor: Public Comment

Issue Number: 27-807
Title: filebuf::underflow performance questions
Section: 27.8.1.4 Overridden virtual functions [lib.filebuf.virtuals]
Status: active
Description:

basic_filebuf::underflow is defined unequivocally as the function that calls codecvt, but there are
performance advantages to having this conversion actually performed in uflow. If the
specification cannot be broadened sufficiently to allow either function to do the translation, then
uflow loses its last rationale for being added in the first place. Either the extra latitude should be
granted implementors or uflow should be removed from basic_streambuf and all its derivatives.

X3J16/96-0079 WG21/N0897 36

Possible Resolution:

To me underflow is also called by uflow, so it is simple to make the actual call to the codecvt
facet in underflow.

Requestor: Public Comment

Issue Number: 27-808
Title: Editorial fixes in wording for fstreams
Section: 27.8.1 File streams [lib.fstreams]
Status: active
Description:

27.8.1 [lib.fstreams], paragraph 2: "... the type name FILE is a synonym for the type FILE." This
seems like an odd sort of synonym, doesn't it? Also, the last sentence of this subsection, "Because
of necessity of the conversion between the external source/sink streams and wide character
sequences." is incomplete.

Possible Resolution:

Requestor: Public Comment

Issue Number: 27-809
Title: Description of function setbuf is missing
Section: 27.8.1.4 Overridden virtual functions [lib.filebuf.virtuals]
Status: active
Description:

Steve Clamage wrote: “basic_filebuf version of setbuf() needs a description, and the return type
shown in the draft is basic_streambuf*, which is probably wrong. It was correct before covariant
return types were added to the draft. Now it should probably return basic_filebuf*.”

Possible Resolution:

Add the following description in 27.8.1.4 Overridden virtual functions [lib.filebuf.virtuals] :

basic_streambuf<charT,traits>* setbuf(char_type* s, streamsize n);

Effects: If s is not a null pointer, flush the buffer by calling overflow(traits::eof()) and if the
return value is not traits::eof(), deallocate the current buffer and replace it by the buffer of size n
pointed at by s.
In the case where s is a null pointer, resize the current buffer to size n (this can result in flushing
the buffer).
If the function fails, it returns a null pointer.
Returns: (basic_streambuf<charT,traits>*)(this)

I am not qualified enough to decide if the return type should be changed or not as proposed by
Steve Clamage. I tried it with several compilers, and the results were just error messages.
Basically, the compilers were complaining about the fact that the base class virtual function and
the overridden virtual function should have the same return type.

Requestor: Steve Clamage (stephen.clamage@eng.sun.com)

X3J16/96-0079 WG21/N0897 37

Issue Number: 27-810
Title: Openmode notation is not consistent in basic_ifstream and basic_ofstream
Section: 27.8.1.5 Template class basic_ifstream [lib.ifstream]

27.8.1.8 Template class basic_ofstream [lib.ofstream]
Status: active
Description:

basic_ifstream, basic_ofstream constructors and member functions open describe the type
ios_base::openmode as openmode and its values as in and out rather than ios_base::in and
ios_base::out as everywhere else in the library.

Possible Resolution:

 In 27.8.1.5 Template class basic_ifstream [lib.ifstream] , 27.8.1.6 basic_ifstream
constructors [lib.ifstream.cons] and 27.8.1.7 member functions [lib.ifstream.members]
change the following functions:

explicit basic_ifstream(const char* s, openmode mode = in);
 to:

explicit basic_ifstream(const char* s, ios_base::openmode mode = ios_base::in);

void open(const char* s, openmode mode = in);
 to:
 void open(const char* s, ios_base::openmode mode = ios_base::in);

In 27.8.1.8 Template class basic_ofstream [lib.ofstream] , 27.8.1.9 basic_ofstream
constructors [lib.ofstream.cons] and 27.8.1.10 member functions [lib.ofstream.members]
change the following functions:

explicit basic_ofstream(const char* s, openmode mode = out | trunc);
 to:

explicit basic_ofstream(const char* s, ios_base::openmode mode = ios_base::out | ios_base::trunc);

void open(const char* s, openmode mode = out | trunc);
 to:
 void open(const char* s, ios_base::openmode mode = ios_base::out | ios_base::trunc);

Requestor: Philippe Le Mouël (philippe@roguewave.com)

Issue Number: 27-811
Title: Description of function sync is missing
Section: 27.8.1.4 Overridden virtual functions [lib.filebuf.virtuals]
Status: active
Description:

Description of the overridden sync() function in class basic_filebuf is missing.

