
The fallthrough attribute
Reply-to: Aaron Ballman (aaron@aaronballman.com; aballman@cert.org)
Document No: N2052
Date: 2016-05-26

Introduction
A lesser-used idiom within a switch statement is the ability to "fallthrough" from a one case block into

another case block. This can create expensive logic errors when the fallthrough behavior is unintentional

because the secondary case functionality may appear to be reasonable at first glance, causing the

incorrect behavior to be discovered elsewhere in the code base. Compilers cannot easily diagnose

fallthrough behavior because there is no way to distinguish programmer intent: sometimes fallthrough

behavior is expected and desirable, other times it is a bug.

Proposal
This document proposes the [[fallthrough]] attribute as a way for a programmer to specify that

fallthrough behavior is desirable under the assumption that silently fallthrough is an accidental omission

of a break statement. This allows programmers to specify their intent explicitly, giving an

implementation the opportunity to diagnose fallthrough behavior in the absence of explicit marking.

Consider:

 enum E { Zero, One, Two, Three };
 size_t calculate_required_buffer_size(enum E e) {

 size_t Ret = 0;

 switch (some_value) {

 case Zero: // (0)

 case One:

 Ret = 100;

 break;

 case Two:

 Ret = 200; // (1)

 case Three:

 Ret = 20; // (2)

 break;

 default:

 assert(0 && "Unknown enumeration value");

 }

 return Ret;

 }

If the enumerator Two is passed to calculate_required_buffer_size(), the Ret variable

will store the value 200 at (1). However, because there is no break statement following the assignment,

execution "falls through" to the next statement, overwriting Ret with the value 20 at (2). This results in

a likely unexpected value being returned from calculate_required_buffer_size() that

could, e.g., lead to the caller allocating an insufficient amount of memory for an object, resulting in an

exploitable buffer overrun. Without an annotation, the compiler has insufficient information to

determine whether falling through from one case to another is intended behavior. Thus, the fallthrough

into (2) can be diagnosed by a compiler. If the fallthrough is desired, the programmer can instead write:

 // ...

 case Two:

 Ret = 200;

 [[fallthrough]];

 case Three:

 // ...

The fallthrough at (0) is left to QoI as to whether a diagnostic is desired or not. Common practice is for

(0) to not diagnose fallthrough because there is only a single newline between the case labels.

The [[fallthrough]] attribute can only be applied to a null statement that precedes a case or

default label statement within a switch statement.

Rationale
The [[fallthrough]] attribute has real-world use, being implemented by Clang and GCC as C++

vendor-specific attributes, and was standardized under the name [[fallthrough]] by WG21. This

attribute cannot be implemented via the __declspec or __attribute__ vendor-specific

extensions because it is an attribute that appertains to a statement instead of a declaration or a type.

Proposed Wording
This proposed wording currently uses placeholder terms of art and is expected to change as N2049

progresses. It assumes a new subclause, 6.7.11, Attributes that describes the referenced grammar

terms. The [Note] in paragraph 1 of the semantics is intended to convey informative guidance rather

than normative requirements.

6.7.11.2 Fallthrough attribute

Constraints

1 The attribute-token fallthrough shall be applied to a null statement (6.8.3); such a statement is a

fallthrough statement. The attribute-token fallthrough shall appear at most once in each attribute-

list and no attribute-argument-clause shall be present. A fallthrough statement may only appear within

an enclosing switch statement (6.8.4.2). The next statement that would be executed after a

fallthrough statement shall be a labeled statement whose label is a case label or default label for the

same switch statement.

Semantics
1 [Note: The use of a fallthrough statement is intended to suppress a warning that an implementation

might otherwise issue for a case or default label that is reachable from another case or default label

along some path of execution. Implementations are encouraged to issue a warning if a fallthrough

statement is not dynamically reachable. ­­ end note]

2 EXAMPLE

 void f(int n) {

 void g(void), h(void), i(void);

 switch (n) {

 case 1:

 case 2:

 g();

 [[fallthrough]];

 case 3: // warning on fallthrough discouraged

 h();

 case 4: // fallthrough warning encouraged

 i();

 [[fallthrough]]; // constraint error

 }

 }

Acknowledgements
I would like to recognize the following people for their help in this work: David Keaton, David Svoboda,

and Andrew Tomazos. I would also like to thank the US Department of Homeland Security, without

whose funding this proposal would not have been made.

References
[N2049]
Attributes in C. Aaron Ballman. http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2049.pdf

[P0068R0]
Proposal of [[unused]], [[nodiscard]] and [[fallthrough]] attributes. Andrew Tomazos. http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2015/p0068r0.pdf

[P0188R1]
Wording for [[fallthrough]] attribute. Andrew Tomazos. http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2016/p0188r1.pdf

