Rationalefor TR 24732
Extension to the programming language C

Decimal Floating-Point Arithmetic

WG14 N1202

Contents
S 1 0 oo [[f o o PSRRI 1
1.1 [T Tod (o [£ 0101 T H PSPPI 1
1.2 The Arithmetic MOdElo e 3
I S I o =T = To Yo 11 o 1P 3
A €= g1 o | B PRRPSP 4
21 Y oT0] o[PS PT PP 4
2.2 Sy (= (=] o = PP 4
3 Predefined MacCrO NAMIEviii it e e et e e e e e e e e e sasreeeeaennes 4
4 DeCiMal floatiNg tYPES ..o ittt et st esnne e e ane e e ennee s 4
5 Characteristics of decimal floating types<float.h>...........ccccoooiiiiiiciiiiccececeeceee, 5
I 00 g1V = o] [PRSP 5
6.1 Conversions between decimal floating and iImMege...........ccoovviiiiiiiiiiinieeii s 5
6.2 Conversions among decimal floating types, ativéen decimal floating types and
0ENETNIC FIOALING LYPES ...eieiiiii et ettt e et e et e e et e e e ae e e et e e e et e e e eaan e eenes 6
6.3 Conversions between decimal floating and corple..........cccoooviiiiiiiiiiiinecee, 6
6.4 Usual arithmetiC CONVEISIONScout e e e e e 6
6.5 Default argument PromMOtiONoiieuiieei e e e 7
A O 0 01 -1 1 RO SETR 7
7.1 Unsuffixed decimal floating CONSLANTccoummieiiiiiiiiiii e 7
7.1.1 Translation time data tYPeoeue i icceee e 8
8 ArItNMELIC OPEIatiONScoiiiiii ettt e e sbe e e e st e e e snseeeenneeeenes 9
8.1 (@ 01T =1 (0] £ PP 9
8.2 LT T 10 1 PPN 9
8.3 (70101771 £ 10 o 1S 9
S T I o] = YRR 9
9.1 Standard NEAUEIS.......coui i e et 9
9.2 Floating-point environment <feNV.N> ... 9
9.3 Decimal mathematics <math.h>...........oc 10
9.4 New <math. N> fUNCLIONS.......... e 10
9.5 Formatted input/OULPUL SPECITIEIS cceee e 10
9.6 strtod32, strtod64, and strtod128 functionslfsh> ..o 11
9.7 wecstod32, westod64, and westod128 functionshard>...........ovveivieiiiiiiiiiieennns 1.1
9.8 Type-generic macros <tgmath.h>............cccccoiiii e 11
F N] 1< PP 12

WG14 N1202

1 Introduction
1.1 Background

The existing floating-point types in the C language defined in terms of a model that describes a
representation of floating-point numbers and vathes provide information about an
implementation’s floating-point arithmetic; the stiard does not require the floating-point types to
be a specific representation or radix. For thishhemal Report, the committee considered both
adding decimal floating-point support without irdtecing additional data types, as well as the
current proposal of adding three new types (asEeE-754R) to the language.

Most applications do not care how floating-pointissie. Many applications would be better off
using decimal floating-point. Very few applicatiomsed the better error bounds of binary floating-
point. There will be applications that will needib&inds of floating-point (many will be
conversion programs used to convert existing dis from binary floating-point to decimal
floating-point). There will be a few applicatiorigat will need to run a mixture of third party
libraries that only know about binary floating-ptiand other third party libraries that only know
about decimal floating-point.

Binary floating-point and decimal floating-points(defined in IEEE-754R) occupy the same
amount of storage, and they could be treated time $ar all data movement and register usage.
This means that a function call whose prototygansry floating-point, but is called with decimal
floating-point (and visa versa), can be made tokwas the same number of bytes are passed in the
same manner). Hence, adding several functiorfsetéilirary to convert between binary floating-
point and decimal floating-point (for the same dizkata) would allow applications to mix both

kinds of floating-point. Of course, this means ttiat application needs to add explicit function

calls to do the conversions.

The floating-point unit (FPU) does a binary flogieoation versus a decimal float operation by
either a different opcode, or by a switchable moitlén some control word. In either case, code
generation must be controllable by the user. Switcthe mode bit at runtime could be done by a
function call. But, generating different opcodeguiee translation time control - a pragma seems
like the logical choice; this also works for switatp the mode bit.

