Doc. No.: WG21/ N0857=X3J16/ 96- 0039

Dat e: 30 Jan 1996
Proj ect: C++ Standard Library
Reply to: Davi d Vandevoor de

vandevod@s. r pi . edu

Assi gnnent of val arrays

Descri ption

The specifications of the valarray tenplate (as currently included in
t he wor ki ng paper) mandate non-conform ng assignnents to valarrays to
cause the left-hand side to be resized; i.e., if ais a valarray of
size 10 and b is a valarray of size 20, the expression

a = 2*b;
is required to change the size of a to 20.
Not e t hat al t hough:

val array<int> a;
a += 2;

is allowed (adding two to every elenment of a), the follow ng:
a = 2;
is not.

Finally, consider valarrays a and b of size N, and a val array of
i ntegers P of the sane size

a = b[P];
is a straightforward pernutation, but

a = a[P];
may correspond to a nmuch nore conplex ‘‘in-place’’ pernutation, which
requires some tenporary storage to do correctly. It was unclear to ne
if this is the intended behavior or if the result is undefined.

Di scussi on

The first issue (allow ng non-conformning assignments) |eads to:
1) loss of performance (only significant for very sinple operations
on small arrays or for architectures with very few registers),
2) a subtle difference between ‘a = a+b;’ and ‘a += b;’ (the forner
i nval i dates references to a, whereas the |latter does not),
3) hard to find bugs.
The second issue (not allowing ‘“a = 2;’) is minor, but neverthel ess
likely to |l ead to considerable frustration both in teaching and usage.

The third issue illustrated the nore general issue of ‘‘indirect access
order’’: does the DWP nake guarantees as to the order in which el enents
of arrays are assigned. | believe it nmakes sense not to make such

guar ant ees,
1) to avoid having to deal with the possibility of unexpected
difficulties in the *‘sinultaneous assignnent’’ semantics

(the senantics that nake ‘a = a[P]’ work),
2) to sinplify the mapping of indirect access operations on
architectures with specialized scatter/gather hardware.

Pr oposed Resol ution

In [lib.valarray. nenbers] 26.3.1.7, renmove the fill nenber function and
its annotations.

In [lib.valarray.access] 26.3.1.3/6, include regular assignnments in the
set of operations that do not invalidate references in a valarray.

Repl ace 26.3.1.2 by text along the lines of:
1 Assignnment to an array does not invalidate references into that array.
t enpl at e<t ypenane T> val array<T>& oper at or=(val array<T> const &)

2 When invoked, this assignnent operator causes each el enent of the
*this array to be assigned the value of the correspondi ng el enent of
the argunent array. The behavior is undefined if these two arrays
have different |ength.

3 Let $L denote the expression evaluating as *this and $R denote the
expression evaluating as the argunent of the operator (i.e., the
ri ght hand side). Let further P be an array whose elenents are a
permut ati on of the sequence [0, ..., this->size()-1].

If the effect of:

for (siz
SL[P

t i = 0; i<$L.size(); i++)

11 = $Ri];

depends on the particular permutation that determnes P, the
result of the expression is undefined.

e_
[

t enpl at e<t ypenane T> val array<T>& operator=(T const &)

4 \When invoked, this assignnent operator causes each el enent of the
*this array to be assigned the value of the argunent.

5 Let $L denote the expression evaluating as *this and $R denote the
expression evaluating as the argunent of the operator (i.e., the
ri ght hand side). Let further P be an array whose elenents are a
permut ati on of the sequence [0, ..., this->size()-1].

If the effect of:

for (siz
$L[P

et i =0; i<$L.size(); i++)

[i]1] = $R

depends on the particular permutation that determnes P, the
result of the expression is undefined.

Note that little would change if the concept of a storage nodel were
i ntroduced (see another proposed resolution).

