
Doc No: X3J16/96-0047 WG21/N0865
Date: January 30, 1996
Project: Programming Language C++
Ref Doc:
Reply to: Josee Lajoie

(josee@vnet.ibm.com)

Type Issues and Proposed Resolutions
====================================

621 - Is a definition for the terms "same type" needed?

 Does the WP need to define what it means for two objects/expressions
 to have the same type? I need help (i.e. inspiration) as to how we
 would go about doing this...

 Looking through the WP where the terms "same type" is used, I noticed
 the following problems:

 o 8.5.1 [dcl.init.aggr] para 15
 "The initializer for a union with no user-declared constructor is

either a single expression of the _same type_, or a brace-enclosed
initializer for the first member of the union."

 This should say:
 "...the same type (ignoring the top-level cv-qualifiers)..."

 o 12.8[class.copy] para 15
 "Whenever a class object is copied and the original object and the
 copy have the _same type_, if the implementation can prove that
 either the original object or the copy will never again be used
 except as the result of an implicit destructor call (_class.dtor_),
 an implementation is permitted to treat the original and the copy
 as two different ways of referring to the same object and not
 perform a copy at all."

 This should say:
 "...the same type (ignoring the top-level cv-qualifiers)..."

 o 15.3[except.handle] para 2
 "A handler with type T, const T, T&, or const T& is a match for a
 throw-expression with an object of type E if
 -- T and E are the same type, ..."

 This should say:
 "...the same type (ignoring the top-level cv-qualifiers of
 type E) ..."

213 - Should vacuous type declarations be prohibited?

 7[dcl.dcl] para 1 says:
 "A declaration introduces one or more names into a program and
 specifies how those names are to be interpreted."

 Is this intended to prohibit empty declarations like these?

enum { };
class { int i; };
class { };
typedef enum {};

 In this case the WP should be clearer.

 Jerry Schwarz also noted:
 > This can also be interpreted as prohibiting the following:

extern int i; >
extern int i; >

 > since the second declaration does not introduce anything (the name
 > has already been introduced in the program).

 Proposal:
 =========
 I do not have a strong preference for this...
 I decided that saying what the C standard says was a safe thing.
 Vacuous declarations are ill-formed.
 Rewrite 7[dcl.dcl] para 1 as follows:
 "A declaration shall introduce one or more names into a program, or
 shall redeclare a name introduced by a previous declaration. A
 declaration specifies how those names are to be interpreted."

116 - Is "const class X { };" legal?

 Mike Miller asks the following:
 > Is "const class X { };" legal, and, if so, what does it mean?
 > If the declaration does not declare a declarator and a storage class
 > specifier or a cv-qualifier is specified, are these simply ignored
 > or is the declaration ill-formed?

 Solution 1):

 Add to 7[dcl.dcl], at the end of para 3:
 "In these cases, if the decl-specifier-seq contains a cv-qualifier
 (7.1.5.1, dcl.type.cv) or a storage class specifier (7.1.1,
 dcl.stc), these specifiers are ignored."

 Solution 1):

 Add to 7[dcl.dcl], at the end of para 3:
 "In these cases, if the decl-specifier-seq contains a cv-qualifier
 (7.1.5.1, dcl.type.cv) or a storage class specifier (7.1.1,
 dcl.stc), the declarations are ill-formed."

 Proposal:
 =========
 I prefer 1).
 I can live with either.

564 - is ’void f(const a);’ well-formed?

 The working paper says, in 7.1.5[dcl.type] para 3:

 "At least one type-specifier is required in a typedef declaration.
 At least one type-specifier is required in a function declaration
 unless it declares a constructor, destructor or type conversion
 operator.56)
 56) There is no special provision for a decl-specifier-seq that

lacks a type-specifier. The "implicit int" rule of C is no
longer supported."

 Annex C gives the following example:
 "void f(const parm); // invalid C++"

 A cv-qualifier (like const in the example above) is a
 type-specifier. So, according to the rule above, the example is
 valid, i.e. a declaration that has only cv-qualifiers in its
 type-specifier is valid according to 7.1.5.

 Is the rule in 7.1.5 incorrect or is the example incorrect?

 Proposal:
 =========
 The example above is ill-formed.

 Change in 7.1.5[dcl.type] paragraph 3 to say:
 "At least one type-specifier that is not a cv-qualifier is required in

 a typedef declaration. At least one type-specifier that is not a
 cv-qualifier is required in a function declaration unless it declares
 a constructor, destructor or type conversion operator.56)
 56) There is no special provision for a decl-specifier-seq that

lacks a type-specifier or that has a type-specifier that only
specifies cv-qualifiers. The "implicit int" rule of C is no
longer supported."

503 - Clarifications for bitfields of enumeration type needed

 Question 1):

 Bill Gibbons mentionned:
 > 7.2[dcl.enum] paragraph 5 describes the underlying type of
 > enumeration types. It should be made clear that this description
 > does not apply to the underlying type of enumeration bit-fields.

 Proposal:
 =========
 Change the beginning of 7.2 paragraph 5 to say:
 "The underlying type of an enumeration FN)...