Based on the above, one might come to the conclukat adding decimal floating-point support
to the language can be done by reusing the exitiaing-point types, with some combination of
compiler switch, pragma, and conversion routinesnable a mixed binary/decimal floating-point
operations. This approach, however, does preseatagroblems.

Variable argument functions dd oat to doubl e promotion. This will be incorrect if the
hardware promotes as if the data is binary, butittta is really decimal, and visa versa. Explicit
calls to some conversion routines would make itkevbowever, it would be cumbersome to use.

Debugging tools would have no clue if a floatingfp@bject is decimal or binary. That is, a
fl oat, doubl e, orl ong doubl e declaration does not imply the base that will beclifor that

WG14 N1202

object. In fact, the object could be binary flogtimoint some places in the program and decimal
floating-point in others.

By introducing three additional floating-point dayaes to the language resolves some of these
issues. However, adding new data types can beasestaking the language, as well as their use
alongside the existing floating-point data typemecessarily complex. Some arguments presented
for having separate decimal floating-point types ar

1.

The fact that there are two sets of floating-ptypes in itself does not mean the language
would become more complex. The complexity quesstoould be answered from the
perspective of the user's program; that is, dowdve data types add complexity to the
user's code? The answer is probably no excephéoissues surrounding implicit
conversions. For a program that uses only binaatithg-point types, or uses only decimal
floating-point types, the programmer is still warggiwith three floating-point types.

Having additional data types is not making the pgagmore difficult to write, understand,
or maintain.

Implicit conversions, other than assignment andtion argument passing, can be handled
by simply disallowing them (except maybe for catbed involve literals). If we do this, for
programs that have both binary and decimal floapaopt types, the code is still clean and
easy to understand.

If we only have one set of data types, and if wevjole STDC pragmas to allow programs
to use both representations, in a large sourceviile STDC pragma changing the meaning
of the types back and forth, the code is actuafigld of land mines for the maintenance
programmer, who might not immediately aware ofdbatext of the piece of code.

Since the effect of a pragma is a lexical regiotinivithe program, additional debugger
information is needed to keep track of the changmegning of data types.

Giving two meanings to one data type hurts typetgafA program may bind by mistake to
the wrong library, causing runtime errors thatdifecult to trace. It is always preferable to
detect errors during compile time. Overloading treaning of a data type makes the
language more complicated, not simpler.

A related advantage of using separate types isttfailitates the use of source
checking/scanning utilities (or scripts). They easily detect which floating-point types

are used in a piece of code with just local praogss$f a STDC pragma can change the
representation of a type, the use of grep, for @@nas an aid to understand and to search
program text would become very difficult.

Suppose the standard only defines a library foicka#hmetic operations. A C program
would have to code an expression by breaking itrdimto individual function calls. This
coding style is error prone, and the resulting adiffecult to understand and maintain. A
C++ programmer would almost definitely provide he/ own overloaded operators.

WG14 N1202

Rather than having everyone to come up their ovensiould define it in the standard. If
C++ defines these types as class, C should prevgid of types matching the behavior.

This is not a technical issue for an implementatamit might seem on the surface initially - that
is, it might seem easier to just provide new megtinexisting types using a compiler switch - but
is an issue about usability for the programmer. Mieaning of a piece of code can become
obscure if we reuse thid oat , doubl e, | ong doubl e types. Also, we have a chance here to
bind the C behavior directly with IEEE, reducing thumber of variations among
implementations. This would help programmer writpaytable code, with one source tree
building on multiple platforms. Using a new setdata types is the cleanest way to achieve this.

Ultimately if the goal is to be able to bind to IEEor floating-point arithmetic, C would have to
support the data types and operations as speaifiétEE. Not only does IEEE-754R include both
binary format and decimal format, it also defingem@tions (e.g. conversion) between the two
radices. Having three additional decimal data tygdlesvs such required mixed operations to
happen more portably and intuitively within the satranslation unit, as opposed to requiring
mixing only across translation units.

1.2 The Arithmetic M oddl

Based on a model of decimal arithm&tighich is a formalization of the decimal system of
numeration (Algorism), as further defined and coaised by the relevant standards: IEEE-854,
ANSI X3-274, and the proposed revision of IEEE-7bHe latter is also known as IEEE-754R.

