Doc. No.: WGE21/ N0856=X3J16/ 96- 0038

Dat e: 30 Jan 1996
Proj ect: C++ Standard Library
Reply to: Davi d Vandevoor de

vandevod@s. r pi . edu

Hi gh- performance C++ inpl enentati ons for val arrays

Descri ption

It is not known how to inplenent the valarray tenplate (as currently
included in the working paper) with realistic perfornmance using the core
| anguage. By realistic performance, | think of no nore than 20% i ncrease
inrun-time and (1) increase in storage requirenments for typica
arrayw se operations.

Di scussi on

Todd Vel dhui zen and mysel f have (i ndependently) shown how tenpl ate
techni ques can be used to inplenment valarray-like functionality with
| ow over head. Todd Vel dhui zen (who coi ned the techni que ‘' expression
tenplates’’) provides a detailed discussion on-line:

http:// nonet. uwat erl oo. ca/
~t vel dhui / paper s/ Expr essi on- Tenpl at es/ exprt npl . ht n

| made an inplenmentation with nost of the valarray functionality
avail abl e at:

ftp://ftp.cs.rpi.edu/ pub/vandevod/ Val array/ Rel 2_0Bet a

We both report performance that is within a few percent of hand-coded
C for arrays of sizes |larger than about 25. For smaller arrays, the
over head can reduce perfornmance dramatically (especially for 1 or 2
el ement arrays), but still nmuch less so than alternative techniques.

I ndeed, while for mediumto-large sized arrays (sizes 1000 and up)
expression tenmplates lead to run-tinmes about half those of the known
alternative techni ques (involving extraneous copying and/or run-tine
expression analysis), small arrays result in ‘‘order of nagnitude’
speed i nprovenents when usi ng expression tenpl ates.

There are various ways to enabl e expression tenpl ate techniques.

The one proposed here results in mniml changes for the user as to
what constitutes a valid *‘valarray expression’’ (conpared with the
current specifications).

This is essentially the change that | suggested in my public comrent
in July 1995 (now backed with a working inplementation).

Pr oposed Resol ution

Change:

t enpl at e<t ypenanme T>
cl ass val array;

to:

tenpl at e<typenane T, typenanme M= c_array>
cl ass val array;

with the restriction that users can only directly create val array
objects with M= c_array.

| call Mthe ‘‘storage nodel’’.

An inmplenentation is free to return valarrays with other storage
nodels as it sees fit, but nust accept valarrays with such alternative
storage nodel s wherever val array<T> argunents are currently expected.

For exanple, the current addition operator:

t enpl at e<t ypenane T>
val array<T>
operat or +(val array<T> const &, val array<T> const &) ;

may becone:

tenpl at e<t ypenanme T, typename ML, typename M2>
val array<T, R(T, M, M)>
operat or+(val array<T, ML> consté&, valarray<T, M2> > consté&);

where R(T, ML, M2) is a storage nodel that may depend on T, ML and/or
M. (It may also sinply be c_array). The inpl enentati on nust accept

c_array and any other storage nodel it may generate as substitutions

for ML and M.

