
ANSI X3J16/94-0166, ISO WG21/N0553

Exception Safe Exceptions

Gregory Colvin
Information Management Research

gregor@netcom.com

The class exception

As presently specified the class exception may itself throw exceptions. If using an exception can throw an
exception the result may be infinite loops, unbounded recursion, or worse. I propose to seal this hole by
specifying an interface which will not throw exceptions.

Interface

class exception {
public:
 exception(const char*) throw();
 exception(const string&) throw(alloc);
 exception(const exception&) throw();
 virtual ~exception() throw();
 exception& operator=(const exception&) throw();
 virtual const char* what() throw();
};

Semantics

 An exception is a container for a null-terminated-multi-byte-string (NTMBS). The member function
what() returns a pointer to a NTMBS which compares equal (in the sense of strcmp()) to the NTMBS so
contained. Note that only the constructor exception(const string&) throw(alloc) may throw an exception.
A conforming implementation will not call unexpected(). The Library and Language will not use the
constructor exception(const string&).

Expression Precondition Postcondition
exception x(p) p points to a NTMBS with storage

duration exceeding that of x or any copy
to be made of x.

strcmp(x.what(),p) == 0

exception x(s) s is a string. strcmp(x.what(),s.c_str()) == 0
exception x(e) e is an exception. strcmp(x.what(),e.what()) == 0
x = e x and e are exceptions. strcmp(x.what(),e.what()) == 0

Discussion

Some representatives object to the use of char* in the exception interface, in part because it is easy to
violate the precondition for exception(const char*). There is however an easy way to meet the
precondition: use a NTMBS with static storage duration, e.g. exception("bad"). Also, having what() return
a const char* is a change from the current string return value. Since the string class provides a const
char* constructor I believe no important functionality is lost. An alternative would be to specify a string-
only interface which disallows exceptions, but this might unduly constrain implementations of the string
class. Note also that since the Language and the Library do not use exception(const string&) no string
code need be linked in, which meets the strong objections of some representatives to having the language
depend on string.

1

ANSI X3J16/94-0166, ISO WG21/N0553

The template do_throw

We recently removed from the Library a means of preventing exceptions from being thrown by the Library
or the Language. The objection to this facility seemed not to be that it was unnecessary, but that the
machinery was needlessly complex. I hope that the following interface is simple enough to prove
acceptable.

Interface

void (*set_throw_handler(void(*)(const exception&)))(const exception&);

void throw_handler(const exception&);

template<class X> void do_throw(const X &x) throw(X);

Semantics

The function
void (*set_throw_handler(void(*pf)(const exception&)))(const exception&);

installs the function pointer pf as the current throw-handler and returns the previous throw-handler if any,
or 0.

The function
void throw_handler(const exception& x);

passes a reference to the exception x to the current throw-handler, if any.

The function template
template<class X> void do_throw(const X &x) throw(X);

passes a reference to the exception x to the current throw-handler, if any, and then executes the expression
throw x.

 Library exceptions and the Language exceptions bad_cast and bad_typeid are thrown (as if) by
do_throw().

Discussion

Since do_throw() is used to throw Library exceptions, as well as the Language exceptions bad_cast and
bad_typeid, users can prevent exceptions from being thrown by installing a throw-handler which does not
return. In addition, users can specialize the do_throw template to provide custom handling of their own
exception classes.

An alternative, but one which requires more language support, would be a single "magic" template
function:

template<class X> void (*set_throw_handler(void(*)(const X&)))(const X&);

The language would establish a throw-handler for every type of object thrown and call it, if set, as the first
part of each throw expression. I believe this alternative was first suggested by Nathan Meyers.

2