Possible Resolution:

Add the following description in 27.8.1.4 Overridden virtual functions [lib.filebuf.virtuals] :

int sync();

X3J16/96-0079 WG21/N0897 38

Effects: If pbase() is non-null calls overflow(traits::eof()), which outputs the content of the
buffer to the associated file.
Returns: If the call to overflow returns traits::eof(), returns -1 to indicate failure, otherwise
returns 0.

Requestor: Philippe Le Mouël (philippe@roguewave.com)

Issue Number: 27-812
Title: filebuf::overflow example is incorrect
Section: 27.8.1.4 Overridden virtual functions [lib.filebuf.virtuals]
Status: active
Description:

The “as if” example for basic_filebuf::overflow has several “typos”. It should say:

charT* b = pbase();
charT* p = pptr();
charT* end;
char buf[BSIZE];
char* ebuf;
typename traits::state_type st;

 codecvt_base::result r=
 use_facet<codecvt<charT,char,typename traits::state_type> >(getloc()).
 convert(st,b,p,end,buf,buf+BSIZE,ebuf);

Possible Resolution:

 Should be treated with issue 27-801.

Requestor: Public Comment

Issue Number: 27-813
Title: basic_filebuf::overflow does not specifies its return value on success
Section: 27.8.1.4 Overridden virtual functions [lib.filebuf.virtuals]
Status: active
Description:

The function basic_filebuf::overflow does not specifies its return value on success.

Possible Resolution:

The Returns: clause should be changed to:

Returns: If traits::eq_int_type(c, traits::eof()) returns false, the function signals success by
returning c. Otherwise If traits::eq_int_type(c, traits::eof()) returns true, the function signals
success by returning traits::not_eof(c). The function returns traits::eof() to indicate failure.

Requestor: Public Comment

Issue Number: 27-814
Title: basic_filebuf::imbue has no description
Section: 27.8.1.4 Overridden virtual functions [lib.filebuf.virtuals]

X3J16/96-0079 WG21/N0897 39

Status: active
Description:

The virtual function basic_filebuf::imbue has no description.

Possible Resolution:

Requestor: Philippe Le Mouël (philippe@roguewave.com)

Issue Number: 27-815
Title: description of function seekpos is missing
Section: 27.8.1.4 Overridden virtual functions [lib.filebuf.virtuals]
Status: active
Description:

 basic_filebuf::seekpos has no sementics. Needs to be supplied.

Possible Resolution:

Requestor: Public Comment

X3J16/96-0079 WG21/N0897 40

Miscellaneous issues

Issue Number: 27-901
Title: input/output of unsigned charT
Section: 27
Status: active
Description:

NOTE: istream here means basic_istream.
ostream here means basic_ostream.

This issue details all of the issues with inserting or extracting characters.

Currently, IOStreams does not allow the insertion/extraction of unsigned charT or signed charT.
There are two types of functions that could insert or extract these character types: formatted IO,
and unformatted IO. Formatted IO use overloaded operators. Example:

istream& istream::operator>>(charT&);
ostream& ostream::operator<<(charT);

Examples of unformatted IO are:

istream& istream::get(charT *, streamsize, charT);
int_type ostream::put(charT);

This does not allow us to overload on unsigned charT. We can make the formatted operators
global, and then overload (“specialize”) on char, and wchar_t, but that doesn’t solve the
unformatted problem.

There is also a problem of inserting or extracting wide-characters from a skinny stream or skinny
characters from a wide-stream:

char c;
wchar_t wc;

cout << wc;
wcout << c;

Possible Resolution:

I have to write a proposal for that.

