
Doc. No.:    WG21/N0856=X3J16/96-0038
30 Jan 1996Date:

Project:     C++ Standard Library
Reply to:    David Vandevoorde

vandevod@cs.rpi.edu
 
 

High-performance C++ implementations for valarrays
 
 
 
Description
 
It is not known how to implement the valarray template (as currently
included in the working paper) with realistic performance using the core
language. By realistic performance, I think of no more than 20% increase
in run-time and O(1) increase in storage requirements for typical
arraywise operations.
 
 
Discussion
 
Todd Veldhuizen and myself have (independently) shown how template
techniques can be used to implement valarray-like functionality with
low overhead. Todd Veldhuizen (who coined the technique ‘‘expression
templates’’) provides a detailed discussion on-line:
 
    http://monet.uwaterloo.ca/

~tveldhui/papers/Expression-Templates/exprtmpl.html
 
I made an implementation with most of the valarray functionality
available at:
 
    ftp://ftp.cs.rpi.edu/pub/vandevod/Valarray/Rel2_0Beta
 
We both report performance that is within a few percent of hand-coded
C for arrays of sizes larger than about 25. For smaller arrays, the
overhead can reduce performance dramatically (especially for 1 or 2
element arrays), but still much less so than alternative techniques.
Indeed, while for medium-to-large sized arrays (sizes 1000 and up)
expression templates lead to run-times about half those of the known
alternative techniques (involving extraneous copying and/or run-time
expression analysis), small arrays result in ‘‘order of magnitude’’
speed improvements when using expression templates.
 
There are various ways to enable expression template techniques.
The one proposed here results in minimal changes for the user as to
what constitutes a valid ‘‘valarray expression’’ (compared with the
current specifications).
 
This is essentially the change that I suggested in my public comment
in July 1995 (now backed with a working implementation).
 
 
Proposed Resolution
 
Change:
 

template<typename T>
class valarray;

 
to:
 

template<typename T, typename M = c_array>
class valarray;

 



with the restriction that users can only directly create valarray
objects with M = c_array.
 
I call M the ‘‘storage model’’.
 
An implementation is free to return valarrays with other storage
models as it sees fit, but must accept valarrays with such alternative
storage models wherever valarray<T> arguments are currently expected.
 
For example, the current addition operator:
 

template<typename T>
valarray<T>
operator+(valarray<T> const&, valarray<T> const&);

 
may become:
 

template<typename T, typename M1, typename M2>
valarray<T, R(T, M1, M2)>
operator+(valarray<T, M1> const&, valarray<T, M2> > const& );

 
where R(T, M1, M2) is a storage model that may depend on T, M1 and/or
M2.  (It may also simply be c_array). The implementation must accept
c_array and any other storage model it may generate as substitutions
for M1 and M2.