1.3 The Encodings

Based on the current IEEE-754R proposal.

C99 specifies floating-point arithmetic using a tlager organization. The first layer provides a
specification using an abstract model. The reptesien of floating-point number is specified in

an abstract form where the constituent compondriteeaepresentation is defined (sign, exponent,
significand) but not the internals of these compgieln particular, the exponent range,
significand size and the base (or radix), are imeletation defined. This allows flexibility for an
implementation to take advantage of its underlyiagdware architecture. Furthermore, certain
behaviors of operations are also implementatiomddf for example in the area of handling of
special numbers and in exceptions.

The reason for this approach is historical. Atttiree when C was first standardized, there was
already various hardware implementations of flaggpoeint arithmetic in common use. Specifying
the exact details of a representation would makst withe existing implementations at the time
not conforming.

1 A description of the arithmetic model can be foumbttp://www2.hursley.ibm.com/decimal/decarith.html

WG14 N1202

C99 provides a binding to IEEE-754 by specifyingganex F and adopting that standard by
reference. An implementation not conforming to IEEE can choose to do so by not defining the
macro__ STDC | EC 559 . This means not all implementations need to sugp&E-754, and
the floating-point arithmetic need not be binary.

The technical report specifies decimal floatingap@irithmetic according to the IEEE-754R, with
the constituent components of the representatifinetke This is more stringent than the existing
C99 approach for the floating types. Since it isested that all decimal floating-point hardware

implementations will conform to the revised IEEE756inding to this standard directly benefits

both implementers and programmers.

2 General
2.1 Scope

The technical report is intended to follow the IEEEIR specification; any conflict between the
requirements described in the technical reportlBidE-754R is unintentional. The technical
report defers to IEEE-754R.

2.2 References

3 Predefined macro name

A macro is provided to allow users to determingné technical report is supported by the
implementation.

4 Decimal floating types

The three new decimal floating-point data typesoihiticed in the technical report have names
similar and characteristics matching those defind8EE-754R. An alternative naming

convention that encapsulates the base (or rad&kpegcision in the name had also been suggested,;
for example: decfp7, decfpl6, and decfp34, whiclicate decimal representation (dec), floating
point type (fp), with the specified number of caaént digits (7, 16, or 34). However, it was felt
that names similar to those used in IEEE-754R neagnbre appropriate.

Furthermore, a single token used as a type namé&waake it easier for C++ to implement any
types as classes. A more generic single token mpoanvention, not unlike names like

ui nt 32_t, can be considered in the future; for examplet_2ZFI24, Cmplx_10_7, Imag_16_6,
etc. Such names can easily be introduced as typéalekisting types.

WG14 N1202

Decimal floating types are distinct types from thel floating type$ | oat , doubl e, andl ong
doubl e, even if an implementation chooses the same décapeesentation for the real floating

types.

The technical report does not specify decimal cempbr decimal imaginary types; however, this
does not mean that they can not be added in theefut

5 Characteristics of decimal floating types <float.h>

The characteristics for the new decimal floatingety are defined iwf | oat . h> by a set of

macros similar to the ones defined for real flogitiypes. However, these macros have names that
do not match reserved identifiers. To prevent ftwsn making an implementation not conform to
ISO/IEC 9899, the functions, type names, and maadaded by the technical report are under the
control of a macro named STDC WANT _DEC FP__, whose name does match the pattern of
reserved names in ISO/IEC 9899.

The use of evaluation formats for the new decineating types is characterized by the
implementation-defined value ®EC_EVAL _METHOD, similar to how the evaluation of generic
floating types are indicated by the value=afT EVAL METHOD. In IEEE-754R, Deci mal 32

is defined as aorage format only, meaning an implementation need not provigerations for
_Deci mal 32 in order to conform. Therefore, on such an impletagon,DEC_EVAL_METHOD
can be set to the value 1.

Thexxx_MAXDI GLO macros originated from a WG14 paper N1151. Altlongt necessarily
related to decimal floating types, it was nevegbsldeemed useful by the committee, and
therefore added to this technical report.

6 Conversions
6.1 Conversions between decimal floating and integer

When the new type is a decimal floating type, weehthree choices: the most positive/negative
number representable, positive/negative infinityd guiet NaN. The first provides no indication to
the program that something exceptional has happdiedsecond provides indication, and since
other operations that produce infinity also raseeption, an exception would be raised here for
consistency. The third allows the program to detieetcondition and provides a way for the
implementation to encode the condition (for exanmeere it occurs).