Requestor: John Hinke (hinke@roguewave.com)

Issue Number: 27-904
Title: iosfwd declarations: incomplete
Section: 27.2 Forward declarations [lib.iostream.forward]
Status: active
Description:

X3J16/96-0079 WG21/N0897 41

The list of forward declarations is incomplete. Should it contain all of the forward declarations
available? Forward declarations for template classes basic_ios, basic_istream, and basic_ostream
should have two class parameters, not one. It is equally dicey to define ios, istream, etc. by
writing just one parameter for the defining classes. All should have the second parameter
supplied, which suggests the need for a forward reference to template class ios_char_traits as
well, or at least the two usual specializations of that class.

Possible Resolution:

Replace “Header <iosfwd> synopsis” by:

namespace std {
template<class charT> struct ios_traits;
template<class charT, class traits = ios_traits<charT> > class basic_ios;
template<class charT, class traits = ios_traits<charT> > class basic_streambuf;
template<class charT, class traits = ios_traits<charT> > class basic_istream;
template<class charT, class traits = ios_traits<charT> > class basic_ostream;
template<class charT, class traits = ios_traits<charT> > class basic_stringbuf;
template<class charT, class traits = ios_traits<charT> > class basic_istringstream;
template<class charT, class traits = ios_traits<charT> > class basic_ostringstream;
template<class charT, class traits = ios_traits<charT> > class basic_filebuf;
template<class charT, class traits = ios_traits<charT> > class basic_ifstream;
template<class charT, class traits = ios_traits<charT> > class basic_ofstream;
template<class charT, class traits=ios_traits<charT> > class ostreambuf_iterator;
template<class charT, class traits=ios_traits<charT> > class istreambuf_iterator;

typedef basic_ios<char> ios;
typedef basic_streambuf<char> streambuf;
typedef basic_istream<char> istream;
typedef basic_ostream<char> ostream;
typedef basic_stringbuf<char> stringbuf;
typedef basic_istringstream<char> istringstream;
typedef basic_ostringstream<char> ostringstream;
typedef basic_filebuf<char> filebuf;
typedef basic_ifstream<char> ifstream;
typedef basic_ofstream<char> ofstream;
typedef basic_ios<wchar_t> wios;
typedef basic_streambuf<wchar_t> wstreambuf;
typedef basic_istream<wchar_t> wistream;
typedef basic_ostream<wchar_t> wostream;
typedef basic_stringbuf<wchar_t> wstringbuf;
typedef basic_istringstream<wchar_t> wistringstream;
typedef basic_ostringstream<wchar_t> wostringstream;
typedef basic_filebuf<wchar_t> wfilebuf;
typedef basic_ifstream<wchar_t> wifstream;
typedef basic_ofstream<wchar_t> wofstream;

}

Requestor: John Hinke (hinke@roguewave.com)

Issue Number: 27-906
Title: add a typedef to access the traits parameter for a class.
Section: 27

X3J16/96-0079 WG21/N0897 42

Status: active
Description:

Some classes; such as istream don’t have access to the traits template parameter. Perhaps each
class should provide a typedef for the traits parameter.

You need the traits parameter when you want to say stuff like:

cin.ignore(100, traits::newline(use_facet<ctype<cin.char_type> >(cin.getloc()))

There is no way to get the traits type without saying something like: ios_traits<cin.char_type>
which is almost reasonable, but it would be nicer to say something like: cin::traits_type. There
are some cases where ios_traits is not the traits used to instantiate the stream.

Possible Resolution:

The Tokyo meeting recommends acceptance of the following:

Add “typedef traits traits_type;” to basic_ios and basic_streambuf.

Where traits is the template parameter

Requestor: John Hinke (hinke@roguewave.com)

Issue Number: 27-907
Title: Use of “instance of” vs. “version of” in descriptions of class ios
Section: 27.2 Forward declarations [lib.iostream.forward]
Status: active
Description:

Paragraph 2 and 3 describe the class ios and the class wios. One is described as “an instance of
the template...” the other is described as “a version of the template...”.

Possible Resolution:

Change paragraph 3 to:

“The class wios is an instance of the template class basic_ios, specialized by the type wchar_t”

Requestor: John Hinke (hinke@roguewave.com)

Issue Number: 27-908
Title: unnecessary ‘;’ (semicolons) in tables
Section: 27
Status: active
Description:

There are unnecessary semicolons in tables in chapter 27. These probably should be removed.

