X3J16/ 96- 0078
WE21/ NO896

| Kevlin Henney [
| 2sdg Ltd [
| kevlin@wo-sdg. denon. co. uk |

The current definition of C++ string literals supports a hole in the type
system the conpile tine type is unqualified and does not reflect the
notionally const qualified runtinme type. This was present in SO C for
justifiable historical reasons; the problemis exacerbated by C++'s
over |l oadi ng mechani sm

Thi s paper outlines a ninor change that would allow closure of this hole in

a future version of the standard. The change supports a nore intuitive
over | oadi ng behaviour for the forthcom ng standard, with negligible effect on
exi sting code.

Thi s paper concludes with a detailed listing of changes that would have to be
made to the January 1996 wor ki ng paper

The definition of string literals has passed into C++ relatively unchanged
fromthe definition in the 1 SO C standard. For historical reasons, notably
the absence of an explicit way of qualifying const in Classic C, there is

no qualification on a string literal, ie. an unprefixed literal is treated as
an array of char * rather than const char, and a wide string literal as an
array of wchar_t rather than const wchar_t. Making such a change woul d have
broken a significant body of code, and thus woul d have been unaccept abl e.

The result is that while string literals are notionally const, such that they
may be placed in wite protected nenory at runtinme, this is not reflected in
the qualification of their conpile tine type. In effect, the stated undefined
behavior that may result fromattenpted nodification of a string literal is

a part of the type system expressed outside of the statically checked type
system

The real consequence for C++ only becones apparent when overl oaded functions
are considered -- a feature not present in C. It is now easier to accidentally
i ntroduce surprising [1], if not undefined, behavior

/1l Exanple 1
void f(char *s); /'l changes the contents of s
void f(const char *s); // does not change contents of s

f (" Undefined"); /1 selects f(char *)
/1 legal with undefined runtine behavior
/'l Exanple 2
const char inmmutable[] ="...";
cin >> i mutabl e; /1 conpile tinme error
cin >> "nutabl e"; /1 undefined runtinme behavior

The motivation for this proposal is to provide a nmeans by which a future

version of the standard nmay nmandate that string literals are const, at the
same time retaining significant backward conpatibility for existing code

[1] Note that the standard does not define the neaning of "surprising
behavior". This is left to the programer to deternmine.

2. PROPCSED CHANGE

The type of byte string literals becones array of const char, and that of w de
character string literals becones array of const wchar_t. The exanpl e given
above becones:

/1l Exanple 3: Exanple 1 with proposed change
void f(char *s); /'l changes the contents of s
void f(const char *s); // does not change contents of s

fk;Defined"); /] selects f(const char *)

A string literal used in a context requiring a non-const pointer undergoes an
inmplicit conversion losing its const qualification, ie.

/1l Exanple 4: legal inplicit conversions for backward conpatibility
char *cs "asdf"; [l implicit const char * to char * conversion
wchar _t *ws L"asdf"; // inplicit const wchar _t * to wchar_t * conversion

This standard conversion is deprecated with immedi ate effect. It provides
backward conpatibility but also gives a clear indication of future direction
It is aquality of inplenmentation issue as to whether a diagnostic is issued
where this conversion is used.

No change is required for overload resolution rules as this change is al ready
covered by existing matching rules given that this is a qualification
conver si on.

3. EFFECT ON EXI STI NG CCDE

The only effect on existing code is that in an overloading tie break between
functions whose only difference is the const qualification of a char * (or
wchar _t *) argunment, a literal will match against the const version. The

i mpact of this on existing code is expected to be minor: where the non-const
qualification has caused problens in the past programmers will already have
worked around it, eg. using an explicit cast. The benefits of the proposed
change are seen during the devel opment process, avoiding any possible
surprises. This allows the creation of cleaner code in future.

4. RATI ONALE

It is intuitive that string literals, like literals of other types, are in
some way constant. This is reflected in other |anguages where the inmutability
of all literals may be enforced at conpile tine. Wiere this is not the case,

each literal is typically regarded as a distinct entity that nay be nodified
and has the equival ent of auto storage cl ass.

The change proposed here supports the nore intuitive interpretation. The
effect this has on the |l anguage is that it

- is safer;

- is sinmpler to teach;

- has the potential for fewer ’surprises’

- provides for a future standard to renove the deprecated non-const conversion.

Al though a | ate proposal, this special case bal ances the special treatnent

that string literals otherwise require. There is felt to be sone need to do
this sooner rather than later, ie. in the forthcom ng rather than a future

version of the standard.

5. CHANGES TO THE WP

2.10.4 String literals [lex.string]

In paragraph 1 "array of n char” beconmes "array of n const char" and
"array of n wchar_t" becones "array of n const wchar t".

4.4 Qualification conversions [conv.qual]

Add paragraph 5 with the foll ow ng wording:

A string literal that does not begin with L can be converted to an rval ue
of type "pointer to char". A string literal that begins with L can be
converted to an rvalue of type "pointer to wchar _t".

Annex D [depr]

- The sections D.1 to D.6, and their respective subsection nunbers, are
renunbered in order fromD.2 to D. 7.

- AnewD. 1 is inserted with the follow ng wording:

D.1 String literal qualification conversion [depr.conv.qual]

1 The inplicit conversion fromconst to non-const qualification for
string literals is deprecated (see 4.4).

6. ACKNON.EDGVENTS

My thanks for Francis d assborow for reading through this paper and suggesting
addi ti onal wording.