When the new type is an unsigned integral typeyéhges that create problems are those less than
0 and those greater thaypde MAX. There is no overflow/under-flow processing fmsigned
arithmetic. A possible choice for the result wobkdUype MAX if the original value is positive,

or 0 if negative. Also, implementations are notuiegf to raise signals for signed integer

WG14 N1202

arithmetic. When the new type is a signed intetyja¢, the values that create problems are those
less thartype_MIN and those greater théype MAX. The result here should ltgpe MIN or
type_MAX depending on whether the original value isat@g or positive.

Conversions between decimal floating and integenéas follow the operation rules as defined in
IEEE-754R.

In the case where the value being converted isdmutbe range of values that can be represented,
the result is dependent on the rounding mode asfiaein the technical report. Note that with
decimal floating type, there are two flavors ofmduo nearest=E_DEC TONEAREST and
FE_DEC_TONEARESTFROWZERQ, the effect is the same for both modes.

6.2 Conversions among decimal floating types, and between
decimal floating types and generic floating types

The specification is similar to the existing onesffl oat , doubl e andl ong doubl e, except
that when the result cannot be represented exalot\hehavior is defined to become correctly
rounded.

6.3 Conversions between decimal floating and complex

When a value of decimal floating type is conveitted complex type, the real part of the complex
result value is determined by the rules of coneeren 6.2 and the imaginary part of the complex
result value is a positive zero or an unsigned.zero

6.4 Usual arithmetic conversions

In an application that is written using decimatlaretic, mixed operations between decimal and
other real types might not occur frequently. Situa where this might occur are when interfacing
with other languages, calling an existing libranyttgn in binary floating-point arithmetic, or
accessing existing data. The programmer will wanige an explicit cast to control the behavior in
such cases to make the code maximally portable wanyeo handle usual arithmetic conversion is
therefore to disallow mixed operations. The disatiage of this approach is usability - for
example, it could be tedious to add explicit cas@ssignments and in function calls when the
compiler can correctly handle such situations. Wiy implicit conversions only in simple
assignment, return statement, and in argumentrngaseives this issue.

One major difficulty of allowing mixed operationiisthe determination of the common type. C99
does not specify exactly the range and precisidhefeneric real types. The pecking order
between them and the decimal types is therefoneaaif®ed. Given two (or more) mixed type

WG14 N1202

operands, there is no simple rule to define a comtyyee that would guarantee portability in
general.

For example, we can define the common type to @tle with greater range. But since a

doubl e type may have different range under different enpd¢ntations, a program cannot assume
the resulting type of an addition, say, involvirgflib_Deci mal 64 anddoubl e. This imposes
limitations on how to write portable programs.

If the generic real type is a type defined in IEEER, and if we use tigreater-range rule, the
common type is easily determined. When mixing detamd binary types of the same type size,
decimal type is the common type. When mixing typedifferent sizes, the common type is the
one with larger size. The alternate suggested eaminnex Auses this approach but does not
assume the generic real type to follow IEEE-754Rs §uarantees consistent behaviors among
implementation that uses IEEE-754 in their bindogting-point arithmetic, and at the same time
provides reasonable behavior for those that don't.

The committee felt that few programs will requirexed operations, and that requiring explicit
cast may result in less error-prone programs.

6.5 Default argument promotion

There is no default argument promotion specifiedtie decimal floating types in the technical
report.

7/ Constants

New suffixes are introduced to denote decimal flmptonstants. Also, due to the introduction of
translation-time data type described in 7.1, iadonger possible to specify constants of type
doubl e; thed andD suffixes are added for this purpose.

7.1 Unsuffixed decimal floating constant

The proposal for a translation-time data type (T) Drallow for the use of unsuffixed floating-
point constants originated in WG14 paper N110&hatLillehammer meeting, the committee felt
that the idea was too important to leave out, and minimum it should be a recommended
practice in this technical report. There were estiendiscussions on whether TTDT should be
made part of the rules, i.e. required'. In the #x@dcommittee decided to make it a separate sectio
in the TR. Note also TTDT could apply to TR 18037.