Possible Resolution:

The only semicolons I can find are in section 27.1.2.6 Type POS_T [lib.iostreams.pos.t] “Table
2-Position type requirements”.

X3J16/96-0079 WG21/N0897 43

Requestor: John Hinke (hinke@roguewave.com)

Issue Number: 27-909
Title: Editorial issues (typo’s)
Section: 27
Status: active
Description:

Here are a list of “typo’s” and other possible editorial issues.

Editorial Issue #1
Description:
27.4.4.3 basic_ios iostate flags functions [lib.iostate.flags]
The description of ios_base::exceptions is listed under the basic_ios clause.

Possible Resolution:
This needs to be moved back to the ios_base clause.

Editorial Issue #2
Description:
27.1.2.4 Type POS_T [lib.iostreams.pos.t]
Description of type POS_T contains many awkward phrases. Needs rewriting for clarity.

Editorial Issue #3
Description:
27.1.2.3 Type OFF_T [lib.iostreams.off.t]
Footnote 1 should say ``for one of'' instead of ``for one if.'' Also, it should``whose
representation has at least'' instead of ``whose representation at least.''

Requestor: John Hinke (hinke@roguewave.com)

Issue Number: 27-910
Title: remove streampos in favor of pos_type
Section: 27
Status: active
Description:

There are editorial boxes in Chapter 27 that say that streampos was deprecated but no resolution
on what to do with functions that use it as an argument type has been offered.

Possible Resolution:

John wrote: “Change all references to streampos as an argument type to pos_type. Each class in
Chapter 27 has a typedef for, or access to, pos_type.”

My understanding is that we should add back streampos, has being the pos_type used on streams
instantiated on tiny characters. We also need to replace all the references to streampos by
references to pos_type throughout the iostreams chapter (when streams are instantiated on char,
pos_type == streampos).

Requestor: John Hinke (hinke@roguewave.com)

X3J16/96-0079 WG21/N0897 44

Issue Number: 27-911
Title: stdio synchronization
Section: 27.3.1 Narrow stream objects [lib.narrow.stream.objects]
Status: active
Description:

Doing measurements on the performance of streambufs attached to stdin on a variety of systems,
I found that the performance of a simple loop:

while ((c = cin.get()) != EOF) ...

was from 5 to 20 times slower than the equivalent

while ((c = getc(stdin)) != EOF) ...

To my horror, I found that this is a result of a mandate in the WP, that stdin and cin (and also
stdout and cout) must be synchronized. As a goal this seems laudable, but if the consequence in
many (most) environments is either:

1. an order of magnitude slower input, or
2. breaking link compatibility with C,

maybe we should reconsider this choice, and instead allow-but-not-require that the two be
synchronized.

Possible Resolution:

Nathan wrote:

“One possibility would be to reintroduce "sync_with_stdio" but give it a boolean argument.
sync_with_stdio(true) would cause syncronization, while sync_with_stdio(false) would cause
unsyncronization.

This would be agreeable to me. I take it this would be a static member of ios_base? How would
it default? I assume that the call with false could be a no-op.”

Requestor: Nathan Myers (ncm@cantrip.org)

Issue Number: 27-912
Title: removing Notes: from the text
Section: 27
Status: active
Description:

This issue is in response to Mats Meta list. It is an attempt to remove normative text from the
WP. This issue removes Notes: from the text. Some Notes: clauses that need to be incorporated
into the text will be handled in another issue.

