Doc No: X3J16/96-0047 W321/ NO865
Dat e: January 30, 1996
Project: Programm ng Language C++
Ref Doc:
Reply to: Josee Lajoie

(j osee@net.ibm com

Type | ssues and Proposed Resol utions

621 - Is a definition for the terns "same type" needed?

Does the WP need to define what it neans for two objects/expressions
to have the same type? | need help (i.e. inspiration) as to how we
woul d go about doing this..

Looki ng t hrough the WP where the terns "sane type" is used, | noticed
the foll ow ng probl ens:

0 8.5.1 [dcl.init.aggr] para 15
"The initializer for a union with no user-declared constructor is
either a single expression of the _same type_, or a brace-encl osed
initializer for the first nenber of the union.”
Thi s shoul d say:
"...the sanme type (ignoring the top-level cv-qualifiers)..."

o 12.8[cl ass.copy] para 15

"Whenever a class object is copied and the original object and the
copy have the _sane type_, if the inplenmentation can prove that
either the original object or the copy will never again be used
except as the result of an inplicit destructor call (_class.dtor),
an inplenentation is pernmitted to treat the original and the copy
as two different ways of referring to the sanme object and not
performa copy at all."

Thi s shoul d say:
"...the sanme type (ignoring the top-level cv-qualifiers)..."

0 15. 3[except. handl e] para 2
“A handler with type T, const T, T& or const T& is a match for a
t hrow expression with an object of type E if
-- T and E are the same type, "

Thi s shoul d say:
"...the same type (ignoring the top-level cv-qualifiers of

type E) "
213 - Shoul d vacuous type decl arati ons be prohibited?

7[dcl .dcl] para 1 says:
"A declaration introduces one or nore names into a program and
specifies how those nanes are to be interpreted."

Is this intended to prohibit enpty declarations |ike these?
enum { };
class { int i; };
class { };
typedef enum {};
In this case the WP shoul d be cl earer

Jerry Schwarz al so noted
> This can also be interpreted as prohibiting the foll ow ng:
extern int i;
extern int i;
since the second decl arati on does not introduce anything (the nane
has al ready been introduced in the program.

vV V VYV

Pr oposal

| do not have a strong preference for this..

| decided that saying what the C standard says was a safe thing.

Vacuous decl arations are ill-forned.

Rewite 7[dcl.dcl] para 1 as foll ows:
"A declaration shall introduce one or nore nanes into a program or
shal | redeclare a name introduced by a previous declaration. A
decl aration specifies how those nanmes are to be interpreted.”

116 - Is "const class X { };" legal?

M ke MIler asks the foll ow ng:
> 1s "const class X { };" legal, and, if so, what does it nean?

> |f the declaration does not declare a declarator and a storage class
> specifier or a cv-qualifier is specified, are these sinply ignored

> or is the declaration ill-formed?

Solution 1):

Add to 7[dcl.dcl], at the end of para 3:
"In these cases, if the decl-specifier-seq contains a cv-qualifier
(7.1.5.1, dcl.type.cv) or a storage class specifier (7.1.1,
dcl.stc), these specifiers are ignored.™

Sol ution 1):

Add to 7[dcl.dcl], at the end of para 3:
"In these cases, if the decl-specifier-seq contains a cv-qualifier
(7.1.5.1, dcl.type.cv) or a storage class specifier (7.1.1,
dcl.stc), the declarations are ill-forned."

Pr oposal

| prefer 1).
| can live with either.

564 - is 'void f(const a);’' well-formed?
The worki ng paper says, in 7.1.5[dcl.type] para 3:

"At | east one type-specifier is required in a typedef declaration
At | east one type-specifier is required in a function declaration
unless it declares a constructor, destructor or type conversion
oper at or. 56)

56) There is no special provision for a decl-specifier-seq that
| acks a type-specifier. The "inplicit int" rule of Cis no
| onger supported.”

Annex C gives the foll ow ng exanpl e:
"void f(const parnmy; // invalid C++"

A cv-qualifier (like const in the exanple above) is a
type-specifier. So, according to the rule above, the exanple is
valid, i.e. a declaration that has only cv-qualifiers inits
type-specifier is valid according to 7.1.5.

Is the rule in 7.1.5 incorrect or is the exanple incorrect?

Pr oposal

The exampl e above is ill-formed.

Change in 7.1.5[dcl.type] paragraph 3 to say:
"At | east one type-specifier that is not a cv-qualifier is required in

a typedef declaration. At |east one type-specifier that is not a
cv-qualifier is required in a function declaration unless it declares
a constructor, destructor or type conversion operator.56)
56) There is no special provision for a decl-specifier-seq that
| acks a type-specifier or that has a type-specifier that only
specifies cv-qualifiers. The "inplicit int" rule of Cis no
| onger supported.”

503 - Carifications for bitfields of enuneration type needed

Question 1):

Bi Il G bbons mentionned:

> 7.2[dcl.enun paragraph 5 describes the underlying type of

> enuneration types. It should be nmade clear that this description

> does not apply to the underlying type of enuneration bit-fields.