WG14 N1202

7.1.1 Trandation time data type

Translation time data type (TTDT) is an abstratadgpe which the translator uses as the type for
unsuffixed floating constants. A floating constankept in this type and representation until an
operation requires it to be converted to an adtymd. The value of the constant remains exact for
as long as possible during the translation proddss.concept can be summarized as follows:

1. The implementation is allowed to use a type diffiefeomdoubl e andl ong doubl e as
the type of unsuffixed floating constant. This simplementation defined type. The intention
is that this type can represent the constant gxdidtie number of decimal digits is within an
implementation specified limit. For an implemeraatthat supports decimal floating pointing,
a possible choice is the widest decimal floatinuety

2. The range and precision of this type are implemeamtalefined and are fixed throughout the
program.

3. TTDT is an arithmetic type. All arithmetic operat®are defined for this type.

4. Usual arithmetic conversion is extended to handiedoperations between TTDT and other
types. If an operation involves both TTDT and atuaktype, the TTDT is converted to an
actual type before the operation. There is no down" parsing context information required
to process unsuffixed floating constants. Techhjicgleaking, there is no deferring in
determining the type of the constant.

Examples:

double f;
f=0.1;

Suppose the implementation usddci mal 128 as the TTDT. 0.1 is represented exactly after
the constant is scanned. It is then convertetbiabl e in the assignment operator.

f=0.1*0.3;

Here, both 0.1 and 0.3 are represented in TTDfhelicompiler evaluates the expression during
translation time, it would be done using TTDT, &ne result would be TTDT. This is then
converted taloubl e before the assignment. If the compiler generabele ¢o evaluate the
expression during execution time, both 0.1 anda®8ld be converted tdoubl e before the
multiply. The result of the former would be diffateout more precise than the latter.

float g = 0.3f;
f=0.1*g;

When one operand is a TTDT and the other is orid ofit , doubl e, | ong doubl e, the
TTDT is converted taoubl e with an internal representation following the dfieation of
FLT_EVAL_METHQOD for constant of type double. Usual arithmetic asion is then applied to
the resulting operands.

WG14 N1202

_Decimal32 h =0.1;

If one operand is a TTDT and the other a decinaatihg type, the TTDT is converted to
_Deci mal 64 with an internal representation specifieddsC EVAL_METHOD. Usual
arithmetic conversion is then applied.

If one operand is a TTDT and the other a fixed ptyipe, the TTDT is converted to the fixed point
type. If the implementation supports fixed poinpeyit is a recommended practice that the
implementation chooses a representation for TTIRAT ¢an represent floating and fixed point
constants exactly, subjected to a predefined mithe number of decimal digits.

8 Arithmetic Operations
8.1 Operators

Since mixed operations between decimal and gefleating types are not allowed, any operation
between a decimal float operand and a generic dipatand will result in a constraint violation
requiring a diagnostic. The only exceptions arégassent and function argument passing.

8.2 Functions

8.3 Conversions

9 Library
9.1 Standard headers

C99 section 7.1.3 prohibits the addition of idaets to the standard headers unless the names
match certain patterns of reserved identifierss Beiction of the technical report adds to existing
headers many functions and macros that do not nmaseinved identifiers. To prevent this from
making an implementation not conform to ISO/IEC 98®e functions, type names, and macros
added by the technical report are under the coafralmacro named

___STDC WANT_DEC FP__, whose name does match the pattern of reservedsnenhiSO/IEC
9899.

9.2 Floating-point environment <fenv.h>

WG14 N1202

The new, unique rounding mo&& DEC TONEARESTFROVZERO for decimal floating-point
operations corresponds to the IEEE-754R roundindari®ound to Nearest, Ties Away from
Zero”. The otheFE_DEC xxx rounding modes are similar to the existif xxx rounding
modes.

A set of get/set function is added for controllihg rounding direction of decimal floating
operations, independent of the rounding directibgemeric floating operations.

9.3 Decimal mathematics <math.h>

The list of elementary functions specified in thathematics library is extended to handle decimal
floating-point types.

Thef r exp function breaks a floating-point number into amalized fraction and an integer
exponent. For decimal floating-point types, theangnt should be base-10.

Ther emquo function is not being extended to handle decireating-point types, since it is
unclear whether a base-10 version is useful oriredju

9.4 New <math.h> functions

IEEE-754R specifies two additional decimal floatipgint operationssamequantum andquantize.
These are implemented as new library functionsd8.0 he library functions have the same
semantics as the IEEE operations.