Remove all Notes: clauses from the following:

27.4.2.1 ios_traits value functions [lib.ios.traits.values]
int_type not_eof(char_type c)

X3J16/96-0079 WG21/N0897 45

27.4.2.1 ios_traits value functions [lib.ios.traits.values]
char_type newline()

27.4.3.4 ios_base storage functions [lib.ios.base.storage]
void * & pword(int idx)

27.5.2.2.3 Get area [lib.streambuf.pub.get]
int_type snextc()

27.5.2.4.3 Get area [lib.streambuf.virt.get]
int showmanyc()

27.5.2.4.3 Get area [lib.streambuf.virt.get]
streamsize xsgetn(char_type *s, streamsize n)

27.6.1.2.2 basic_istream::operator>> [lib.istream::extractors]
basic_istream<charT, traits>& operator>>(char_type *s)

27.7.1.3 Overridden virtual functions [lib.stringbuf.virtuals]
int_type pbackfail(int_type c)

27.7.1.3 Overridden virtual functions [lib.stringbuf.virtuals]
int_type overflow(int_type c)

27.8.1.4 Overridden virtual functions [lib.filebuf.virtuals]
int showmanyc()

Possible Resolution:

Requestor: John Hinke (hinke@roguewave.com)

Issue Number: 27-913
Title: Incorporating Notes: into the text
Section: 27
Status: active
Description:

The following Notes: clauses need to be incorporated into the WP text:

27.5.2.1 basic_streambuf constructors [lib.streambuf.cons]
basic_streambuf()

27.5.2.4.1 Locales [lib.streambuf.virt.locales]
void imbue(const locale&)

27.5.2.4.3 Get area [lib.streambuf.virt.get]
int_type underflow()

27.5.2.4.4 Putback [lib.streambuf.virt.pback]
int_type pbackfail(int c)

27.5.2.4.5 Put area [lib.streambuf.virt.put]
int_type overflow(int_type c)

X3J16/96-0079 WG21/N0897 46

27.6.1.1.1 basic_istream constructors [lib.basic.istream.cons]
virtual ~basic_istream()

27.6.1.1.2 basic_istream prefix and suffix [lib.istream.prefix]
bool ipfx(bool noskipws)

27.6.1.2.2 basic_istream::operator>> [lib.istream::extractors]
basic_istream<charT, traits>& operator>>(bool& n)

27.6.1.3 Unformatted input functions [lib.istream.unformatted]
basic_istream<charT, traits>& ignore(int n, int_type delim)

27.6.2.2 basic_ostream constructors [lib.ostream.cons]
virtual ~basic_ostream()

27.6.2.4.2 basic_ostream::operator<< [lib.ostream.inserters]
basic_ostream<charT, traits>& operator<<(char_type c)
Change this Notes: clause to a Requires: clause.

27.7.1.1 basic_stringbuf constructors [lib.stringbuf.cons]
explicit basic_stringbuf(ios_base::openmode)

27.8.1.4 Overridden virtual functions [lib.filebuf.virtuals]
int_type pbackfail(int_type c)

Possible Resolution:

Requestor: John Hinke (hinke@roguewave.com)

Issue Number: 27-914
Title: rethrowing exceptions
Section: 27.6.2.4.1 Common requirements [lib.ostream.formatted.reqmts]
Status: active
Description:

[NOTE: This follows directly with 27-903 --John Hinke]

The typical operator<< looks like this, given current semantics for exceptions:

{
 sentry cerberos(*this); if (!cerberos) return;
 iostate save = exceptions(); exceptions(0);

 try {
 if (use_facet< num_put<charT,ostreambuf_iterator<charT,traits> >(
 getloc()).put(*this,*this,fill(),getloc(),val).failed())
 setstate(failbit); // won't throw
 }
 catch (...) { exceptions(save); setstate(badbit); throw; }
 exceptions(save); setstate(rdstate());
}

X3J16/96-0079 WG21/N0897 47

If we change exception semantics so that ios_base::failure just gets rethrown, without setting
badbit, we have instead:

{
 sentry cerberos(*this);
 if (!cerberos) return;
 try {
 if (use_facet< num_put<charT,ostreambuf_iterator<charT,traits> >(
 getloc()).put(*this,*this,fill(),getloc(),val).failed())
 setstate(failbit); // might throw
 }
 catch (const ios_base::failure&) { throw; }
 catch (...) { setstate(badbit); throw; }
}

The examples don't constitute an argument for or against the change, but rather are suggestions
for the example code that should appear in [lib.ostream.formatted.reqmts] according to what is
decided.

For the record, I am in favor of the change.

Possible Resolution:

We do not have any example code in 27.6.2.4.1 Common requirements
[lib.ostream.formatted.reqmts], but if we want to add one, the ones described above are not
correct.