Pr oposal

Change the begi nning of 7.2 paragraph 5 to say:
"The underlying type of an enuneration FN)..
FN) This does not apply to the underlying type of bitfields of
enuneration type."

Question 2):

Bill G bbons nentionned:

> Al so, sonething should be said about the signedness of enumeration
> types. Suggested new words:

> "Even though the underlying type of an enuneration will be either

> signed or unsigned, enunerations thenselves are neither signed
> nor unsigned. |[For exanple, a two-bit bit-field can hold an

> enuneration with values {0,1,2,3}.]1"

Pr oposa

Add the words Bill suggests at the end of 7.2 paragraph 5.
47 - bitfields & nunber of bits required by its type

Question 1:

Can a bit-field be declared with less bits than what is required to
store all of the values of its type?

enum ee { one, two, three, four };
struct S {
ee bitl:1; // well-formed?

b
Sol ution 1)
The declaration is ill-forned.

The nunber of bits of a bit-field of enuneration type shall be
sufficient to hold all of the values of the enuneration type.

Sol ution 2)
The decl aration is well-forned.
Since, for all other bit-field types (beside enuneration), a
bit-field can be declared with | ess bits than what is necessary to
hold all of the values of its type, bit-fields of enuneration type
shoul d not be different.

Pr oposal

| slightly prefer 2).
| could live with both solution

Question 2:
struct S {
char bit2:16;// well-formed?
b
Pr oposal
The declaration is ill-forned.

623

The nunber of bits in a bit-field declaration shall not be greater
than the nunber of bits needed for the object representation of the
bit-field s type, or if the bitfield is of enuneration type, of the
enuner ati on’ s underlying type.

- Representation of bitfields of bool type

.6[class.bit] paragraph 3 says:

"“A bool value can be successfully stored in a bit-field of any
nonzero size."
What does it nean "can be successfully stored"?

Pr oposal

Repl ace the sentence above with:

458

"If a bool value is stored into a bit-field of type bool of any
nonzero size (including a one-bit bitfield), the value of the
bit-field and the original bool value shall be the sane."

- When is an enumbitfield signed / unsigned?

Sam Kendal | not ed:

> enum Bool { false=0, true=1 };
> struct A{
> Bool b:1;
>}
> A a;
> a.b = true;
> if (a.b ==1true) // if this is sign-extended, this fails.
Pr oposa
Bill G bbons proposed the foll ow ng resol ution

571

VVVYVYVVYV

After the sentence 9.6[class.bit] paragraph 3, at the end of
the 2nd sentence:
"I't is inplenentation defined whether plain (neither explicitly
signed or unsigned) char, wchar _t, short, int or |ong
bitfield is signed or unsigned."
add the foll ow ng:
"...; bit-fields of enuneration type are neither signed nor
unsi gned. [For example, a two-bit bit-field can hold an
enuneration with values {0,1,2,3}.]"

- Is bitfield part of the type?

[l G bbons nentioned:
The description in 4.5 [conv.pron] para 3 seens to indicate that
bitfield is part of the type. Is it?

If it is (as 4.5 seens to indicate) this subclause should be nore
explicit about it. If it isn't, bitfields should be discussed in
| val ue/ rval ue subcl ause [basic.lval] to describe how a bitfield
value is transforned into an rval ue.

Pr oposal

No, the bit-field attribute is not part of the type.
Add to 4.1[conv.lval] at the end of paragraph 1:
"I'f the Ivalue refers to a bitfield of type T, the resulting
rvalue is not a bitfield."

267 - What does "Nor are there any references to bitfields" nmean?

9.6[class. bit] paragraph 3 says:
"Nor are there references to bit-fields."

Tom Pl um & Dan Saks ask the follow ng:

Does this actually prohibit anything? A sinple attenpt to nmake a

reference refer to a bit-field just creates a tenporary:
union { int bitf:2; } u;
const int &r = u.bitf;

O is this a syntactic restriction that prohibits something |ike
union { int (&bitf):2 } u;

O is it neant to prohibit the use of typedefs to attenpt it, such as
union { typedef int bitf_t:2; bitf_t &bitf; } u;

The intent needs clarifying.

VVVVVYVYVYVYV

Repl ace the sentence above with:
"A reference shall not be initialized with an |val ue that
represents a bit-field."

568 - Can a POD cl ass have a static nmenber of type pointer-to-nenber,
non- POD- struct or non- POD- uni on?

9 [cl ass] paragraph 4 says:

"A POD-struct is an aggregate class that has no nenbers of type
poi nter-to-menber, non-POD-struct or non-POD-union (or arrays of
such types) or reference, and has no user-defined copy assi gnnent
operator and no user-defined destructor."”

And simlar wording for POD union.

An aggregate can have static nenbers.

The wordi ng above allows a PCD class to have static nenbers as well.
However, it prohibits static nenbers of type "pointer-to-nenber,
non- POD- struct or non-POD-union (or arrays of such types) or
reference". Should it?

Pr oposal

| don’t see why it should.

The sentence above shoul d say:
"A POD-struct is an aggregate class that has no _non-static_
menbers"

and simlarly for POD union.