 FN) This does not apply to the underlying type of bitfields of

enumeration type."

 Question 2):

 Bill Gibbons mentionned:
 > Also, something should be said about the signedness of enumeration
 > types. Suggested new words:
 > "Even though the underlying type of an enumeration will be either
 > signed or unsigned, enumerations themselves are neither signed
 > nor unsigned. [For example, a two-bit bit-field can hold an
 > enumeration with values {0,1,2,3}.]"

 Proposal:
 =========
 Add the words Bill suggests at the end of 7.2 paragraph 5.

47 - bitfields & number of bits required by its type

 Question 1:

 Can a bit-field be declared with less bits than what is required to
 store all of the values of its type?

enum ee { one, two, three, four };
struct S {

ee bit1:1; // well-formed?
};

 Solution 1)

 The declaration is ill-formed.
 The number of bits of a bit-field of enumeration type shall be
 sufficient to hold all of the values of the enumeration type.

 Solution 2)

 The declaration is well-formed.
 Since, for all other bit-field types (beside enumeration), a
 bit-field can be declared with less bits than what is necessary to
 hold all of the values of its type, bit-fields of enumeration type
 should not be different.

 Proposal:

 =========
 I slightly prefer 2).
 I could live with both solution.

 Question 2:

struct S {
char bit2:16;// well-formed?

};

 Proposal:
 =========
 The declaration is ill-formed.
 The number of bits in a bit-field declaration shall not be greater
 than the number of bits needed for the object representation of the
 bit-field’s type, or if the bitfield is of enumeration type, of the
 enumeration’s underlying type.

623 - Representation of bitfields of bool type

 9.6[class.bit] paragraph 3 says:
 "A bool value can be successfully stored in a bit-field of any
 nonzero size."
 What does it mean "can be successfully stored"?

 Proposal:
 =========
 Replace the sentence above with:
 "If a bool value is stored into a bit-field of type bool of any
 nonzero size (including a one-bit bitfield), the value of the
 bit-field and the original bool value shall be the same."

458 - When is an enum bitfield signed / unsigned?

 Sam Kendall noted:
 > enum Bool { false=0, true=1 };
 > struct A {
 > Bool b:1;
 > };
 > A a;
 > a.b = true;
 > if (a.b == true) // if this is sign-extended, this fails.

 Proposal:
 =========
 Bill Gibbons proposed the following resolution:
 After the sentence 9.6[class.bit] paragraph 3, at the end of
 the 2nd sentence:
 "It is implementation defined whether plain (neither explicitly

signed or unsigned) char, wchar_t, short, int or long
bitfield is signed or unsigned."

 add the following:
"...; bit-fields of enumeration type are neither signed nor
unsigned. [For example, a two-bit bit-field can hold an
enumeration with values {0,1,2,3}.]"

571 - Is bitfield part of the type?

 Bill Gibbons mentioned:
 > The description in 4.5 [conv.prom] para 3 seems to indicate that
 > bitfield is part of the type. Is it?
 >
 > If it is (as 4.5 seems to indicate) this subclause should be more
 > explicit about it. If it isn’t, bitfields should be discussed in
 > lvalue/rvalue subclause [basic.lval] to describe how a bitfield
 > lvalue is transformed into an rvalue.

 Proposal:
 =========
 No, the bit-field attribute is not part of the type.
 Add to 4.1[conv.lval] at the end of paragraph 1:

"If the lvalue refers to a bitfield of type T, the resulting
rvalue is not a bitfield."

267 - What does "Nor are there any references to bitfields" mean?

 9.6[class.bit] paragraph 3 says:
 "Nor are there references to bit-fields."

 Tom Plum & Dan Saks ask the following:
 > Does this actually prohibit anything? A simple attempt to make a
 > reference refer to a bit-field just creates a temporary:
 > union { int bitf:2; } u;
 > const int & r = u.bitf;
 > Or is this a syntactic restriction that prohibits something like
 > union { int (&rbitf):2 } u;
 > Or is it meant to prohibit the use of typedefs to attempt it, such as
 > union { typedef int bitf_t:2; bitf_t &rbitf; } u;
 > The intent needs clarifying.

 Proposal:
 =========
 Replace the sentence above with:
 "A reference shall not be initialized with an lvalue that
 represents a bit-field."

568 - Can a POD class have a static member of type pointer-to-member,

non-POD-struct or non-POD-union?

 9 [class] paragraph 4 says:
 "A POD-struct is an aggregate class that has no members of type
 pointer-to-member, non-POD-struct or non-POD-union (or arrays of
 such types) or reference, and has no user-defined copy assignment
 operator and no user-defined destructor."
 And similar wording for POD-union.

 An aggregate can have static members.
 The wording above allows a POD class to have static members as well.
 However, it prohibits static members of type "pointer-to-member,
 non-POD-struct or non-POD-union (or arrays of such types) or
 reference". Should it?

 Proposal:
 =========
 I don’t see why it should.
 The sentence above should say:
 "A POD-struct is an aggregate class that has no _non-static_

members"
 and similarly for POD-union.