Requestor: Nathan Myers (ncm@cantrip.org)

Issue Number: 27-915
Title: The use of specialization
Section: 27
Status: active
Description:

There is wording in Clause 27 such as:

“...iostream classes are the instantiations of the...”
“...class ios is an instance of the...”
“...class wios is a version of the...”

This wording needs to be consistent with the rest of the document.

Possible Resolution:

Make the following changes to be consistent:

27.1.1 Definitions [lib.iostreams.definitions]
Replace: “-- narrow-oriented iostream classes ...iostream classes are the instantiations of
the...”
With: “--narrow-oriented iostream classes ...iostream classes are specializations of the...”

27.1.1 Definitions [lib.iostreams.definitions]

X3J16/96-0079 WG21/N0897 48

Replace: “-- wide-oriented iostream classes ...iostream classes are the instantiations of
the...”
With: “-- wide-oriented iostream classes ...iostream classes are specializations of the...”

27.2 Forward declarations [lib.iostream.forward] paragraph 2
Replace: “The class ios is an instance of the template...”
With: “The class ios is a specialization of the template...”

27.2 Forward declarations [lib.iostream.forward] paragraph 3
Replace: “The class wios is a version of the template...”
With: “The class wios is a specialization of the template...”

27.4.2 Template struct ios_traits [lib.ios.traits] paragraph 2
Replace: “An implementation shall provide the following two instantiations of ios_traits:”
With: “An implementation shall provide the following two specializations of ios_traits:”

27.5.2 Templates class basic_streambuf<charT, traits> [lib.streambuf] paragraph 2
Replace: “The class streambuf is an instantiation of the template...”
With: “The class streambuf is a specialization of the template...”

27.5.2 Templates class basic_streambuf<charT, traits> [lib.streambuf] paragraph 3
Replace: “The class wstreambuf is an instantiation of the template...”
With: “The class wstreambuf is a specialization of the template...”

Requestor: John Hinke (hinke@roguewave.com)

Issue Number: 27-916
Title: missing descriptions of specializations
Section: 27
Status: active
Description:

For compatibility, each templatized class has two specializations. One for skinny characters and
one for wide characters. For example:

template<class charT, class traits>
class basic_ios : public ios_base {
 //...
};

Class ios is a specialization of...
Class wios is a specialization of...

These descriptions are missing for some of the classes. This proposal adds these missing
descriptions.

Possible Resolution:

Add the following descriptions to the appropriate sections:

For class basic_ios:
27.4.4 Template class basic_ios [lib.ios]
The class ios is a specialization of the template class basic_ios specialized by the type char.

X3J16/96-0079 WG21/N0897 49

The class wios is a specialization of the template class basic_ios specialized by the type
wchar_t.

For class basic_istream:
27.6.1.1 Template class basic_istream [lib.istream]
The class istream is a specialization of the template class basic_istream specialized by the
type char.

The class wistream is a specialization of the template class basic_istream specialized by the
type wchar_t.

For class basic_ostream:
27.6.2.1 Template class basic_ostream [lib.ostream]
The class ostream is a specialization of the template class basic_ostream specialized by the
type char.

The class wostream is a specialization of the template class basic_ostream specialized by the
type wchar_t.

For class basic_stringbuf:
27.7.1 Template class basic_stringbuf [lib.stringbuf]
The class stringbuf is a specialization of the template class basic_stringbuf specialized by the
type char.

The class wstringbuf is a specialization of the template class basic_stringbuf specialized by
the type wchar_t.

For class basic_istringstream:
27.7.2 Template class basic_istringstream [lib.istringstream]
The class istringstream is a specialization of the template class basic_istringstream
specialized by the type char.

The class wistringstream is a specialization of the template class basic_istringstream
specialized by the type wchar_t.

For class basic_ostringstream:
27.7.2.3 Template class basic_ostringstream [lib.ostringstream]
The class ostringstream is a specialization of the template class basic_ostringstream
specialized by the type char.

The class wostringstream is a specialization of the template class basic_ostringstream
specialized by the type wchar_t.

