Doc No: X3J16/96-0048 W21/ NO866

Dat e: January 30, 1996

Project: Programm ng Language C++

Ref Doc:
Reply to: Josee Lajoie
(j osee@net.i bm com

extern "LANG' Linkage |ssues and Proposed Resol utions

Thi s paper discusses opened issues affecting subclause 7.5 (Linkage
Speci fications, [dcl.link]) and proposes resol utions for these issues.

1) issue 78: Do |inkage specifications affect pointers to function and
—=========== functi on typE‘dEf s?

This continues a discussion started with paper 95-0122/N0722 which
was di scussed in Mnterey.

7.5 paragraph 6 says:

"The |inkage of a pointer to function affects only the pointer.
When the pointer is dereferenced, the function to which it refers
is considered to be a C++ function. There is no way to specify
that the function to which a function pointer refers is witten in
anot her | anguage."

QL. Do linkage specifications affect typedefs of function types?
And if they do, if the typedef is used to declare a function
does the function receive its |linkage fromthe typedef?

extern "C' typedef void func_type(int);
func_type func; // does func have C or C++ |inkage?

@. If linkage specifications affect pointers to function, how does a
I i nkage specification affect a declaration that declares nore than
one function pointers? Are all function pointers declared by the
declaration affected by the |inkage specification? For exanple,

extern "C' void (*signal (int sig, void (*func) (int))) (int);

Is "func’ a pointer to function with C linkage?
Does signal return a pointer to a function with C Iinkage?

@B. What does "only affects the pointer... the function to which
it refers is considered to be a C++ function" nean for pointer
initialization/assignment? 1s the follow ng |egal?

extern "C'" void (*plf) (int);
void (*p2f) (int);
plf = p2f; // is the follow ng well-forned?

Despite the different |inkage specifications, paragraph 6

i ndi cates that plf and p2f are considered to refer to functions
with C++ |inkage. Should this assignnent be prohibited?

Is it well-formed? Is this inplenentation-defined?

Proposed answer to QL.

If a linkage specification applies to the declaration of a function
typedef, the function typedef is said to introduce a |linkage. If a
function typedef that introduces a |linkage is used to declare a
function, pointer to function or reference to function, the |inkage
associated with the function, pointer or reference is that of the
function typedef. For exanple,

extern "C'" void FUNC TYPE(int);
void (*pf) (FUNC TYPE)

pf is a pointer to a function with C++ |inkage
with one paraneter that is a pointer to a function with C
i nkage (with one paranmeter of type int and a void return
type)
with a void return type.

The ARM already inplies this resolution in an annotation for
section 7.4 (see page 118). | believe the WP needs to formally
specify this.

Redecl ar ati ons

7.5 paragraph 3 already handles the "spirit" of redeclarations.
Par agraph 3 needs to be reworked to di scuss the cases when |inkage
is introduced by a typedef:

“"I'f two declarations of the sane function, object or reference
specify different |inkage-specifications, or one specify a

I i nkage-speci fication and one uses a typedef that introduces a

I i nkage and the |inkage introduced by the |inkage-specification
is different fromthe linkage introduced by the typedef, or if
the two declarations uses typedefs and the |inkage introduced by
the two typedefs is different, the programis ill-forned if the
decl arati ons appear in the same translation unit, and the one
definition rule (_basic.def.odr_) applies if the declarations
appear in different translation units. |If a declaration for a
function, object or reference uses a |inkage-specification or
uses a function typedef that introduce |inkage, and the |inkage
specified by the Iinkage-specification or typedef is not the C++
i nkage, such a declaration shall not preceed a declaration for
the sane entity that doesn’t use a |inkage-specification or that
doesn’t use a typedef that introduce |inkage. A declaration that
doesn’t use a linkage-specification or that doesn’'t use a typedef
that introduce |linkage can follow a declaration that uses such
things; the linkage specified in the earlier declaration is not
af fected by the redeclaration.”

Proposed answer to .

A linkage specification in the declaration of a function pointer or
the declaration of a typedef of function type affects the othernost
decl arator (either pointer or typedef) in a declaration. For
exanpl e:

extern "C" void (*pf) (void (*) (int));

pf is a pointer to a function with C |inkage
with one paraneter that is a pointer to a function with C++
i nkage (with one paranmeter of type int and a void return
type)
with a void return type.

This also seens to followthe spirit of what is actually in the W
Li nkage specifications only affect declarators. Saying that only
the outernost declarator in the declaration is affected by the

I i nkage specification allows for declarations of functions with C

I i nkage taking paraneters that are pointers to functions with C++
i nkage (or vice versa). | believe this flexibility is needed for
the functions in the C++ class library.

Proposed answer to @. (initializations and assi gnnents)

This is the thorny issue.

Can a pointer to a function with C linkage be assigned to a pointer
to function with C++ |inkage? Sone have said yes (because

I i nkage doesn’t affect the type of function) and the type system
doesn’t prevent such an assignnent to take place. | would like the
answer to be 'no’.

As an interesting conparison, 15.4 [except.spec] already has
special wording to restrict the kind of initialization/assignnent
that can take place between two pointers to functions with

di fferent exception specifications. The exception specification is
not part of the function type, however, initialization/assignment
between two pointers to functions with different exception
specifications is not always allowed. | would like to copy the
wording used in 15.4 and use it in 7.5 to restrict the kind of
initialization/assignnent that can take place between two pointers
with different |inkage specifications.