9.5 For matted input/output specifiers
New length modifiers are introduced for decimahfing types.

One suggestion was to simply addo existing conversion specifiers to indicate dedifloating
types; e.gDf for _Deci mal 64 andDLf for _Deci mal 128. However, there's no existing
length specifier fof | oat , as floats are default promoted to doubles. Theeed specifier for
_Deci mal 32 does not exist with this scheme.

The precision of the length modifiers is defaulted, similar to the current specification for
generic floating type. Since the precision of tkeithal floating type is encoded in the
representation, it has been suggested that wdessntoded precision as the default instead. The
committee felt that having a default precision thatedictable and consistent with the generic
floating type is important, and that if the encogeecision is required, there exists a portable way
of specifying it with the * precision modifier.

10

WG14 N1202

9.6 strtod32, strtod64, and strtod128 functions <stdlib.h>

The latest IEEE-754R draft requires that floatiragnap overflow be raised for values that are too
large or too small. As such, setting errno to ER#Nas currently proposed does not meet those
requirements (but does match strtod family). Restibae requirements of 7.12.1#4 of
math_errhandling should be applied to the strtatcfions. [require committee discussion.]

9.7 wcstod32, westod64, and westod128 functions <wchar .h>

9.8 Type-generic macros <tgmath.h>

According to C99 7.22p3, “if any argument for geagrarameters has typmubl e or is of
integer type, the type determineddisubl e.” That is,

sqrt(9); /I expands to tldoubl e version of sqrt

Therefore the new rules for type-generic macro hagdor decimal floating types can not change
this behavior.

11

WG14 N1202

Annex A

The following is an alternate suggestiorugual arithmetic conversionsing thegreater-range
rule.

Insert the following to 6.3.1.8#1, after "This patt is called thesual arithmetic conversions:”
6.3.1.8[1]

... This pattern is called thesual arithmetic conversions:

If one operand is a decimal floating type and tteeeno complex types in the operands:

If either operand isDeci mal 128 orl ong doubl e, the other operand is converted to
_Deci mal 128.

Otherwise, if either operand ieci mal 64 ordoubl e, the other operand is converted
to _Deci mal 64.

Otherwise, if either operand ieci mal 32, the other operand is converted to
_Deci mal 32.

If one operand is a decimal floating type and ttheenis a complex type, the decimal floating type
is converted to the first type in the followingtlikat can represent the value rarfgeoat ,

doubl e, | ong doubl e. It is converted td ong doubl e if no type in the list can represent its
value range. In either case, the complex typenyeded to a type whose corresponding real type
is this converted type. Usual arithmetic conversi@then applied to the converted operands.

During any of the above conversions, if the valagy converted can be represented exactly in the
new type, it is unchanged. If the value being coteekis in the range of values that can be
represented but cannot be represented exactlyeshdt is correctly rounded. If the value being
converted is outside the range of values that earepresented, the result is dependent on the
rounding mode. If the rounding mode is:

near, if the value being converted is less than theimam representable value of the
target type plus 0.5 ulp, there is no overflow #m@result is the maximum value of the
target typé, otherwise the absolute value of the result is @tdUGE_VAL, HUGE_VALF,
HUGE_VALL, HUGE VAL_D64, HUGE _VAL_D32 or HUGE_VAL_D128 depending on
the result type and the sign is the same as the \mding converted.

zero, the value is the most positive finite number espntable if the value being converted
is positive, and the most negative finite numberesentable otherwise.

2 That is, the values that are between MAX and MAGH#*ulp/2

12

WG14 N1202

positive infinity, the value is same as for rounding meet® if the value being converted is
negative; otherwise the result is one of positiué&E VAL, HUGE VALF, HUGE_VALL,
HUGE_VAL_D64, HUGE_VAL_D32 or HUGE_VAL_D128 depending on the result type.

negative infinity, the value is same as for rounding meet® if the value being converted
is postive; otherwise the result is one of negateE VAL, HUGE VALF, HUGE_VALL,
HUGE_VAL_D64, HUGE_VAL_D32 or HUGE_VAL_D128 depending on the result type.

If there are no decimal floating type in the opeisan

First, if the corresponding real type of either igoel isl ong doubl e, the other operand
is converted, without ... <the rest of 6.3.1.8#haes the same>

13