For class basic_filebuf:
27.8.1.1 Template class basic_filebuf [lib.filebuf]
The class filebuf is a specialization of the template class basic_filebuf specialized by the type
char.

The class wfilebuf is a specialization of the template class basic_filebuf specialized by the
type wchar_t.

For class basic_ifstream:
27.8.1.5 Template class basic_ifstream [lib.ifstream]

X3J16/96-0079 WG21/N0897 50

The class ifstream is a specialization of the template class basic_ifstream specialized by the
type char.

The class wifstream is a specialization of the template class basic_ifstream specialized by the
type wchar_t.

For class basic_ofstream:
27.8.1.8 Template class basic_ofstream [lib.ofstream]
The class ofstream is a specialization of the template class basic_ofstream specialized by the
type char.

The class wofstream is a specialization of the template class basic_ofstream specialized by
the type wchar_t.

Requestor: John Hinke (hinke@roguewave.com)

Issue Number: 27-917
Title: Editorial changes
Section: 27.1.2 Type requirements [lib.iostreams.type.reqmts]
Status: active
Description:

27.1.2 [lib.iostreams.type.reqmts]: Last sentence: "... expects to the character container class."
should read "... expects of the character container class."

Possible Resolution:

Requestor: Public Comment

Issue Number: 27-918
Title: Validity of OFF_T to POS_T conversion
Section: 27.1.2.3 Type OFF_T [lib.iostreams.off.t]
Status: active
Description:

27.1.2.3 [lib.iostreams.off.t]: Paragraph 4: "Type OFF_T is convertible to type POS_T. But no
validity of the resulting POS_T value is ensured, whether or not the OFF_T value is valid." Of
what use is the conversion, then?

Possible Resolution:

Requestor: Public Comment

Issue Number: 27-919
Title: Question on Table 2 assertions
Section: 27.1.2.4 Table2 Position type requirements [lib.iostreams.pos.t]
Status: active
Description:

27.1.2.4 [lib.iostreams.pos.t]: table 2: first row has assertion "p == P(i)" but p does not appear in
the expression for that row; also, that row has the note "a destructor is assumed" -- what does this
mean?

X3J16/96-0079 WG21/N0897 51

Possible Resolution:

The first row of table 2 should be deleted. The second row already specifies the construction and
assignment from an integer value.

Requestor: Public Comment

Issue Number: 27-920
Title: destination of clog and wclog
Section: 27.3.1 Narrow stream objects [lib.narrow.stream.objects],

27.3.2 Wide stream objects [lib.wide.stream.objects]
Status: active
Description:

There is currently an editorial box concerning the destination of clog and wclog. I would like to
propose the following resolution:

Possible Resolution:

Change 27.3.1 Narrow stream objects [lib.narrow.stream.objects] paragraph 6 to:
The object clog controls output to an implementation defined stream buffer.

Change 27.3.2 Wide stream objects [lib.wide.stream.objects] paragraph 6 to:
The object wclog controls output to an implementation defined stream buffer.

Requestor: John Hinke (hinke@roguewave.com)

Issue Number: 27-921
Title: default locale argument to constructor
Section: 27
Status: active
Description:

Default locale arguments for stream constructors.

istream and ostream constructors (and all derivations) should have a default locale argument, in
the manner of

obogusstream(const char *name,const locale& l = locale());

Possible Resolution:

Add a new argument to the standard stream constructors:

const locale& l = locale::global()

Add this new argument to the following classes’ constructors:

basic_istream,
basic_ostream,
basic_istringstream,
basic_ostringstream,
basic_ifstream,

X3J16/96-0079 WG21/N0897 52

basic_ofstream
istrstrem
ostrstream

Requestor: Nathan Myers (ncm@cantrip.org)
Norihiro Kumagai (kuma@slab.tnr.sharp.co.jp)

X3J16/96-0079 WG21/N0897 53

Annex D issues

Issue Number: 27-1001
Title: description of function setbuf is not sufficient
Section: D.6.1.3 strstreambuf overridden virtual functions [depr.strstreambuf.virtuals]
Status: active
Description:

Description of the overridden setbuf(char* s,streamsize n) function in class strstreambuf is not
sufficient.