"If a pointer (reference) to function is initialized with a
pointer to function (an |value of function type), the |inkage

of the pointer (reference) initialized shall be identical to the
linkage of the initializer. |If a pointer to function is
assigned to pointer to function, the linkage of these two

poi nters shall be identical."

If the pointers point to function types that have return types or
par anmet er types made of function pointers, how nust the |inkage
match in the cases of redeclaration/initialization/assignnment? Here
again, we can copy the wording used in 15.4 [except.spec] for

mat chi ng exception specification on pointer types.

"I'n redeclarations, initializations or assignments of pointers to
functions, if the functions have return types or paraneters that
are thenselves pointers to functions, the |linkage of pointers to
functions used in the return types or paraneter types shall match
exactly."

For function calls, we can copy the wording used in 15.4 for
mat chi ng exception specification.

"Calling a function through an |Ival ue whose linkage is different
fromthat of the function definitionis ill-formed, no
di agnostic required."

| could live with leaving all of the answers for (B inplenmentation
defined. However, | cannot live with a solution that requires that
the inplenmentation make such initializations/assignnments between
two pointers to functions with different |inkages well-forned.

2) issue 420: Do |inkage specifications affect overl oaded operator?

7.5 discusses the effect of |inkage specifications on function
declarations. Do these rules also apply for operator functions?

Exanpl e:
extern "C' {
struct S {
i nt data_nenber;
H
int operator+ (S& int); // Does this operator have C
/1 1inkage?

Solution 1)

Leave this inplenmentation-defined.

Sol ution 2)
7.5 paragraph 2 says:
"A linkage-specification for a class applies to nonnenber functions
and objects declared withinit."
The wording in paragraph 2 inplies that |inkage-specifications do not
af fect nenber functions. It may nakes sense for the WP to al so say
that |inkage-specifications do not affect overl oaded operator
functions.

Pr oposal

| slightly prefer solution 2).
I can live with either.

3) issue 616: How does the ODR apply to extern "C' function definitions?

In nmessage core-6303, Steve C amage asks the foll ow ng:
Is the followi ng conpilation unit valid?

nanmespace A { extern "C'" int f() { return 1; } }
nanespace B { extern "C'" int f() { return 2; } }

In other words, have |I defined two different functions with the
signature "f()" (valid), or have | provided two definitions for
the sane function (invalid)?

| don't find an answer to the question in the draft.

[...]

Fromthe library inplenmentation viewoint, it would be nice if a
non- C++ | i nkage specification nmeant that the nanespace nane was in
sonme sense an "optional" part of the function’s nane:

extern "C'" void f() { } // A:f() and B::f() refer to this function
But we still want this property:

nanespace A { extern "C' void f(); }
void foo() {
f(); // error, f undeclared

void bar() {
using A :f;
f(); /1 ok

The extern "C' function f can be defined in any nanmespace or
out side all namespaces; there can be only one definition

That is, the extern "C' affects the linkage of the nane in such a
way as to ignore the namespace nane, but does not affect the
scope of the name in the C++ source program
-]
That sol ution | eaves open the problem of global variables in the
Clibrary. Atypical inplementation of errno is to nake it a
gl obal int:

nanespace std { extern int errno; }
How can this be the sane object as the errno in the Clibrary?
(An add-on C++ inplenentati on does not have the option of
replacing the Clibrary.)

VVVVVVVVTVVVVVVVVVVVVVVVVVVVVVVVVVVYVVVYVYVYVYV

> | suggest we give extern "C' for data the sane effect on the nane
> as for functions. W would then wite

> nanespace std { extern "C' int errno; }

>

>

éid::errno =0; // sets the errno in the Clibrary

Pr oposal

Add the followi ng to paragraph 4:

"The declarations for a function with Clinkage with the sane
function nane (ignoring the qualifiers) and the sane

par anet er - cl ause that appear in different nanespace scopes refer to
the same function. The declarations for an object with C I|inkage
with the sane nane (ignoring the qualifiers) that appear in

di fferent nanespace scopes refer to the same object. [Note:
because of the one definition rule (_basic.def.odr_), only one
definition for a function or object with Clinkage may appear in
the program that is, such a function or object nust not be defined
in nore than one nanespace scope. For exanple,

nanespace A {
extern "C' int f();
extern "C" int g() { return 1; }

}
nanespace B {
extern "C" int f(); /1 A :f and B::f refer to the
/1 sanme function
extern "C" int g() { return 2; } // ill-formed, two definitions
/1 provided for g
}
-- end note]"

4) New | ssue: Make it clear that the spelling of the string literal is
============ | npl enent at i on- def i ned.

Par agraph 1 says:
"The string-literal indicates the required |inkage. The neani ng
of the string-literal is inplementation-defined."

Par agr aph 8 says:

"When the nane of a programm ng | anguage is used to nane a style of
linkage in the string-literal in a |linkage-specification, it is
recommended that the spelling be taken fromthe docunent defining
that | anguage, [Exanple: For Ada (not ADA) and Fortran or FORTRAN
(depending on the vintage).]"

To match paragraph 1, paragraph 8 should indicate that the spelling
of the string-literal in a |linkage-specification is
i mpl enent ati on- defi ned.

Pr oposal

Rewite paragraph 8 as foll ows:

"I'f the string-literal of a |inkage-specification nanes a
progranm ng | anguage, the spelling of the programm ng | anguage’s
name is inmplementation-defined. [Note: it is recomended that the
spelling be taken fromthe docunment defining that |anguage, for
exanpl e, Ada (not ADA) and, Fortran or FORTRAN (depending on the
Vi nt age) .]