Possible Resolution:

Change the current description of function setbuf(char* s, streamsize n) in D.6.1.3 strstreambuf
overridden virtual functions [depr.strstreambuf.virtuals] to:

streambuf* setbuf(char* s, streamsize n);

and not:

streambuf<char>* setbuf(char* s, streamsize n);

Effects: If s is not a null pointer, and n > pptr() - pbase(), replace the current buffer (copy its
contents and deallocate it) by the buffer of size n pointed at by s.
In the case where s is a null pointer, and n > pptr() - pbase() resize the current buffer to size n.
If the function fails, it returns a null pointer.
Returns: (streambuf*)(this)

I am not qualified enough to decide if the return type should be changed to strstreambuf* as
proposed by Steve Clamage in issue 27-809. I tried it with several compilers, and the results were
just error messages. Basically, the compilers were complaining about the fact that the base class
virtual function and the overridden virtual function should have the same return type.

Requestor: philippe Le Mouël (philippe@roguewave.com)

Issue Number: 27-1002
Title: strstreambuf Editorial issues
Section: D.6.1 Class strstreambuf [depr.strstreambuf]
Status: active
Description:

Class strstreambuf contains several typos and is also missing some typedefs.

Possible Resolution:

The following typedefs need to be added to class strstreambuf (D.6.1 Class strstreambuf
[depr.strstreambuf]) :

- typedef ios_traits<char>::int_type int_type;

X3J16/96-0079 WG21/N0897 54

This typedef is used in the strstreambuf overridden virtual functions overflow , pbackfail
and underflow.

 - typedef ios_traits<char>::pos_type pos_type;

This typedef is used in the strstreambuf overridden virtual functions seekoff and
seekpos.

- typedef ios_traits<char>::off_type off_type;

This typedef is used in the strstreambuf overridden virtual function seekoff.

In D.6.1 Class strstreambuf [depr.strstreambuf] the notation of the strstreambuf base class is
wrong it should say:

class strstreambuf : public basic_streambuf<char>
and not:

class strstreambuf : public streambuf<char> // does not exist

In D.6.1 Class strstreambuf [depr.strstreambuf] the declaration of function freeze is missing
the argument name. It should say:

void freeze(bool freezefl =1);
and not:

void freeze(bool = 1);

Requestor: Philippe Le Mouël (philippe@roguewave.com)

Issue Number: 27-1003
Title: istrstream Editorial issues (typos)
Section: D.6.2 Template class istrstream [depr.istrstream]
Status: active
Description:

Class istrstream contents several typos.

Possible Resolution:

In D.6.2 Template Class istrstream [depr.istrstream] the previous title should be changed to
“D.6.2 Class istrstream”, because the class is not a template class.

In D.6.2 Template Class istrstream [depr.istrstream] the notation of the istrstream base class
is wrong. It should say:

class istrstream : public basic_istream<char>
and not:

class istrstream : public istream<char> // does not exist

Requestor: Philippe Le Mouël (philippe@roguewave.com)

Issue Number: 27-1004

X3J16/96-0079 WG21/N0897 55

Title: ostrstream Editorial issues (typos)
Section: D.6.3 Template class ostrstream [depr.ostrstream]
Status: active
Description:

Class ostrstream contents several typos.

Possible Resolution:

In D.6.3 Template Class ostrstream [depr.ostrstream] the previous title should be changed to
“D.6.3 Class ostrstream”, because the class is not a template class.

In D.6.3 Template Class ostrstream [depr.ostrstream] the notation of the ostrstream base class
is wrong. It should say:

class ostrstream : public basic_ostream<char>
and not:

class ostrstream : public ostream<char> // does not exist

In D.6.3 Template Class ostrstream [depr.ostrstream] and D.6.3.2 Member
functions[depr.ostrstream.members] the declaration of function void freeze(int freezefl = 1) is
not consistent with the declaration in D.6.1 Class strstreambuf [depr.strstreambuf], which is
void freeze(bool freezefl =1). The argument should be bool or int, but not bool in one and int in
the other.

Requestor: Philippe Le Mouël (philippe@roguewave.com)

